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Abstract—Network traffic monitoring is an important factor
to ensure the controllability and manageability of software-
defined network (SDN). The current monitoring mechanism of
SDN requires switches to request the controller for instructions
to install flow entries for every new incoming flow. For fine-
grained monitoring, which requires many flow entries in switches’
flow tables, this mechanism creates a non-trivial delay in the
forwarding of switches and overhead in the control channel. Our
previous work presented SDN-Mon, a monitoring framework
that supports fine-grained monitoring for SDN. In this paper,
we discuss the aspect of monitoring the flows in a distributed
manner. We believe that a distributed monitoring capability
enhances the monitoring scalability for SDN. We propose a
mechanism that supports SDN to distribute the monitoring load
over multiple switches in the network, in which it prevents flows
monitoring duplication and balances the monitoring load over
switches in the network. With the proposed mechanism, each
switch handles much less monitoring load; and the overhead at
switches, the control channel, and the controller caused by the
monitoring duplication is eliminated. We implement the proposal
and integrate it to SDN-Mon to enable a scalable and distributed
monitoring capability in SDN. Experimental results show that
the proposed mechanism significantly reduces the amount of
monitoring load per switch, while the monitoring load is well
balanced over switches in the network, with only an acceptable
polling and processing overhead.

Index terms— Software-Defined Networking; OpenFlow;
Network monitoring; Load balancing;

I. INTRODUCTION

Network traffic monitoring is a key factor for effective net-
work control and management in Software-Defined Network
(SDN) [1] [2] [3]. It provides network information that is
critically important for the network intelligence to ensure the
stability, availability, and security as well as maintain other
SDN-provided benefits for network services and applications.
However, the current monitoring mechanism of SDN requires
switches to report to the controller, e.g. by sending packet-
in messsages, and wait for the controller’s instructions for
every new flow. For monitoring a large number of flows, this
approach cannot adapt well because it creates non-trivial delay
in the forwarding process of the switches, and overhead in the
control channel and the controller due to the frequent reports
and responses between switches and the controller. Different
from that approach and existing works that rely on the same
monitoring mechanism, our previous work, i.e. SDN-Mon [4],
presented an approach where switches actively monitors flow
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without interrupting the controller. This approach introduces
no delay in forwarding process of switches or overhead in
the control channel and the controller for scalable monitoring
capability for SDN.

This paper discusses extending the SDN-Mon approach to
support monitoring on multiple switches for a network-wide
monitoring solution for SDN. We propose a mechanism that
supports SDN to distribute the monitoring load of the whole
network to multiple switches in the network, where monitoring
duplication is detected and eliminated, and the amount of mon-
itoring loads to be assigned to switches are balanced. Different
from existing works, which requires switches to interract with
the controller for every new flow, our mechanism introduces
a lazy approach” where switches can actively monitor flows
without interrupting the controller. Then, the task of balancing
the load in switches and rejecting the duplicated flows will be
processed only in every monitoring data querying time. With
the proposed mechanism, the delay in the switches’ forwarding
process and the overhead on the controller and the control
channel are decreased since the frequency of query is much
less than the frequency of new flow.

We designed and implemented the proposed mechanism
on SDN-Mon to enable a fine-grained and scalable network-
wide monitoring capability in SDN. We evaluated the effi-
ciency of the proposal in terms of reducing the number of
monitoring entries in switches, and balancing the monitoring
load/monitoring entries assigned to the switches. The exper-
imental results show that the proposed mechanism largely
reduces the number of monitoring entries stored in each switch
(up to 63% for a network with three switches), and the
monitoring entries are assigned to the switches in a balancing
way, with only an acceptable overhead for querying and
processing even hundreds of thousands of monitoring entries.

II. RELATED WORK

Our work is motivated by various existing approaches for
network monitoring in SDN. A number of these approaches,
i.e., Avant-guard [5], OFX [6], DevoFlow [7], UMON [8],
OpenSketch [9], and Payless [10], propose extensions to the
SDN data plane for improving performance of SDN monitor-
ing. These approaches mainly discuss monitoring in a single
switch. Some other proposals use network monitoring tools
(e.g. sFlow [11]) to handle monitoring in SDNs instead of



leveraging SDN switches [12] [13]. The disadvantages of these
approaches are that they are not integrated with OpenFlow
platform, and strictly require additional hardware deployment
for flow collecting and analyzing systems.

