
GML Learning, A Generic Machine Learning

Model for Network Measurements Analysis

Pedro Casas

AIT Austrian Institute of Technology

pedro.casas@ait.ac.at

Juan Vanerio

Universidad de la República

jvanerio@fing.edu.uy

Kensuke Fukuda

National Institute of Informatics

kensuke@nii.ac.jp

Abstract—The application of machine learning models to the
analysis of network measurement problems has largely increased
in the last decade; however, there is still no clear best-practice
or silver bullet approach to address these problems in a general
context, and only adhoc and tailored approaches have been
evaluated so far. While deep-learning models have provided
a major breakthrough in highly-dimensional problems such
as image processing, it is difficult to say today which is the
best model to address the analysis of large volumes of highly-
dimensional data collected in operational networks. In this paper
we present a potential solution to fill this gap, exploring the
application of ensemble learning models to multiple network
measurement problems. We introduce GML Learning, a generic
Machine Learning model for the analysis of network measure-
ments. The GML model is a generalization of the well-known
stacking approach to ensemble learning, and follows the concepts
of the Super Learner model. The Super Learner performs
asymptotically as well as the best input base or weak learners,
providing a very powerful approach to tackle multiple problems
with the same technique. In addition, it defines an approach to
minimize over-fitting likelihood during training, using a variant
of cross-validation. We deploy the GML model on top of Big-
DAMA, a big data analytics framework for network measurement
applications. We test the proposed solution in five different and
assorted network measurement problems, including detection of
network attacks and anomalies, QoE modeling and prediction,
and Internet-paths dynamics tracking. Results confirm that the
GML model provides better results than any of the single baseline
models of the stack, and outperforms traditional bagging and
boosting ensemble learning approaches. The GML Learning
model opens the door for a generalization of a best-practice
technique for the analysis of network measurements.

Index Terms—Big-Data; Network Traffic Monitoring and
Analysis; Machine Learning; Ensemble Learning; Super Learn-
ing; Network Measurements.

I. INTRODUCTION

Data-driven networking [1], i.e., the design and management

of network systems by the analysis of network measurements,

represents a key component for future network management.

The high-volume and high-dimensionality of network data pro-

vided by current network measurement systems opens the door

to the massive application of machine learning approaches to

improve data-driven networking problems.

There are however two major challenges in applying ma-

chine learning models at large-scale for handling network

The research leading to these results has been partially funded by the
Vienna Science and Technology Fund (WWTF) through project ICT15-129,
“BigDAMA”.

measurements: (i) from a practical perspective, network mea-

surement applications require to process in near real-time very

large amounts of fast and heterogeneous network monitoring

data. Network monitoring data usually comes in the form of

high-speed streams, which need to be rapidly and continu-

ously analyzed. Different systems have been conceived in the

past to collect large amounts of measurements in operational

networks, but a flexible data processing system capable to

analyze and extract useful insights from such rich data is

needed; there is also a need to process massive amounts

of network measurement data in an off-line fashion with

better and more elaborated data analytic models, which is

not trivial, specially when applying machine learning models,

that have in general heavy-computational requirements; (ii)

from a theoretical perspective, selecting the best machine

learning model for a specific problem is a complex task -

it is commonly accepted that there is no silver bullet for

addressing different problems simultaneously. Indeed, even

if multiple models could be very well suited to a particular

problem, it may be very difficult to find one which performs

optimally for different data distributions and statistical mixes.

The ensemble learning theory permits to combine multiple

single models to form a (hopefully) better one. Ensemble

methods use multiple learning algorithms to obtain better

predictive performance than could be obtained from any of

the constituent learning algorithms alone. In principle, if no

single model covers the true prediction behind the data, an

ensemble can give a better approximation of that oracle, true

prediction model. In addition, an ensemble of models exhibits

higher robustness with respect to uncertainties in training data.

In this paper we tackle both challenges through the appli-

cation of big data analytics and big data platforms. To address

the practical challenge, we overview Big-DAMA, a Big Data

Analytics Framework (BDAF) for network monitoring appli-

cations, designed with comprehensive network monitoring in

mind. Starting from a predecessor system called DBStream

[26], [27], we have conceived a flexible BDAF, capable of

analyzing and storing big amounts of both structured and

unstructured heterogeneous data sources, with both stream and

batch processing capabilities. Big-DAMA implements multiple

data analytics algorithms for network measurements analysis,

using both supervised and unsupervised machine learning

models. These models are implemented using off-the-shelf

machine learning libraries.

978-3-901882-98-2 c© 2017 IFIP



To address the theoretical challenge, we devise GML Learn-

ing, a novel data analytics model for the analysis of network

measurements using the Super Learner ensemble learning

model [2]. The Super Learner is a loss-based ensemble-

learning method that finds the optimal combination of a

collection of base prediction algorithms. The Super Learner

performs asymptotically as well as the best input base or weak

learner, providing a very powerful approach to tackle multiple

problems with the same technique. In addition, it defines an

approach to minimize over-fitting likelihood during training,

using a variant of cross-validation. Ensemble learning has in

principle a higher computational cost and complexity than

single based learning approaches, as multiple models have to

be trained and applied to the analyzed data. However, the usage

of Big-DAMA permits to alleviate this constraint by allowing

the parallel execution of multiple machine learning models.

To show the performance and generalization of GML Learn-

ing as well as its application on top of Big-DAMA, we use

GML learning on the analysis of five different and assorted

network measurement problems, including detection of apps

anomalies, detection of network attacks, QoE prediction, QoE-

modeling for video streaming, and Internet path-dynamics

tracking. The presented evaluations confirm that the proposed

GML learning model has the ability to perform as well

as the best available base learning model, achieving even

better results in most problems. We also show that the model

improves analysis results as compared to other traditional

ensemble learning models such as bagging and boosting.

We believe that this study would enable a broader applica-

tion of ensemble learning models, and in particular of GML

Learning, to data-driven networking problems. This paper

builds on top of our recent early work on ensemble-learning

models [43], where we explore the application of ensemble-

learning techniques to network security and anomaly detection.

