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Abstract—Software Defined Networking (SDN) and Network
Function Virtualization (NFV) paradigms have been widely used
to redesign the traditional mobile networks. Despite several
proposals on the literature, researchers have drawn limited
attention to the virtualization of user-plane functions that de-
mand high traffic volume processing, as the case of Long Term
Evolution (LTE) mobile gateways. This paper introduces an
adaptive mechanism for the user plane virtualization of the LTE
Packet Data Network (PDN) GateWay (P-GW), running entirely
on top of OpenFlow switches. Using both SDN and NFV concepts,
the proposed mechanism employs elastic computing notions to
dynamically activate or deactivate the infrastructure switches
so the virtualized gateway can adjust to workload changes.
This work addresses both software and hardware OpenFlow
infrastructure platforms, and simulation results highlight the
benefits that can be achieved by the presented mechanism.

I. INTRODUCTION

Nowadays, the Long Term Evolution (LTE) networks have
been de facto employed for high-speed wireless communica-
tion, providing an efficient packet-optimized service. However,
as stated by the Open Networking Foundation (ONF), network
operators are facing challenges as demand for bandwidth
expands, and meeting current market requirements is almost
impossible with traditional network architectures [1]. Among
current limitations, the proprietary gateways in the LTE core
network play a significant role. They are designed to handle
millions of users at the same time with high availability. So,
they are prone to be complex, expensive, and most of the
time it is not possible to combine capabilities from different
vendors [2]. Also, centralized data processing functions (e.g.
billing) force all traffic to go through the gateway, reducing
the system agility and creating a single point of failure [3].

Endeavoring to address these issues, many works on the
literature attempt to virtualize and “softwarize” existing mo-
bile architecture. In this context, Software Defined Mobile
Networking (SDMN) makes the case that Software Defined
Networking (SDN) [1] and Network Function Virtualization
(NFV) [4] can be used to redesign cellular networks. Some
works use NFV concepts to virtualize LTE network func-
tions traditionally implemented in dedicated hardware into the
cloud. The main idea of NFV is the decoupling of physical
equipment from the functions that run on them [5]. So, the LTE
architecture could be fragmented into several Virtual Network
Functions (VNFs) that are implemented in software and run
on Commercial Off-The-Shelf (COTS) physical servers. The

major advantage of using NFV is to reduce middle-boxes
deployment to benefit from cost savings and flexibility [6].

Besides, SDN has emerged as a promising paradigm de-
signed to decouple the control and user planes of network
elements. The network intelligence is logically centralized,
while the underlying infrastructure consists of simplified
COTS network devices that provide packet switching. Thus,
decision-making is facilitated based on a global (or domain)
view, enabling more agile and cost-effective networks. The
OpenFlow protocol [7] is the first standard SDN interface,
providing high-performance and granular traffic control across
multiple switch devices. It uses the concept of flows to identify
network traffic based on pre-defined match rules. The switch
consists mainly of flow tables, which perform packet lookups
and forwarding, based on rules configured by the controller.
SDN can be seen as complementary to NFV paradigm. By en-
abling these technologies, it is viable to deploy more services
with fewer costs and resources, assuring them a long-term
solution compared to the current shortages [2].

Motivated by the above discussion, this paper presents a
mobile architecture that employs NFV and SDN to virtualize
the LTE gateways and configure the OpenFlow backhaul
network at the same time. The main contribution of this work
is the virtualization model for the PDN GateWay (P-GW) —
the gateway responsible for connecting the LTE network to the
Internet. The SDN concept is used to split the P-GW control
and user planes, modeling each segment as an independent
VNF. Since the P-GW user plane (P-GWu) imposes significant
challenges due to the high traffic volume, its virtualization
model is designed to run on top of an OpenFlow switch
collection that can be instantiated using hardware or software
platforms. This work also employs elastic computing notions
to propose an original adaptive mechanism to dynamically
activate or deactivate the switches on the virtualization in-
frastructure to ensure that the P-GWu can adapt to workload
changes. Discussions about whether using hardware or soft-
ware switches are addressed, along with simulation results that
highlight the benefits of the proposed mechanism.