Some other proposals discuss flow rules distribution on
multiple switches. OpenTM [14] proposes a switch selection
mechanism for querying flow statistics to estimate traffic
matrix. OpenWatch [15] distributes flow entries over switches
to reduce the number of flow entries per switch. Similarly,
FlowCover [16] proposes a mechanism for polling-switches
selection and flow-statistics aggregation to reduce monitoring
overhead. LiteFlow [17] proposes a selection scheme at a con-
troller that chooses a switch to monitor all flows between an
end-hosts pair, while leaving other path-switches forwarding
packets without any monitoring process. These approaches
basically monitor network traffic by installing flow entries
in switches, which is not adaptable with a large number of
flows. Moreover, those approaches require switches to request
the controller and wait for its instructions for every new
flow, which produces significant delay time in the forwarding
processes of the switches, especially for busy networks with
large frequency of new flows. Another approach [18] uses
two-stage Bloom filters for flow-size counting and packet
sampling, and distributes monitoring load over all switches in
the network. This approach totally relies on Bloom filters for
monitoring that shows certain false positive rate, and deleting
an entry in that data structure inflexibly requires reconstruction
of the Bloom filters.

III. ARCHITECTURAL DESIGN OF EXTENDED SDN-MON

External Services (third parties)
[
[

[ Applications/Services ]

SDN Controller

[ Network Applications/Services }

""""""" SDN-Mon Controller Module

' Global Monitoring APIs ,

API (REST)

Monitoring Data | [ Monitoring |
ii  Query APIs APIs |
[ £ = DB Cluster

§ )

g E 1 (Monitoring Data

SDN
Controller
Platform

f Global Monitoring Data !

SDN-Mon Northbound

=

Messages Handler

_______ SDN-Mon Southbound APl - —____
(OpenFlow-capable) B
SDN Switches

SDN:-MoniSwitchiModule

Messages Handler

OpenFlow | i
Channel

Local Applications

- Monitoring APIs |}

OpenFlow | i
Tables | i

Monitoring Data

Fig. 1: Extended SDN-Mon architecture.

Our previous work introduced SDN-Mon [4], a scalable
monitoring framework that supports fine-grained traffic moni-
toring for various network applications and services. In this
paper, we propose a mechanism that supports distributed
monitoring capability (i.e. by using multiple SDN switches)

for SDN, and intergrate it to SDN-Mon (called extended SDN-
Mon). Fig. 1 illustrates the architecture of extended SDN-Mon
which support monitoring with multiple switches and external
applications and services of third parties.

The extended SDN-Mon consists of three major modules:
the switch module, the controller module, and the external
module. The switch module handles the monitoring functional-
ity at a switch [4], while the controller module provides global
monitoring APIs and global monitoring data for controller
applications and services. The external module provides mon-
itoring data query APIs that support third parties to remotely
extract the global monitoring data from the controller, and
monitoring APIs that correspond to the monitoring APIs at the
controller module for external applications and services. Each
flow that traverses through a switch is monitored by a moni-
toring entry (or m-entry), which consists of monitoring match
fields (e.g. 5-tuple), counters, and the updating timestamp, in
the switch’s monitoring database. The proposed mechanism in
this paper enables SDN-Mon to automatically assign the moni-
toring load to multiple monitoring switches in a balanced way.
This allows network operators to leverage SDN-Mon APIs and
the global monitoring data for their applications without any
further effort for managing the multiple monitoring switches.

IV. DISTRIBUTED MONITORING MECHANISM FOR SDN
A. Organization of Global Monitoring Data

In the proposed mechanism, we organize the global mon-
itoring data at the controller into Global Monitoring Ta-
bles (GMTs); each corresponds to each monitoring switch
in the network. Each table stores, updates, and manages the
monitoring data (i.e., m-entries) of a switch. Each m-entry
includes following fields: Monitoring match fields, Counters,
Last update, and Hash. The hash value of each entry is unique,
and a corresponding hash-based data structure is used for fast
lookups and other data based processes of GMTs. The m-
entries in each GMT is kept updated by the controller through
frequently polling of m-entries at the corresponding switch.
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Fig. 2: Organization of the global data.

A lightweight table called Switch Memory Usage Table (Fig.
2) holds frequently updated information of the memory usages
of switches for monitoring load balancing purpose. Each entry
in this table holds the memory usage information of a certain
switch, including the following fields: <switch ID, Usage,



Last update>. The switch ID is the identification number
of the switch. The Usage represents the percentage of used
memory: Usage = (Ny. + Ny,.)/Capacity, where Capacity
is approximately estimated by the maximum number of flows
and m-entries that the switch can handle (based on the switch
configuration), Ny, and N,,. are the current numbers of flow
entries and m-entries at the switch. The Last update is the
timestamp of the latest update of Ny., N,,. and Usage.