In particular, we extend [43] by deploying and testing the pro-

posed algorithms on top of the Big-DAMA big data analytics

platform, by analyzing new network measurement problems,

as well as by adding other ensemble-learning approaches based

on bagging and boosting into the comparisons.

The reminder is organized as follows. Sec. II presents an

overview on the related work on BDAFs and machine-learning

based network measurement. In Sec. III we describe the main

characteristics of the Big-DAMA BDAF. Sec. IV describes

the main concepts behind the GML learning paradigm and in-

troduces the evaluated models, developed within Big-DAMA.

Sec. V describes the tested network measurement problems

and datasets. Sec. VI presents the experimental results of the

study, applying Big-DAMA to the analysis of these problems.

Section VII concludes the paper.

II. STATE OF THE ART

This paper deals with machine learning and big data plat-

forms for the analysis of network measurements, thus we

slightly overview both domains, with an emphasis on big

data platforms for network monitoring. There are a couple

of extensive surveys and papers on network measurement

problems such as network anomaly detection [13], [14] -

including machine learning-based approaches [12], machine

learning for network traffic classification [18] and network

security [15], machine learning models for QoE modeling [20]

and prediction [21], as well as machine learning for Internet

path performance analysis [24], [25]. While the application

of learning techniques to network measurement problems is

largely extended in the literature, the specific application of

ensemble learning approaches is by far more limited. Even if

it is generally observed in the practice that ensembles tend to

yield better results than single models, only few papers have

applied them to problems such as anomaly detection [16] and

network security [17].

Regarding big data processing systems, the big data boom

of recent years has led to a very strong and fast development

of novel solutions [29]. An overview of past and current

Big Data Analysis Frameworks includes traditional Database

Management Systems (DBMS) and extended Data Stream

Management Systems (DSMSs), NoSQL systems, and Graph-

oriented systems. While most target the off-line analysis of

static data, more recent systems target the on-line analysis

of data streams. DSMSs such as Gigascope [30] and Borealis

[31] support continuous on-line processing, but cannot run off-

line analytics over static data. The Data Stream Warehousing

(DSW) paradigm can handle both on-line and off-line process-

ing requirements within a single system. DataCell, DataDepot

[28] and DBStream [26], [27] are examples of DSWs. NoSQL

systems such as MapReduce [32] have also rapidly evolved,

supporting the analysis of unstructured data. Apache Hadoop

[33] and Spark [34] are very popular implementations of

MapReduce systems. These are based on off-line processing

rather than stream processing. Besides these systems, there is a

large range of alternatives, including Hive, Hawq, Greenplum

(SQL-oriented); Giraph, GraphLab, Pregel (graph-oriented),

as well as well-known DBMSs commercial solutions such as

Teradata, Dataupia, Vertica and Oracle Exadata (just to name

a few of them). There has been promising recent work on

enabling real-time analytics in NoSQL systems, such as Spark

Streaming [35], Indoop [36], Muppet [37], SCALLA [38], as

well as Storm, Samza and Flink, but most of them remain

unexploited in the network monitoring domain.

BDAFs based on Hadoop have been proposed within the

network monitoring domain [39]–[42]. However, the main

drawback of such systems in general is their inherent off-line

processing, which is not suitable for real-time traffic analysis.

III. THE BIG-DAMA FRAMEWORK

The main purpose of Big-DAMA is to analyze and store

large amounts of network monitoring data. Big-DAMA uses

off-the-shelf big data storage and processing engines to offer

both stream and batch processing capabilities, following a

standard lambda architecture, decomposing separate frame-

works for stream, batch and query. Lambda architecture is a

data processing architecture designed to handle massive quan-

tities of data by taking advantage of both batch- and stream-

processing methods. This approach to architecture attempts



Stream Data Processing Batch Processing

Figure 1: Data Stream Warehouse-based architecture for Big-

DAMA platform, using Hadoop ecosystem.

to balance latency, throughput, and fault tolerance by using

batch processing to provide comprehensive and accurate views

of batch data, while simultaneously using real-time stream

processing to provide on-line data analysis capabilities.

In a nutshell, Big-DAMA uses Apache Spark streaming for

stream-based analysis, Spark for batch analysis, and Apache

Cassandra for query and storage. There are two main reasons

for using Cassandra instead of simply HDFS or Hadoop-based

DBs such as Hive: fault-tolerance and speed. Cassandra is fully

distributed and has no single point of failure, whereas HDFS

has a single point-of-failure represented by the HDFS name

nodes. Regarding speed, Cassandra has been built from scratch

for the particular case of on-line transactional data, whereas

HDFS follows a more static data warehousing perspective. In

addition, Cassandra is highly scalable and provides linear scal-

ability without compromising processing performance. Finally,

being a NoSQL system it allows to store and handle multiple

sources of heterogeneous data, including unstructured data.

Fig. 1 shows a high level architectural design of Big-

DAMA. Inspired on DBStream [26], [27], the Big-DAMA

BDAF follows a DSW paradigm, offering the possibility of

combining on-the-fly data processing with large-scale storage

and analytic capabilities. This paradigm provides the means to

handle both types of on-line and off-line processing require-

ments within a single system.

Within the Big-DAMA BDAF, we have conceived different

algorithms for the analysis of network measurements using

supervised and unsupervised machine learning models. These

models are currently implemented on top of the Big-DAMA

batch-processing branch, using off-the-shelf, Spark ML ma-

chine learning libraries. Big-DAMA is currently deployed

on top of a virtualized data cluster, consisting of 12 virtual

nodes with a total capacity of 150 GB of memory and

30 TB of data storage. Big data frameworks are partially

managed through a Cloudera, Hadoop ecosystem installation

(https://www.cloudera.com/), using distribution CDH 5.10 and

Cloudera Manager (with Spark 2).

IV. GML LEARNING IN BIG-DAMA

In the context of supervised learning there are several

approaches for predictive model training based on labeled

data. The performance of a particular algorithm or predictor

depends on how well it can assimilate the existing information

to approximate the oracle predictor, i.e. the ideal optimal pre-

dictor defined by the true data distribution. However, knowing

a priori which algorithm will be the best suited for a given

problem is almost impossible in practice. One could say that

each algorithm learns a different set of aspects of reality

from the training datasets, and then their respective prediction

capability also differs between problems.