This paper is organized as follows: Section II presents
background concepts on LTE networks, whereas Section III
reviews how SDN and NFV have been used to enhance mobile
networks. Section IV shows the adopted architecture, and
Section V presents the P-GWu VNF. Performance evaluation
is unveiled in Section VI, followed by the conclusions.
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Fig. 1. The Evolved Packet System (EPS) network architecture.

II. LONG TERM EVOLUTION

LTE is a 3rd Generation Partnership Project (3GPP) collec-
tion of standards for high-speed wireless communication [8].
There are three components: The User Equipment (UE), rep-
resenting the mobile device; the Evolved Universal Terrestrial
Radio Access Network (E-UTRAN), composed by the Evolved
Node B (eNB) responsible for all radio-related functions; and
the Evolved Packet Core (EPC). Together, they comprise the
Evolved Packet System (EPS), as illustrated in Fig. 1.

The EPC consists of control and user-plane nodes. The main
control-plane nodes are:

• The Mobility Management Entity (MME) processes the
signaling between the UE and the EPC. Functions sup-
ported by the MME are related to bearer management,
connection management (security, gateway selection, mo-
bility, and handover), and roaming with other networks.

• The Policy Control and Charging Rules Function (PCRF)
is responsible for Quality of Service (QoS) decision-
making and data flow authorization on user-plane nodes.

• The Home Subscriber Server (HSS) maintains a database
of subscriber-related information, including the user pro-
file and information like roaming, security, and location.

The EPC gateways connect the eNBs to the Internet. They
implement both user and control-plane functions:

• The PDN GateWay (P-GW) is the point of contact with
the outside world. IP address allocation for UE and
accounting for inter-operator charging are examples of
functions handled by the P-GW control plane (P-GWc).
On the P-GW user plane (P-GWu), the heavy burdens are
the QoS policy enforcement and the downlink IP packets
filtering into bearers (described in detail below).

• The Serving GateWay (S-GW) connects the eNB to the
P-GW, acting as a local mobility anchor for UE handover.
The S-GWc monitors the traffic for charging purposes and
the S-GWu can be used for lawful interception.

The LTE uses the concept of bearers to route IP traffic from
the P-GW to the UE [9]. An EPS bearer is mapped into lower-
level tunnels as it crosses multiple EPC interfaces. On S1 and
S5/S8, the General Packet Radio Service (GPRS) Tunnelling
Protocol (GTP) is used to encapsulate the bearer within the

GTP / UDP / IP protocols. The IP addresses and the Tunnelling
End ID (TEID) are used to identify each tunnel on the network.

An EPS bearer uniquely identifies packet flows from the
same UE that receives a common QoS treatment. Bearers can
be classified into Guaranteed Bit Rate (GBR) bearers, which
have an associated bit rate for which dedicated transmission
resources are permanently allocated; and Non-Guaranteed Bit
Rate (Non-GBR) bearers, which do not assure any particular
bit rate. Services on top of GBR bearers can assume that
congestion-related packet losses will not occur. When the UE
attaches to the network, the EPC establishes the Non-GBR UE
default bearer. Additional GBR or Non-GBR dedicated bearers
can also be created during or after the initial attach procedure.

IP packet filtering into different EPS bearers is based
on Traffic Flow Templates (TFTs). The TFTs use IP and
TCP/UDP header information (mainly source/destination ad-
dresses and port numbers) to filter packets so each one can
be sent to the respective bearer with the appropriate QoS. For
the downlink traffic, this heavy task is assigned to the P-GWu
that has to identify the target S-GW IP address and the TEID
for the GTP encapsulation processes. On the uplink direction,
the analog process is performed by the eNB.