Besides the GMTs, the controller also contains temporary
data structures consisting of a Buffering Table and Removing
Lists. The buffering table holds selected m-entries from lists of
m-entries that the controller receives for each monitoring data
query. Removing lists (RLs), in which each one corresponds
to each monitoring switch, hold hashes of rejected m-entries.
These m-entries are duplicated ones that are not chosen from
the switch selection process. When the controller completes
processing the received monitoring data of each querying time,
the m-entries in the removing lists will be physically removed
from that switch, and the buffering table and the removing
lists will be cleared for processing the received data of the
next querying time.

B. Workflow of the proposed mechanism

For every query-time-interval, the controller sends SDN-
Mon Data Request messages to all monitoring switches to
query the new and updated m-entries at switches. Each switch
responds such request by sending a SDN-Mon Data Reply
message including a list of new m-entries and updated ones
(the m-entries whose counters have been updated since the
previous query of the controller) to the controller (Fig. 3).
A SDN-Mon Data Reply also includes Ny, and N,,., which
are counted by the SDN-Mon switch module, for updating
the memory usage information of that switch in the Swirch
Memory Usage Table at the controller. For a flow that traverses
through multiple switches in network, such switches may
actively install m-entries to sample/monitor that flow (the
probability of sampling the flow is based on the sampling
ratio), resulting in the duplicated m-entries stored at the
switches.

(1) Controller requests monitoring
data from switches

(2) Switches report new/updated
m-entries to controller

(3) Controller requests switches to
remove duplicated m-entries

SDN
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Fig. 3: Controller-switches communication.

Upon receiving the m-entries from switches, the controller
filters the m-entries by: selecting a switch with smallest
memory usage to keep monitoring a m-entry for each flow,
putting the hashes of the duplicated m-entries to RLs for later
removal at switches. For switches whose removing list is not
empty, the controller sends instructions to them to physically
remove the rejected entries after processing all received m-
entries of a querying time. Algorithm 1 illustrates the detailed
steps for processing the received monitoring data of a querying
time at the controller.

Data: Lists of m-entries received from switches

for Each list of m-entries L; from a switch St do

for Each m-entry ex in L; do

if ex is an updated m-entry then

Update the corresponding m-entry in Global Monitoring

Table of Sy;

else

if ex is not existed in Buffering Table then

J Insert ex into Buffering Table;

else

Assume ey is the duplicated m-entry, Se,. is

corresponding switch of ey ;

if switch-usage(S1) < switch-usage(Se, ) then
Insert ex into Buffering Table;
Insert ey into Removing List of Sey.;
Update Switch Memory Usage Table;

else

| Insert ex into Removing List of Sy;
end

end

end

end

end
Algorithm 1: Pseudocode for processing the received m-

entries of a querying time at the controller.

V. EVALUATION

We evaluate the effectiveness of the proposed mechanism in
three aspects: the reduction of the per-switch monitoring rules
storage, the balance in the number of monitoring rules that
are distributedly assigned to the switches, and the overheads
(elapsed times) of the proposed mechanism and the monitoring
system.

A. Experiment environment

We conducted experiments with a virtual SDN deployment
using VNX [19], as illustrated in Fig. 4. The controller is run
on PC-1, a physical computer with a 2.66 GHz CPU Intel core
2 Duo E6750 (2 cores) and 4 GiB RAM. Three switches and
three hosts are run on PC-2, another physical computer with
a 3.4 GHz CPU Intel core i7 (8 cores) and 8 GiB RAM. PC-1
and PC-2 are connected via a LAN network. The switches are
run with DPDK v16.11 [20] to enhance its processing speed.

B. Evaluation on the reduction of monitoring load per switch
and the monitoring load balance among multiple switches

The monitoring match fields in SDN-Mon switch module
are set with 5-tuple consisting of source IP address, source
port, destination IP address, destination port, and protocol. The
query time interval is set to 10 seconds, which means the
controller queries new and updated m-entries from switches
in every 10 seconds. Sampling ratio is set to 1.0. We conduct
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the experiments for two cases: monitoring with the support of
our proposed mechanism, and monitoring without the support
of our proposed mechanism.

For evaluating the reduction of monitoring load per switch,
we inject a stream of packets from H/ to H3 using tcpreplay
[21]. The dataset for packet injecting is a pcap file from MAWI
traffic repository [22], which is a 6.6 GB file of network traffic
captured from a real backbone network in Feb. 26, 2017. We
measure the number of m-entries installed in each switch in
various numbers of 5-tuple flows (from 0 to 100,000 flows).
The evaluation results (Fig. 5) shows that the average number
of m-entries per switch is reduced as over 63%.