Rather than finding the best model to explain the data,

combined methods construct a set of models and then decide

between them with some combinatorial approach, seeking

complementarity in the sense that the learning limitations of

each predictor compensates for the others. Thus, the execution

of several of these algorithms in parallel provides diversity

of predictions. Several research papers have studied methods

exploiting this diversity to enhance the overall prediction

capability by combining the outputs of multiple algorithms

[5], [6]. Essentially, this is made by using a general scheme

known as Ensemble Learning. There are multiple approaches

to ensemble learning, including bagging [8], boosting [9],

and stacking [11]. All three are so-called “meta-algorithms”,

defining different approaches to combine machine learning

techniques into one single model referred to as meta learner,

to either decrease variance (bagging), decrease bias (boosting)

or improve predictive performance (stacking).

Bagging - for Bootstrap Aggregation, decreases the variance

of the prediction model by generating additional training data

from the original dataset. Bagging trains each model in the

ensemble using a randomly drawn subset of the training set,

and each model in the ensemble is then combined in an

equal-weight majority voting scheme. Increasing the training

data size using a single input dataset does not improve the

prediction accuracy, but narrows the prediction variance by

strongly tuning the outcome. The well known Random Forest

model is an example of bagging ensemble learning.

Boosting involves incrementally building an ensemble by

training each new model instance based on the performance of

the previous model. Boosting is a two-steps approach, where

one first uses subsets of the original data to produce multiple

models, and then boosts their performance by combining

them, also using majority voting. Different from bagging,

boosting subset creation is not random but depends upon the

performance of the previous models, and every new subsets

contain the misclassified instances by previous models.

While bagging and boosting generally use the same type of

model in all the different training steps (e.g., Random Forest),

stacking aims at exploring the input data space through base

models of different type. Stacking is the ensemble learning

model which really makes use of a meta learner, which uses

the output of the base learners as input for prediction. The

point of stacking is to explore a space through the different

properties of different models, each of them capable to learn

some part of the problem, but not the whole space. The meta

leaner is said to be stacked on the top of the other based

models, hence the name. Stacking is less widely used than

bagging and boosting, but has recently shown outstanding



performance in model competitions such as the Netflix Prize

[44] and Kaggle competitions (https://www.kaggle.com/).

General ensemble learning approaches might be prone

to over-fitting the data. In [2] a simple stacking learning

algorithm named Super Learner is proposed as a possible

solution for this over-fitting limitation. It proposes a method to

minimize the over-fitting likelihood using a variant of cross-

validation. In addition, the Super Learner provides perfor-

mance bounds, as it performs asymptotically as good as the

best single base predictor.

The Super Learner algorithm makes aggressive use of

cross validation: the available labeled dataset consisting of n
samples is split in K approximately equal sets. As usual, each

of these sets is used as a validation set, while its complement,

K−1 sets are used as the training set. For each split, the J first

level learners are fitted with the training dataset and then do

predictions for the samples of the validation set. By merging

the predictions done for every fold we obtain a new dataset

Z of size n× J , containing the predictions done by each first

level learner for every sample in the disjoint validation sets.

This new dataset Z is used as design input matrix to train the

meta learner algorithm, which will then be used to perform the

final predictions. In the original paper [2], the meta learner can

be arbitrarily complex, yet a simple linear regression model is

used for the presented regression scenario. The paper presents

a formal proof showing that this Super Learner is optimal in

the sense that it can perform at least asymptotically as well as

the best first level learner available. The performance measure

must be a certain loss function that allows for risk calculation.

The logic expressed in [2] can be adapted for use on

classification problems such as the one we tackle in this

paper. Essentially, suppose there are n i.i.d. observations

(Xi, yi) ∼ P0 with i = 1, . . . , n that generate empirical

probability distributions Pn, and that the goal is to estimate

the classification function ψ0 such that:

ψ0(X) = argmin
ψ∈Ψ

E [L (y, ψ(X))] (1)

where L (y, ψ(X)) is a given loss function that measures the

discrepancy between prediction and real value - e.g., square

loss in [2], for all possible feature vector X ∈ X and its

corresponding label y ∈ Y . ψ0 is then a mapping function

from the feature space into the label space and Ψ the parameter

space of all possible functions such that X → Y . Now let

{ψ̂j} j = 1, . . . , J be the collection of first level learners,

which represent mappings from the empirical distribution Pn
into parameter space Ψ.

When using K-fold cross-validation let k ∈ {1, . . . ,K}
be the index of a split of the data into a validation set

V (k) and its complement, the training set T (k). Let then

k(i) be the split index in which sample i belongs to the

validation set, i.e. i ∈ V (k(i)) and fj,T (k) the realization

of the jth-first level learner ψ̂j after being trained in T (k)
- assuming the training has as target the minimization of

the expected risk E[L(y, ψ̂j(X))]. Then, a new observations

dataset Z = {(Zi, yi)} is constructed such that the ith-sample

zi =
{

fj,T (k(i)) : j = 1, . . . , J
}

is the vector of the predictions

of the J first level learners for sample i when sample i is not

in the training dataset.

The last input for the Super Learner algorithm is another

user defined algorithm φ : {Y}J → Y , that shall be used as a

predictor for labels y ∈ Y from data points z ∈ {Y}J . This

algorithm must also be trained to minimize the expected risk

in a similar fashion to the first level learners, that is to become

similar to the optimal mapping:

φ∗(Z) = argmin
φ∈Φ

E [L (Y, φ(Z))] (2)

over the set Φ of functions {Y}J → Y . Although not

the case presented in [2], this fitting can be made using

penalization or cross-validation to further avoid over-fitting.

Let then g : {Y}J → Y be the function obtained from fitting

algorithm φ with training dataset {Zi} and label set {yi}.
Once g has been determined, the first level learners are re-

trained on the whole available training dataset to obtain the

fitted predictors {fj : j = 1, . . . , J}. Thus, the Super Learner

algorithm becomes a new algorithm S such that:

S(Xi) = g (f1(Xi), . . . , fJ(Xi)) (3)

The GML learning model is a particular implementation

of the Super Learner, using a probability-based weighting

function to combine the outputs of the first level learners. In

a nutshell, we use the probabilities of success of each class

to build exponentially decayed weighting functions, adding a

control variable to reduce the overall influence of low accuracy

models in the final prediction.