III. INTEGRATING SDN AND NFV INTO
MOBILE NETWORKS

A general SDMN architecture called MobileFlow is pro-
posed by Pentikousis et al. [11], moving the entire control
plane to software while the user plane is composed only
of simple elements with tunnel handling support. Kempf et
al. [12] present a study on the evolution of cloud-based
EPC, where all the control functions of EPC elements are
moved into the cloud, and the user plane is shifted into
OpenFlow switches with GTP support. Hampel et al. [10]
introduce the Vertical Forwarding concept to handle tunnels
in mobile networks, using only a few switches that tunnel and
de/encapsulate user-plane data. On a different direction, Jin et
al. [13] introduce SoftCell, a disruptive solution that removes
GTP tunnels and replaces all user plane EPC elements by
simple OpenFlow switches and a set of middle-boxes. The
controller directs traffic over the network and middle-boxes
based on the traffic service. A new OpenFlow-based control
plane for EPC is presented by Said et al. [14], with the focus
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Fig. 2. The adopted Software Defined Mobile Networking (SDMN) architecture.

on resiliency and load balancing. The proposed architecture
ensures the on-demand connectivity service even in critic
situation such as network equipment failure and overload
conditions. Mahmoodi et al. [15] realize the SDN concept
into the backhaul network through a distributed control plane
including the MME, HSS, and PCRF elements. They show
that the new architecture reduces the UE power consumption
and the signaling overhead between in backhaul entities.

When it comes to NFV, Hawilo et al. [4] discuss the
challenges and requirements of its use in mobile networks.
They propose a criterion to bundle multiple functions of
a virtualized EPC in a single physical device or a group
of nearby devices. Jain et al. [16] present the design and
evaluation of two open-source implementations of the LTE
EPC, one based on SDN principles and the other based on
NFV. Their results show that a NFV-based implementation is
better suited for handling signaling traffic on the control plane,
while a SDN-based design is better suited for user plane traffic
because SDN switches are often more optimized for packet
forwarding than virtualized software appliances.

On the gateway virtualization context, Basta et al. [17] made
an analysis of mobile gateway functions and mapped them
into alternative deployment frameworks, presenting the pros
and cons of each deployment decision. They continued their
work in [18], addressing the function placement problem based
on two broad categories: gateway virtualization and gateway
decomposition. The virtualization requires directing the data
traffic from the transport network to the data center, which
imposes an additional load and increases the expected traffic
delay. When decomposing gateway functions, only the control
plane is shifted to the data center, and enhanced SDN network
elements process the user plane. To find the most optimal
deployment solution, the authors formed a model by taking
the control-plane load and user-plane latency into account and
then tried to minimize these parameters. An et al. [3] focus
on the P-GW virtualization and propose an architecture that
applies SDN to decouple the control and user planes, and NFV
to implement the gateway’s user-plane forwarding function on
low-cost COTS hardware. A cluster model is used to overcome
the performance limitations of a single server, and OpenFlow
switches together with an enhanced OpenFlow controller act
as the load balancer for the proposed architecture.

IV. THE ADOPTED SDMN ARCHITECTURE

Built upon strength concepts from the literature, Fig. 2
illustrates the adopted SDMN architecture for this paper. SDN
and NFV principles are used to split S/P-GW control and
user planes, following the same ideas discussed in [14], [18].
Even so, different from other proposals, this architecture also
encompass the backhaul network under the management of the
same EPC controller.

The backhaul network is built upon enhanced OpenFlow
switches, which were slightly modified so they can handle the
tunneled traffic. This architecture preserves the GTP tunnels,
and the OpenFlow switches use only the TEID field for traffic
routing. Previous work from the same authors of this paper
addresses different aspects related to this backhaul network im-
plementation, aiming to enforce traffic QoS requirements [21].