As a final note, the outputs of the learning models can be

categorical in case of a hard decision or a score in a soft

decision case. The latter is more expressive, as it provides

an extra degree of freedom in the selection of the decision

threshold and allows for performance descriptions such as

Receiver Operation Characteristic (ROC) curves. Thus, we

prefer to use as output from each algorithm the probability of

the evaluated sample belonging to the corresponding classes;

as such, the elements of matrix Z represent probabilities.

A. First Level Learners

Ensembles of machine learning models tend to yield better

results when there is a significant diversity among the indi-

vidual base models. Therefore, we select an assorted group

of base learning models with very different underlying data

assumptions. In particular, we select the following five stan-

dard, fully-supervised models [18]: (i) SVM with linear kernel

- linear kernel is used to improve speed w.r.t. default RBF

kernels, (ii) decision trees (CART); (iii) K-NN with direct

majority voting, using K = 10, (iv) multi layer perceptron

neural network (MLP), and (v) Naı̈ve Bayes (NB). Most

of these models have already shown good performance in

previous work on network security, anomaly detection and

classification, and QoE prediction [3], [4], [21]. The hyper-

parameter configuration values for each model are selected on

a manual basis, by trial and error as well as by following



default recommended settings. All models are implemented

on top of Big-DAMA, using python and off-the-shelf ML

libraries.

B. Super Learners and GML

The original work [2] uses a simple minimum square linear

regression as the example Super Learner. Following the Super

Learner logic described before, we conceived five different Su-

per Learner algorithms, one of them being the GML learning

model. As we are dealing with classification problems, a first

natural choice is the usage of logistic regression, which shall

be the first evaluated Super Learner.

In [6], a linear weighted algorithm is suggested as meta-

learner for ensemble learning, by taking predictions from

each first-level learner and weighting them to get a wighted-

majority-voting-like classifier; more concrete, let H(X) =
∑J

j=1 wjhj(X) be the weighted sum of the individual first-

level learner predictions hh(X), the algorithm decides for the

positive class if H(X) > β, being β the decision threshold, or

the negative class otherwise. The weights wj can be defined

in different ways; in this work we use three different types of

weights:

MVuniform: gives the same weight (1/J) to each learner,

implementing simple majority voting.

MVaccuracy: assigns weights wj =
αj

∑J

i=1 αi
to the predic-

tion of learner j, being αi the probability of success of the

learner - i.e., the fraction of true classifications achieved on

the whole available training dataset.

GML: the GML Learner computes weights with an exponen-

tial classification probability, wj =
eλαj

∑J

i=1 e
λαi

, where λ is

selected to reduce the influence of low accuracy predictors -

we take λ = 10 for such an effect. As we show next, this

property of reducing the influence of poor first level models

makes a significant difference in the final results.

Finally, [2] mentions that there is no need to restrict the Su-

per Learner algorithm to parametric regression or classification

fits. For example, one could define it in terms of a particular

machine learning algorithm. To also test this direction, we

devise another Super Learner based on a simple decision tree

model, using the well known CART decision tree algorithm.

C. Bagging and Boosting Algorithms

We take decision-tree based models for both bagging and

boosting, which is a very common approach. In the case

of bagging, we consider two different flavors of the same

algorithm: a Bagging Tree model, and a Random Forest [18].

The main difference is that in Random Forest, only a subset

of features are selected at random out of the total for split

at each node, reducing correlation between trees. In bagging,

all features are considered for splitting a node. To have

comparable results, these models use as many internal decision

trees as first level learners has the Super Learner; i.e., 5 in this

paper.

We take an AdaBoost [10] Tree model for boosting, which

uses decision trees as first level learners. AdaBoost (short

for Adaptive Boosting) trains subsequent models in favor of

those instances misclassified by previous ones. AdaBoost is

sensitive to noisy data and outliers, but in general, it can be

less susceptible to over-fitting.

V. MEASUREMENT PROBLEMS AND DATASETS

In this section we briefly overview the five network mea-

surement problems we take for evaluation. These include:

(i) detection of smartphone-apps anomalies [4], detection of

network attacks [3], QoE prediction in cellular networks [21],

QoE-modeling for video streaming [23], and Internet-paths

dynamics tracking [25].

A. Detection of Apps Anomalies

In [4] we conceived a semi-synthetic dataset for traffic

anomalies in cellular networks by using real DNS traffic

measurements. After collecting DNS traces for longer than six

months in 2014 at a cellular network of a large-scale European

operator, we devised a technique to generate new traffic traces

by carefully recombining real traffic traces. Basically, we take

samples of manually labeled one-minute intervals from the

original data, characterized by a vector of features containing

the distribution of DNS query counts by device Manufacturer,

device OS, APN, domain name (FQDN) and DNS transaction

flag. With the anomaly-free intervals we generate new syn-

thetic background traffic, simply by shuffling the data samples

of the same time of the day and same day class (working

or festivity). Then, three different types of anomalies are

introduced into the synthetic data, derived from real anomalies

observed in this operational network. These anomalies mimic

different types of app-service outages, and are represented by

impacting a different number of end-users requesting particular

services on specific domain names. The different anomalies

considered are E1: short lived (hours) high intensity anomalies

(e.g., 10% of devices repeating a request every few seconds),

where the involved devices share the same manufacturer and

OS; E2: several days lasting low intensity anomalies (e.g.,

2% of devices repeating requests every few minutes) and E3:

short-lived variable intensity anomalies affecting all devices

of a specific APN. The used dataset consists of a full month

of synthetically generated measurements, reported with a time

granularity of 10 minutes time bins. From the aforementioned

distributions, we compute a set of 36 features describing their

shape and information, such as various percentiles and entropy

values, which are computed for every time bin. Each time bin

is assigned a class, either normal (label 0) or anomalous (label

1, 2 or 3 for the three anomaly types respectively). The dataset

includes 16 different variations of E1, E2 and E3 anomalies,

impacting a different fraction of end-users - going from 0.5%

to 20%. Full details on the synthetic dataset are available in

[4].