The EPC controller becomes the central control-plane ele-
ment. It is responsible for proactively configuring the backhaul
network and for handling all S/P-GW control plane proce-
dures. The EPC controller must comply with the standard
interfaces for communication with other elements (MME and
PCRF) and, since the communication between the P-GWc and
S-GWc is internal to the controller, it reduces the number of
messages on the network. The EPC controller also coordinates
the use of equal TEID values for the same bearer on both
S1 and S5/S8 interfaces. Because of that, there’s no need
for a new downlink packet filtering and TEID mapping at
the S-GW, reducing the number of installed OpenFlow rules.
As indicated by Kiess et al. [19], the EPC control plane
requires high amounts of computing and storage resources, but
comparatively low throughput. Therefore, the proposed EPC
controller can be safely modeled as a VNF and instantiated
on the cloud.

Finally, virtualizing the S/P-GWu functions is a challenging
task due to the high amount of the traffic load from the user
plane [19]. Even with the advantages of recent technologies
for packet processing on commodity CPUs, like Data Plane
Development Kit (DPDK) [20], a network operator may still
face performance limitations when compared to hardware
platforms, especially because transferring packets between
kernel and userspace is a costly operation [16]. This constraint
motivated the decision to implement S/P-GWu using Open-
Flow switches rather than generic VNF in software. On the



S/P-GWu, OpenFlow logical ports are used to de/encapsulate
the GTP traffic so that the gateways can match and perform
required action on top of encapsulated IP user packets. On this
SDMN architecture, all S/P-GWu operations are implemented
using standard OpenFlow instructions, actively supported by
the set-field action and by the OpenFlow eXtensible Match
(OXM) metadata field carried between logical ports.

With this approach, the gateways can still be modeled as
VNFs running on top of virtual OpenFlow switches (like
the Open vSwitch, which offers an optimized implementation
for packet forwarding in kernel space [22]). However, as an
alternative, it is possible to deploy this same architecture
using hardware OpenFlow switches, which are designed to
ensure packet processing at line rate. On the other hand,
hardware switches have limited number of entries in its inter-
nal pipeline tables. This restriction is usually associated with
higher costs for implementing Ternary Content-Addressable
Memory (TCAM) on hardware. So, selecting a hardware or
software switch platform is a trade-off that depends on the
network requirements and available infrastructure.

The central point of this paper is the adaptive mechanism
for P-GWu virtualization that can meet different traffic load re-
quirements while overcoming previously discussed limitations,
regardless of using software or hardware OpenFlow switches.

V. P-GW USER PLANE VIRTUALIZATION

On the user plane, the heaviest P-GW task is the filtering of
downlink user IP packets into the different QoS-based bearers
using TFTs. When using OpenFlow protocol to implement
TFT filtering, at least one OpenFlow entry must be installed
at the P-GWu for each active bearer. This flow rule will match
the 5-tuple header fields to identify the packet flow and get the
proper bearer TEID and S-GW IP address. These two values
will be combined and saved on the OpenFlow metadata field,
and the packet will be sent to the logical port connecting
the P-GWu to the backhaul network. This logical port will
encapsulate the user IP packet within the GTP tunnel. From
this point on, all routing decisions at backhaul OpenFlow
switches will be performed solely based on TEID values.

Considering that a UE can have some dedicated bearers
other than the default bearer, and considering that each bearer
can convey the traffic from different applications, the total
number of flow entries on the P-GWu is prone to grow quickly.
Despite the flexibility offered by the adopted SDMN architec-
ture, implementing the P-GWu with a single OpenFlow switch
is not realistic. Therefore, the P-GWu virtualization employs
the elastic computing concept, so computing resources can be
scaled up and down easily whenever required.

A. The P-GWu internal design

Fig. 3 shows the P-GWu internal design. No matter whether
using hardware or software platform, a pool of OpenFlow
TFT switches is required to attend the intense traffic filtering
demand. When using software-based TFT switches (Fig. 3a),
the table size may not be the problem, but a single virtual
appliance probably will not be able to handle all the traffic
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Fig. 3. The P-GWu internal design.

load. When using hardware-based TFT switches (Fig. 3b),
individual flow tables will get full soon, even when there is
available processing capacity for use.

To implement this pool of TFT switches, the P-GWu design
also requires a pair of uplink (UL) and downlink (DL) Open-
Flow switches with the single purpose of redirecting the traffic
of each UE to one of the available TFT switches. Ensuring
that all the traffic of a single UE is processed at the same
TFT switch allows the P-GWc to query for traffic statistics
via OpenFlow protocol for charging purposes. So, the load
balancing among TFT switches is based solely on UE IP
address masked matching. Because of that, the number of flow
entries installed on UL/DL switches will be negligible (mainly,
one rule for each active TFT switch), and these entries will
only be updated when the number of active TFT switches
changes. However, the traffic load on the UL/DL switches can
be very high and the processing capacity of these switches may
become a potential design bottleneck. Because of that, using a
high-performance hardware-based platform for implementing
these elements is the best option in this case.

B. The adaptive mechanism for elastic computing

The proposed adaptive mechanism dynamically configures
the number of active TFT switches to meet current traffic
demand. For software platforms, this means deploying and
starting more virtual switches on the service provider infras-
tructure. For hardware platforms, the hardware switch must
be already installed and connected, but they may be turned
on/off based on current needs. Every time the number of active
TFT switches is adjusted, the EPC controller must move some
OpenFlow flow entries to ensure a proportional load balancing
among active TFT switches. It means updating the UL and
DL switches, installing new rules on some TFT switches and
removing old rules from other switches (or let them expire,
depending on the adopted configuration).
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Fig. 4. Simulation results for three different blocking strategies.

Two different threshold values were defined for the adaptive
mechanism operation. The first one is the split threshold,
used to trigger the increase in the number of active TFT
switches. This threshold value should be close to the maximum
capacity, to avoid wasting resources. The second one is the join
threshold, used to reduce the number of active TFT switches
whenever fewer elements can accommodate the current traffic
requirements. These threshold values are defined as a percent-
age to indicate the relative usage of the monitored resource.

The adaptive mechanism monitors two resources on its
current implementation: the flow table usage and the current
traffic processing load. The adaptive mechanism will increase
its level by doubling the number of active TFT switches when
either the flow table usage or the traffic load exceeds the
split threshold value. On the other hand, the mechanism will
decrease its level to half of active TFT switches whenever both
monitored resources fall below the join threshold.

The current implementation uses a factor of 2 for increasing
and decreasing the number of active TFT switches. This
approach was adopted because it simplifies the OpenFlow
matching processes at UL/DL switches when using the UE IP
address for traffic load balancing. Considering 2n the number
of active TFT switches at any moment, a maximum of 2n flow
entries on both UL/DL switches is enough for a masked match
on the n Least Significant Bits (LSBs) from UE IP address to
equally distribute the traffic among the active TFT switches.
Different OpenFlow matching strategies can be developed and
evaluated, as long as they keep the number of flow entries
at UL/DL switches fixed to a constant value. If the number
of flow entries grows along with the number of users, then
the flow table size of the UL/DL switches may become a
bottleneck, reducing the applicability of the proposed design.

C. The blocking strategy

If for some reason the adaptive mechanism reaches its
maximum level and no more TFT switches can be activated,
the EPC controller may start blocking new bearer requests
until resources are released. For hardware platforms, this
circumstance may occur when all physical switches are already
in use. Situations like that are not expected to happen in
software platforms, but in a restrictive context, the physical

servers may run out of computing or networking resources,
preventing the deployment of new VNF instances.

For the case of flow tables filled up to maximum capacity,
no more entries can be added to the TFT switch, so the
network must block subsequent requests to avoid OpenFlow
error messages or the eviction of installed rules. However,
when the traffic load exceeds the maximum switch processing
capacity, it is still possible to accept new bearer requests
without QoS guarantees. So, three different blocking strategies
were compared for the case of an overloaded switch:

• Block none requests, allowing overloaded switches to
drop random packets when exceeding its internal pro-
cessing capacity;

• Block GBR bearer requests only, ensuring that traffic
with QoS requirements can only be accepted if there are
enough processing resources at the OpenFlow switches;

• Block all bearer requests, regardless of the bearer type.