B. Detection of Network Attacks

The detection of network attacks is done on top of MAWI

data [19]. MAWI is a public collection of 15-minute real

network traffic traces captured every day on a backbone link



between Japan and the US since 2001. Building on this

repository, the MAWILab project uses a combination of four

traditional anomaly detectors to partially label the collected

traffic [19]. From the labeled anomalies and attacks, we focus

on a specific group which are detected simultaneously as

“anomalous” by the four MAWILab detectors to achieve a

high quality on the obtained labels. We consider five types

of attacks/anomalies in particular: (i) DDoS attacks (DDoS),

(ii) HTTP flashcrowds (mptp-la), (iii) Flooding Attacks (Ping

Flood), (iv) UDP and (v) TCP probing traffic. The dataset

spans a full week of MAWILab traffic traces collected in late

2015; traces are split in consecutive time slots of one second

each, and a high-dimensional set of 245 features describing the

traffic in each of these slots is used, see [3] for more details.

C. Cellular QoE Prediction

For the sake of QoE prediction in cellular traffic, we use

network and QoE measurements collected in a user field trial

taking place in 2015 and detailed in [21], where 30 users

equipped with their own devices connected to their preferred

cellular operators evaluated three apps as part of their normal

daily Internet activity during two weeks: YouTube (watching

short videos); Facebook (timeline and photo-album browsing),

and Gmaps (satellite maps browsing). QoE feedback was re-

ported for each session through a customized QoE crowdsourc-

ing app, according to a discrete, 5-levels ACR Mean Opinion

Score (MOS) scale [22], ranging from “bad” (i.e., MOS = 1)

to “excellent” (i.e., MOS = 5). In addition, each device has

a passive flow-level traffic monitor which records flow-level

network traffic statistics, associating flows to apps generating

them. 10 different session-based KPIs are derived from the

flow-based measurements, which are then synchronized to

the QoE feedbacks (MOS scores) using time stamps. The

KPIs include features such as average and maximum flow

throughput per session, flow size, duration, average signal

strength, RAT, ISP, locations, etc. The prediction problem

consists in predicting the correct MOS score value (5-classes

classification problem), using the session-based KPIs as input.

Full details on the dataset are available in [21].

D. Video QoE Modeling

For the video streaming QoE modeling problem, we use

a publicly available subjective QoE measurements dataset

released in 2016. The LIVE-Avvasi Mobile Video database

[23] consists of 174 distorted videos generated from 24

reference videos with 26 unique stalling events and 4830

ratings obtained from 54 subjects who viewed the videos on

mobile devices. Reference videos correspond to HD content

from YouTube and Vimeo, with a duration range between 29

and 134 seconds (after adding stalling events). Video content

spans different categories, including more dynamic contents

such as sports to more stable contents such as documentaries,

as well as advertisement and music clips. Quality ratings are

provided on a standard single stimulus, continuous scale basis,

but reported as a Degradation MOS score (DMOS), using

also a 5-levels scale. From the base dataset, we extract 19

different input features for each video session, characterizing

the stalling patterns undergone by the videos, as well as

the particular video contents. Features focus on number and

frequency of stalling events, initial playback delay, duration of

stallings, as well as their particular location within the video

stream.

E. Prediction of Internet Path Changes

The last problem we consider for analysis consists of

predicting the number of changes an Internet path experi-

ences during a period of 24 hours. For doing so, we use

standard Paris traceroute measurements, performed through

the M-Lab open Internet measurement initiative (https://www.

measurementlab.net/) . The M-Lab infrastructure consists of

a high number of servers distributed globally in multiple

provider networks and geographic regions, mostly in the US.

The raw traceroute data files are publicly available through

Google’s BigQuery and Cloud Storage, see https://console.

cloud.google.com/storage/browser/m-lab/. For the purpose of

this case study, we analyze the first week in January 2016

of traceroute measurements, which correspond to more than

450,000 different paths, measured from more than 180 geo-

distributed servers.

We predict the number of path changes in a certain day

using features collected during the previous day; these features

include 69 input metrics describing the statistical properties

of the dynamics and latency of a path. Full details on the

dataset are available in [25]. To turn the problem into a

classification one, we build three non-overlapping classes

accounting for the number of daily path changes as follows:

(i) static paths, corresponding to 0 path changes; (ii) dynamic

paths, corresponding to 1-to-10 path changes; and (iii) very

dynamic paths, corresponding to more than 10 path changes.

VI. EVALUATION AND DISCUSSION

In this section we show that the GML Learner approach

can enhance the results obtained on the proposed problems by

outperforming both first level learners (CART, SVM, MLP,

kNN and NB) as well as other Super Learners and ensemble

models. We compare the performance achieved by each sin-

gle, first-level model to that achieved by the four proposed

Super Learners (logistic regression, MVuniform, MVaccuracy

and CART-based), the two bagging models (Bagging Tree

and Random Forest), the AdaBoost tree learning model, and

finally, the GML learning model.

Comparisons are conducted using Big-DAMA and Spark

ML like pipe-lines in python. To limit biased results, presented

results correspond to 10-fold cross validation. As performance

metric, we take the Area Under the ROC Curve (AUC)

for each of the corresponding classes. The machine learning

community most often uses the ROC AUC statistic for model

comparison [7]. Parameters on each different algorithm are

calibrated based on trial and error search tests. In addition,

classes in each classification problem are balanced by statis-

tical bootstrapping [21] to avoid unbalanced training issues.



Table I: ROC AUC for anomaly detection.

E1 E2 E3

CART 0.993 0.873 0.978

Naı̈ve Bayes 0.956 0.861 0.959

MLP 0.997 0.944 0.996

SVM 0.996 0.944 0.995

kNN 0.995 0.859 0.963

Random Forest 0.999 0.876 0.993

Bagging Tree 0.996 0.885 0.983

AdaBoost Tree 0.998 0.945 0.995

logreg 0.999 0.952 0.996

MVaccuracy 0.999 0.948 0.996

MVuniform 0.999 0.945 0.996

CART 0.997 0.924 0.994

GML 0.999 0.963 0.997

Table II: ROC AUC for network attacks detection.

DDoS HTTP S-TCP S-UDP Flooding

CART 0.745 0.856 0.909 0.923 0.928

Naı̈ve Bayes 0.730 0.655 0.897 0.933 0.917

MLP 0.907 0.993 0.979 0.983 0.989

SVM 0.883 0.992 0.941 0.995 0.968

kNN 0.720 0.936 0.936 0.924 0.944

Random Forest 0.827 0.905 0.941 0.913 0.930

Bagging Tree 0.823 0.908 0.911 0.915 0.921

AdaBoost Tree 0.892 0.991 0.923 0.920 0.927

logreg 0.926 0.956 0.952 0.980 0.987

MVaccuracy 0.924 0.992 0.971 0.993 0.993

MVuniform 0.923 0.991 0.970 0.992 0.991

CART 0.867 0.992 0.933 0.985 0.954

GML 0.935 0.998 0.983 0.997 0.993

Tab. I reports the results obtained in the detection of apps

anomalies, using the corresponding AUC values. Achieved re-

sults for anomalies of type E1 and E3 differs completely from

E2. Almost every predictor achieves an AUC over 99% for E1

anomalies. Thus, there is little room for improvement, which

leads to only very subtle differences between the performances

of Super Learners, base learners and GML. Still, the GML

learning model tends to outperform both first level learners,

as well as the bagging and boosting trees. Similar observations

can be drawn from the detection of E3 anomalies. Note that the

GML model systematically achieves the best results. For E2

anomalies, not only all predictors performed relatively poor,

but also many of them achieve very low performance; e.g. the

bagging models achieve an AUC below 90%, clearly worse

than any other ensemble technique. This scenario highlights

the advantages of the Super Learner models, and in particular,

the GML model.

Tab. II depicts the results obtained in the detection of the

network attacks. In this scenario the differences w.r.t. GML are

more relevant, specially for the detection of DDoS attacks,

which are poorly detected by first level models alone, but

better with Super Learners (e.g., MVaccuracy and MVuniform)

and with GML. Again, when first level model performance is

high, there is little room for improvement with GML, but still,

the proposed model achieves better performance for the five

considered attack categories.

Table III: ROC AUC for QoE prediction.

MOS 1 2 3 4 5

CART 0.972 0.974 0.963 0.972 0.900

Naı̈ve Bayes 0.766 0.874 0.714 0.707 0.703

MLP 0.916 0.951 0.918 0.852 0.798

SVM 0.812 0.928 0.742 0.717 0.734

kNN 0.849 0.917 0.765 0.756 0.657

Random Forest 0.992 0.989 0.987 0.988 0.960

Bagging Tree 0.971 0.977 0.996 0.982 0.955

AdaBoost Tree 0.972 0.978 0.997 0.992 0.973

logreg 0.970 0.996 0.983 0.991 0.969

MVaccuracy 0.980 0.972 0.997 0.987 0.985

MVuniform 0.992 0.965 0.984 0.990 0.971

CART 0.975 0.964 0.974 0.980 0.891

GML 0.992 0.996 0.997 0.995 0.985

Table IV: ROC AUC for QoE modeling and assessment.

DMOS 1 2 3 4 5

CART 0.977 0.973 0.970 0.955 0.888

Naı̈ve Bayes 0.784 0.881 0.711 0.706 0.692

MLP 0.893 0.949 0.921 0.850 0.798

SVM 0.821 0.927 0.734 0.720 0.749

kNN 0.852 0.932 0.774 0.759 0.649

Random Forest 0.979 0.995 0.976 0.979 0.964

Bagging Tree 0.967 0.991 0.985 0.982 0.953

AdaBoost Tree 0.975 0.985 0.989 0.990 0.984

logreg 0.997 0.984 0.954 0.997 0.958

MVaccuracy 0.997 0.979 0.998 0.996 0.985

MVuniform 0.979 0.981 0.987 0.998 0.977

CART 0.996 0.969 0.966 0.971 0.902

GML 0.997 0.993 0.998 0.996 0.999

Table V: ROC AUC for path dynamics prediction.

static dynamic very dynamic

CART 0.967 0.964 0.969

Naı̈ve Bayes 0.950 0.883 0.939

MLP 0.961 0.956 0.977

SVM 0.951 0.833 0.875

kNN 0.932 0.897 0.931

Random Forest 0.989 0.957 0.963

Bagging Tree 0.971 0.972 0.977

AdaBoost Tree 0.988 0.791 0.847

logreg 0.957 0.896 0.970

MVaccuracy 0.981 0.975 0.962

MVuniform 0.983 0.965 0.977

CART 0.965 0.974 0.965

GML 0.989 0.979 0.977

Tab. III presents the results obtained in the prediction of

QoE MOS scores in cellular services. Note first that predicting

excellent QoE sessions (i.e., MOS = 5) is more challenging

than for the rest of the quality levels. A deeper analysis of

the classification confusion matrix reveals that MOS = 5 class

is often misclassified as MOS = 4, showing that it’s difficult

to distinguish between excellent and good QoE using network

layer metrics only. The CART and random forest models alone

provide already very good results, as also shown previously

in [21]. The GML model is capable to boost the prediction

of excellent QoE w.r.t. both CART and random forest by 9%

and 3% respectively, thus improving results obtained in [21].



Table VI: ROC AUC average values for the five measurement problems.