Initial simulations were performed to study the outcomes of
each blocking policy (Sec. VI will describe the simulation sce-
nario used in this paper). Fig. 4 shows the average simulation
results calculated from 24 different simulation seeds with 95%
of confidence interval. Each graph shows the values for both
GBR and Non-GBR bearer traffic, considering all blocking
strategies when the network traffic and bearer requests are
already in the steady state. Fig. 4a shows the TFT switch
average traffic load ratio, expressed as a percentage of the
maximum processing capacity. Fig. 4b displays the bearer
request block ratio, and Fig. 4c shows the packet drop rate
due to the overloaded TFT switch.

It becomes evident that the Block GBR strategy converges to
a condition where the EPC controller blocks all GBR requests
because the Non-GBR traffic completely consumes the P-GWu
processing capacity. In turn, the Block none strategy can
equally share the processing capacity but at the price of a
very high packet drop ratio. Both situations are not acceptable
for handling GBR traffic with strict QoS requirements, and
its use may not be viable in real network deployments. It is
possible to conclude that the Block all policy can bring better
results for these simulations, with minor packet drop ratio and
balanced block ratio. Because of that, subsequent simulations
in this paper adopt this strategy.



VI. P-GWU PERFORMANCE EVALUATION

A. Simulation scenario

The simulation scenario was implemented in the Network
Simulator 3 (ns-3) using the OFSwitch13 module, which
enhances the ns-3 with OpenFlow 1.3 technology. This module
was developed by the authors of this paper and it is described
in [23]. Due to CPU and memory limitations for performing
large-scale LTE simulations on ns-3, a reduced simulation
scenario was adopted, as illustrated in Fig. 5. The backhaul
network is composed of six OpenFlow switches in a ring
topology, connected by Gigabit Ethernet full-duplex links. The
ring was chosen as most of the legacy backhaul networks have
a ring access topology, and it is one of the most efficient
approaches regarding protection and costs. The P-GWu and
five LTE sites are also connected to the ring switches over
Gigabit Ethernet links. Each site has three eNBs and its own
S-GWu. The eNBs are laid out on a hexagonal grid with an
inter-site distance of 500 meters. Fig. 6 shows the REM, which
represents the Signal-to-Interference-plus-Noise Ratio (SINR)
in the downlink with respect to the eNB that has the strongest
signal at each point. The UEs, varying from 100 to 400 on
this scenario, are randomly scattered over all the coverage area.
The EPC controller was entirely implemented from scratch by
the authors of this paper inside ns-3. So, it is tailored to the
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Fig. 5. The simulation scenario topology.
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adopted simulation scenario, taking advantage of the global
view of the network.

As LTE networks focus on Voice over IP (VoIP) and
multimedia applications, four applications are used during the
simulations to provide five different types of traffic flows with
different QoS requirements. They are: a HyperText Transfer
Protocol (HTTP) application for web page access mapped
to QoS Class Identifier (QCI) 9; a VoIP conversation with
call length expected to 100 seconds over UDP protocol and
mapped to QCI 1; a live MPEG-4 video streaming over UDP
protocol and mapped to QCIs 2 or 7; and a buffered MPEG-
4 video streaming over TCP protocol and mapped to QCI 6
(videos with expected length of 90 seconds).

Apart from the established default bearer, any UE can
request for randomly dedicated bearer context activation. Note
that multiple bearers can be simultaneously established with
different QCI values for a unique UE. The individual bearer
requests generated by each UE follows a Poisson Process with
rate λ = 0.3̄ requests per minute while the traffic length is
determined by the application. In this approach, the more
active users on the network, the greater is the aggregated
Poisson process rate.