AD NS QoE-P QoE-M PPC ALL

CART 0.948 (3.9%) 0.872 (11.1%) 0.956 (3.7%) 0.952 (4.4%) 0.966 (1.9%) 0.935 (5.4%)

Naı̈ve Bayes 0.925 (6.2%) 0.826 (15.8%) 0.752 (24.2%) 0.754 (24.3%) 0.924 (6.3%) 0.819 (17.1%)

MLP 0.979 (0.7%) 0.970 (1.1%) 0.887 (10.7%) 0.882 (11.5%) 0.964 (2.1%) 0.929 (6.0%)

SVM 0.978 (0.8%) 0.955 (2.6%) 0.786 (20.8%) 0.790 (20.7%) 0.886 (10.1%) 0.869 (12.1%)

kNN 0.939 (4.8%) 0.892 (9.1%) 0.788 (20.6%) 0.793 (20.4%) 0.920 (6.7%) 0.854 (13.6%)

Random Forest 0.956 (3.1%) 0.903 (7.9%) 0.983 (1%) 0.978 (1.8%) 0.969 (1.6%) 0.957 (3.2%)

Bagging Tree 0.954 (3.2%) 0.895 (8.7%) 0.976 (1.7%) 0.975 (2.1%) 0.973 (1.3%) 0.953 (3.6%)

AdaBoost Tree 0.979 (0.7%) 0.930 (5.2%) 0.982 (1.1%) 0.984 (1.2%) 0.875 (11.2%) 0.954 (3.5%)

logreg 0.982 (0.4%) 0.960 (2.1%) 0.981 (1.1%) 0.978 (1.9%) 0.941 (4.5%) 0.970 (1.9%)

MVaccuracy 0.981 (0.5%) 0.974 (0.7%) 0.984 (0.9%) 0.991 (0.6%) 0.972 (1.3%) 0.981 (0.8%)

MVuniform 0.980 (0.6%) 0.973 (0.8%) 0.980 (1.3%) 0.984 (1.2%) 0.980 (0.5%) 0.979 (1.0%)

CART 0.971 (1.5%) 0.946 (3.6%) 0.956 (3.6%) 0.960 (3.6%) 0.968 (1.8%) 0.959 (3.0%)

GML 0.986 0.981 0.993 0.996 0.985 0.989

Tab. IV reports the results obtained in the modeling of QoE

for video streaming in smartphone devices. Even if achieving

excellent results for the five corresponding classes, the GML

learning model is outperformed by the random forest model

in the prediction of the DMOS = 2 class, corresponding to

perceived annoying quality distortion. Still, the GML model

is ranked second for this class, and outperforms all the other

ensemble-learning and first level models.

Finally, Tab. V presents the results obtained in the prediction

of Internet path changes. Predicting static paths is easier for all

the tested models. Some first level models such as SVM fail

to properly predict changes in dynamic and highly dynamic

paths, and also boosting fails to achieve good results for

the two classes. The GML model performs again better than

most of the tested models for the three classes, obtaining the

same performance as random forest, neural networks and both

bagging tree and super learning in some of the classes, but

ranking first in each category.

To conclude with the comparative analysis, Tab. VI sum-

marizes the performance achieved by all the models for the

five tested problems, considering the average values for all the

classes of each problem - Anomaly Detection (AD), Network

Security (NS), QoE Prediction (QoE-P), QoE-Modeling (QoE-

M) and Prediction of Path Changes (PPC). The last column

of the table provides the average AUC values for all problems

together. Next to each AUC value, there is a fraction indicating

the performance increase provided by GML, which permits to

have a full view on the applicability and goodness of the GML

model on the five network measurement problems studies in

this paper. The GML model outperforms all other models

in the five problems, with performance increases ranging

from as low as 0.5% for some problems and some Super

Learners, up to about 20% and 25% for first level models

such as SVM and Naı̈ves Bayes in the QoE-related problems.

Looking at the average performance increase for ALL the

problems, there is clear distinction between first level models

- performance increase ranges from 5.4% to 17.1%, bagging

and boosting - performance increase of approximately 3%,

and Super Learners - performance increase from 0.8% up

to 3%. While it is true that in some scenarios there is not

enough room for improvement w.r.t. bagging, boosting and

first level models, and thus the additional computational cost

of GML might not be justified, the GML model systematically

outperforms these models for most of the tests and in all the

problems, which also opens the door for generalization of a

technique for network measurement analysis. The performance

increase w.r.t. other Super Learners is small, but in this case

the computational overhead is exactly the same, thus the GML

model is more appealing. Last but not least, as we said before,

the usage of high-performance big data platforms such as Big-

DAMA permits to eliminate the problems introduced by extra

computational times, by allowing the parallel execution of

multiple models. The benchmarking of computational times

of all the tested algorithms running on top of Big-DAMA is

part of our ongoing work.

VII. CONCLUDING REMARKS

In this paper, we have presented GML learning, a generic

Machine Learning model for the analysis of network mea-

surements. We have demonstrated the advantages of GML for

the analysis of network measurements coming from multiple

and assorted networking problems; GML does not only have

the ability to outperform the most accurate first level learner,

but also outperforms other ensemble-learning models based on

bagging, boosting and stacking. We have also described Big-

DAMA, a big data analytics framework specially tailored for

network monitoring applications. The performance improve-

ments of GML are higher in scenarios where the performance

of the first level predictors were relatively low; when first

learners performance is already high, there is little room for

improvement. The different evaluated Super Learner schemes

achieved very similar performances. However, the GML model

performs the best for all scenarios, suggesting a potentially

good approach to go for by default in similar classification

problems. The simplicity and very low computational costs

of GML majority voting scheme makes a very nice case

for such type of models. We believe that this study would

enable a broader application of big data analytics and big

data platforms to network measurement problems, with very

promising results.



REFERENCES

[1] J. Jiang, et al., “Unleashing the Potential of Data-Driven Networking”,
in COMSNETS, 2017.

[2] M. Van der Laan, et al., “Super learner”, in Statistical applications in
genetics and molecular biology, vol. 6, no. 1, 2007.

[3] P. Casas, et al., “POSTER:(Semi)-Supervised Machine Learning Ap-
proaches for Network Security in High-Dimensional Network Data”, in
ACM CCS, 2016.

[4] P. Casas, et al., “Machine-learning based approaches for anomaly
detection and classification in cellular networks”, in TMA, 2016.

[5] Y. Freund, et al., “Using and Combining Predictors that Specialize”, in
ACM STOC, 1997.

[6] T. Dietterich, “Ensemble learning”, The handbook of brain theory and
neural networks, vol. 2, pp. 110–125, MIT Press: Cambridge, MA, 2002.