Table I summarizes the LTE parameters that were settled in
ns-3 for the simulations, while Table II shows the parameters
used for the P-GWu OpenFlow switch modeling, adjusted
to reflect the proportionality of the scenario. The P-GWu
virtualization considers both software and hardware OpenFlow
platforms. Hence, simulations use different flow table size
and traffic processing capacity values for each configuration.
These values were defined based on empirical observations
from information available at [24]–[28]. It was noticed that
software switch processing performance is near 10 to 15 times
lower when compared to COTS hardware switches. Although,
software switches usually support up to 150 times more entries
on its pipeline tables.

TABLE I
LTE PARAMETERS ADJUSTED IN NS-3.

Parameter Value

System frequency 2100 MHz
System bandwidth 20.0 MHz
eNB TX power 46 dBm
UE TX power 23 dBm
SRS periodicity 320 ms
Propagation model OhBuildingsPropagationLossModel
MAC scheduler CqaFfMacScheduler

TABLE II
P-GWU OPENFLOW SWITCH MODELING PARAMETERS.

Parameter Hardware Software

Flow table size 1200 4096
Processing capacity 1 Gbps 100 Mbps
TFT switches 1, 2 or 4
Split threshold 90%
Join threshold 30%



B. The P-GWu adaptive mechanism evaluation

To better understand how the P-GWu adaptive mechanism
operates, simulations were performed for a scenario with
500 UEs and an OpenFlow software-based P-GWu virtual-
ization. On this scenario, the flow table size can hold all
TFT entries, so the switch processing capacity becomes the
only performance constraint. Fig. 7 simultaneously shows the
number of active TFT switches (right Y-axis), the gateway
traffic throughput (left Y-axis), and the average individual TFT
processing load (bottom chart) on the course of 500 seconds
of simulation. It is possible to observe how the increasing
traffic throughput at the beginning of the simulation reflects
on the TFT switches activation. Whenever the average TFT
processing load hits the split threshold (90% on the bottom
chart), the number of active TFT switches increase twofold.
This happens two times before 100 seconds of simulation.
After 150 seconds, the traffic throughput begins to slow down,
and the adaptive mechanism reduces the number of active
TFT switches every time the average TFT processing load
hits the join threshold (30%). This figure highlights how
the P-GWu adaptive mechanism can adjust the number of
active TFT switches based on workload changes. Note that the
conservative join threshold value used on simulations reflects
in the delayed reduction of active TFT switches. However, it
helps to prevent the ping-pong effect in the case of unstable
traffic throughput.

For evaluating the P-GWu design under different configura-
tions, Fig. 8 shows the steady-state average simulation results
of several metrics, calculated from 24 different simulation
seeds with omitted confidence interval due to negligible values.
Both software and hardware platforms were evaluated, and
the case where only a single TFT switch is available is
contrasted to the situation where the adaptive mechanism can
activate 1, 2, or 4 TFT switches. Fig. 8a shows the number of
TFT switches required to accommodate the flow entries and
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traffic throughput generated by the increasing number of UEs.
The dashed lines, for both software and hardware platforms,
remains stuck to the single TFT switch available. However,
when the adaptive mechanism comes into action, the solid line
shows that the number of TFT switches increases alongside
with the number of UEs. This is expected, as more UEs on
the network directly reflects on more traffic and flow entries at
the P-GWu. It is important to note that the software platform
has a very limited processing capacity when compared to
the small table size of hardware switches. As a consequence,
the software-based infrastructure requires more TFT switches.
Fig. 8b and Fig. 8c show the average flow table usage and
traffic load for TFT switches, respectively. As the hardware
OpenFlow switch has a limited flow table size, it is possible
to observe the higher average flow table usage in Fig. 8b.
When a single TFT switch is available, the flow table will
get full for 300 UEs or more, and the controller must block
new bearer requests as shown in Fig. 8e. Nonetheless, the
adaptive mechanism can avoid this by activating more TFT
switches and distributing the flow entries among them. A
similar behavior can be observed for the software platform
with respect to the traffic load. The high traffic load for 200
UEs or more (Fig. 8c) results in blocked requests as shown in
Fig. 8f, but the adaptive mechanism eliminates these blocks.
Finally, Fig. 8d displays the network aggregated throughput for
each configuration. The adaptive mechanism on both platforms
can adapt the number of active TFT switches improving
overall network performance.

C. Final remarks for a real-scale scenario

Simulations carried out in this paper were realized on a
scaled-down scenario. As previously observed, the P-GWu
traffic load and flow table usage are directly proportional to
the number of UEs for the adopted traffic model. Results
in Fig. 8 show that 400 UEs generate near 250 Mbps of
traffic throughput and install almost 1600 flow entries on TFT
switches when the network reaches its steady state. Hence,
on average, a single UE is responsible for 625 Kbps of traffic
throughput and 4 TFT flow rules.

For the proposed P-GWu design shown in Fig. 3, a po-
tential bottleneck may be processing capacity of the UL/DL
switches (the number of flow entries on these switches can be
negligible, as discussed in Sec. V). As the processing capacity
of COTS hardware OpenFlow switches ranges from 90 to
240 Gbps [26]–[28], a UL/DL switch device with 240 Gbps
could process the traffic of almost 400K active UEs. Based on
this maximum P-GWu theoretical capacity, Table III shows
the required number of TFT switch for both software and
hardware platforms. The flow table size on hardware switches
can vary from 1K to 16K entries. So, a first-class TFT
hardware switch [28] can handle up to 4K UEs, limited by
the number of flow entries on internal pipeline tables. For
the Open vSwitch in software platform, the flow tables size
can reach up to 750K entries, but the processing capacity is
limited to 10 Gbps on conventional servers [24]. Because of
that, a TFT software switch can handle 1.6K UEs. Based on
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Fig. 8. The P-GWu adaptive mechanism performance evaluation.

these numbers, it would be necessary to have up to 128 TFT
hardware switches or 256 TFT software switches instances so
the P-GWu adaptive mechanism can accommodate the network
load of 400K UEs.

TABLE III
P-GWU TFT SWITCH SPECIFICATIONS.

Parameter Hardware Software

Flow table size 16K 750K
Processing capacity 240 Gbps 10 Gbps
UEs supported ≈ 4K ≈ 1.6K

Required TFT switches 128 256

VII. CONCLUSIONS AND FUTURE WORK

Rethinking the current LTE architecture is mandatory for the
evolution toward the next generation of cellular networking.
In this context, SDMN makes the case that SDN and NFV
can simplify mobile networks and lower management costs.
This paper discusses the virtualization of LTE gateways, with
considerable attention dedicated to the P-GW. As the high
traffic volume on P-GWu imposes significant challenges, the
adopted solution employs the OpenFlow protocol for user
plane virtualization. Besides, the adaptive mechanism uses
elastic computing notions to dynamically adjust the number
of switches on the OpenFlow infrastructure, ensuring that the
P-GWu can adapt to workload changes.

Performance evaluation on a scaled-down scenario was
realized using the ns-3. Based on the analysis of the adap-
tive mechanism behavior throughout the simulation, it is
possible to conclude that the adopted approach ensures the
de/activation of OpenFlow switches as expected. Discussions
about the pros and cons when using software and hardware
OpenFlow switches are also presented. Considering different
flow table sizes and processing capacity for both platforms,
it becomes noticeable that software platforms require more
virtual switches instances than hardware devices to support the
same workload. However, using a software-based infrastruc-
ture offers more flexibility for mobile operators to deploying
VNFs. Finally, this paper presents a numerical analysis for a
real-scale scenario.

As future work, the authors aim to develop other TFT load
balancing strategies that guarantee a minimum number of flow
entries on UL/DL switches, allowing the use of arbitrary (non-
power of 2) TFT switches. They also intend to employ the
same adaptive mechanism for S-GWu virtualization.
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