[7] A. J. Hanley, “A method of comparing the areas under receiver operating
characteristic curves derived from the same cases”, Radiology, vol
148(3), pp. 839–843, 2008.

[8] L. Breiman, “Bagging Predictors”, Machine Learning, vol. 24(2), pp.
123-140, 1996.

[9] Y. Freund and R. E. Schapire, “Experiments with a New Boosting
Algorithm”, in ICML, 1996.

[10] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting”, Journal of Computer
and System Sciences, vol. 55(1), pp. 119-139, 1997.

[11] D. Wolpert, “Stacked Generalization”, Neural Networks, vol. 5(2), pp.
241-259, 1992.

[12] T. Ahmed, et al., “Machine Learning Approaches to Network Anomaly
Detection”, in USENIX SYSML Workshop, 2007.

[13] M. H. Bhuyan, et al., “Network Anomaly Detection: Methods, Systems
and Tools”, IEEE Communications Surveys & Tutorials, vol. 16 (1), pp.
303–336, 2014.

[14] M. Ahmed, et al., “A Survey of Network Anomaly Detection Tech-
niques”, J. Netw. Comput. Appl., vol. 60, pp. 19–31, 2016.

[15] A. L. Buczak, et al., “A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection”, IEEE Communica-
tions Surveys & Tutorials, vol. 18 (2), pp. 1153–1176, 2008.

[16] R. Ravinder, et al., “Real Time Anomaly Detection Using Ensembles”,
in ICISA International Conference, 2014.

[17] M. Ozdemir, I. Sogukpinar, “An Android Malware Detection Architec-
ture based on Ensemble Learning”, in Transactions on Machine Learning
and Artificial Intelligence, vol. 2, no. 3, pp. 90–106, 2014.

[18] T. Nguyen et al., “A Survey of Techniques for Internet Traffic Clas-
sification using Machine Learning”, IEEE Communications Surveys &
Tutorials, vol. 10 (4), pp. 56-76, 2008.

[19] R. Fontugne et al., “MAWILab: Combining Diverse Anomaly Detectors
for Automated Anomaly Labeling and Performance Benchmarking”,
CoNEXT, 2010.

[20] A. Balachandran, et al., “Developing a Predictive Model of Quality of
Experience for Internet Video”, ACM SIGCOMM, 2013.

[21] P. Casas et al., “Predicting QoE in Cellular Networks using Machine
Learning and in-Smartphone Measurements”, QoMEX, 2017.

[22] Int. Telecommunication Union, “ITU-T Rec. P.800: Methods for Sub-
jective Determination of Transmission Quality,” 1996.

[23] D. Ghadiyaram et al., “LIVE Mobile Stall Video Database”, [online]:
http://live.ece.utexas.edu/research/LIVEStallStudy/index.html, 2016.

[24] I. Cunha et al., “DTRACK: A System to Predict and Track Internet
Path Changes”, IEEE/ACM Transactions on Networking, vol. 22 (4),
pp. 1025–1038, 2014.

[25] S. Wassermann et al., “NETPerfTrace - Predicting Internet Path Dy-
namics and Performance with Machine Learning”, ACM SIGCOMM

Big-DAMA, 2017.
[26] A. Bär et al., “Large-Scale Network Traffic Monitoring with DBStream,

a System for Rolling Big Data Analysis,” IEEE Big Data, 2014.
[27] A. Bär et al., “DBStream: an Online Aggregation, Filtering and Pro-

cessing System for Network Traffic Monitoring”, TRAC, 2014.
[28] L. Golab et al., “Stream Warehousing with DataDepot,” SIGMOD, 2009.
[29] M. Stonebraker, “SQL Databases vs. NoSQL Databases,” Comm. of the

ACM, vol. 53(4), pp. 10-11, 2010.
[30] C. Cranor et al., “Gigascope: A Stream Database for Network Applica-

tions,” SIGMOD, 2003.
[31] D. Abadi et al., “Aurora: A New Model and Architecture for Data Stream

Management,” The VLDB Journal, 12(2), pp. 1020-1039, 2003.
[32] J. Dean et al., “MapReduce: Simplified Data Processing on Large

Clusters,” Comm. of the ACM, 51(1), pp. 107-113, 2008.
[33] T. White, “Hadoop: the Definitive Guide,” O’Reilly Media, Inc., 2009.
[34] M. Zaharia et al., “Spark: Cluster Computing with Working Sets,”

HotCloud’10.
[35] M. Zaharia, et al., “Discretized Streams: An Efficient and Fault-tolerant

Model for Stream Processing on Large Clusters,” HotCloud, 2012.
[36] P. Bhatotia et al., “Indoop: Mapreduce for Incremental Computations,”

SoCC’11.
[37] W. Lam et al., “Muppet: Mapreduce-style processing of fast data,” Proc.

VLDB Endow., vol. 5(12), pp.1814-1825, 2012.
[38] B. Li et al., “Scalla: A platform for scalable one-pass analytics using

mapreduce,” ACM Trans. Database Syst. 37(4), pp. 27-43, 2012.
[39] R. Fontugne et al., “Hashdoop: A MapReduce Framework for Network

Anomaly Detection,” IEEE INFOCOM Workshops, 2014.
[40] Y. Lee et al., “Toward scalable internet traffic measurement and analysis

with Hadoop,” in SIGCOMM Comput. Commun. Rev., 43(1), pp. 5-13,
2012.

[41] J. Liu et al., “Monitoring and analyzing big traffic data of a large-scale
cellular network with Hadoop,” IEEE Network, 28(4), pp. 32-39, 2014.

[42] M. Wullink et al., “ENTRADA: a High-Performance Network Traffic
Data Streaming Warehouse,” IEEE/IFIP NOMS, 2016.

[43] J. Vanerio et al., “Ensemble-learning Approaches for Network Security
and Anomaly Detection,” in ACM SIGCOMM Big-DAMA workshop,
2017.

[44] A. Töscher et al., “The BigChaos Solution to the Netflix Grand Prize,”
[on-line] http://www.netflixprize.com/