For evaluating the monitoring load balance among the
switches, we inject two streams of packets from HI to H3,
and from H2 to HI concurrently with two pcap traces (of
the same traffic volume), with the same packet injecting
speed. We measure the numbers of m-entries in switches and
calculate the standard deviation of these numbers. A small
standard deviation means that the monitoring load balancing
functionality works efficiently. The evaluation results (Fig. 6)
shows that with the support of the proposed mechanism, the
standard deviations are small for all different numbers of flows
in the traffic. Thus, the switches are assigned with nearly equal
or equivalent numbers of m-entries.

C. Elapsed times of the algorithm and the system

We evaluate the overhead of the proposed mechanism in
two aspects: the elapsed time for processing the proposed
algorithm (called the algorithm elapsed time), and the elapsed
time for the whole process of a querying time (called the
system elapsed time). The algorithm elapsed time is the
amount of time for processing all arriving reply messages and
the amount of time for putting the m-entries in the buffering
table into the GMTs and removing the corresponding m-entries
in the RALs. The system elapsed time is the time interval since
the controller sends the first SDN-Mon Data Request message
to a switch until it completes processing all SDN-Mon Data
Reply messages received from switches.

We inject a pcap trace containing 634,500 5-tuple flows,
which creates 232,950, 234,860, and 234,390 m-entries stored
in the switches S7, S2, and S3 respectively. We inject the
packets at various injecting rates so that the numbers of m-
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Number of monitoring en- | 20,000| 40,000| 60,000| 80,000 100,000
tries per query

Algorithm elapsed time (s) | 0.237 | 0.436 | 0.742 | 0.939 | 1.181
System elapsed time (s) 0.371 | 0.868 | 1.361 | 1.966 | 2.692

TABLE I: Algorithm elapsed time and system elapsed time at
various numbers of monitoring entries per query.

entries that the controller receives in each query are from
20,000 to 100,000 m-entries. The experimental result (Table
I) shows that both of the algorithm and system elapsed times
are negligible, with small maximum values as 1.181 and 2.692
seconds correspondingly, even for processing a large number
of m-entries as 100,000 m-entries per query, for a large number
of 5-tuple flows as 634,500 flows in the injecting traffic.

VI. CONCLUSION

In this paper, we propose an adaptive and distributed mech-
anism to support monitoring in multiple switches for SDN.
The proposed mechanism distributes the monitoring entries
over switches, selects switches to assign the monitoring tasks
in a balanced fashion, and eliminates duplicated monitoring
entries. Thus it non-trivially reduces the amount of monitoring
overhead in switches, in the controller and the control chan-
nel. We integrated the proposed mechanism on SDN-Mon, a
fine-grained monitoring framework, to enable a scalable and
distributed monitoring capability in SDN. Our performance
evaluation with real traffic data shows a significant reduction
of monitoring load in each switch, and an efficient balance
of monitoring load among switches. The elapsed times of
the proposed mechanism and the monitoring system are also
proved to be small, as less than one and three seconds
respectively, for handling a large number of entries per query
as a hundred thousand, with a large number of flows as over
a half million in the network traffic.

REFERENCES

[1] Open Networking Foundation, “Software-defined networking: The new
norm for networks,” ONF White Paper, vol. 2, pp. 2-6, 2012.

[2] S. Sezer, S. Scott-Hayward, P.-K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
SDN? Implementation challenges for software-defined networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 3643, 2013.




[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

(12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69-74,
2008.

X. T. Phan and K. Fukuda, “SDN-Mon: Fine-grained traffic monitor-
ing framework in software-defined networks,” Journal of Information
Processings (JIP), vol. 25, pp. 182-190, Feb. 2017.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in ACM CCS’13, 2013, pp. 413-424.

J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Enabling practical
software-defined networking security applications with OFX,” NDSS’16,
pp- 1-15, 2016.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: scaling flow management for high-performance
networks,” in ACM SIGCOMM CCR, vol. 41, no. 4, 2011, pp. 254-265.
A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “UMON: Flexible
and fine grained traffic monitoring in Open vSwitch,” ACM CoNEXT’15,
pp. 1-7, 2015.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch.” in NSDI’13, 2013, pp. 29-42.

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in IEEE NOMS’14, 2014, pp. 1-9.

P. Phaal, S. Panchen, and N. McKee, “InMon Corporation’s sFlow:
A Method for Motoring Traffic in Switched and Routed Networks,”
RFC3176, 2001.

A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “OrchSec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and SDN control functions,” in IEEE NOMS’ 14,
2014, pp. 1-9.

J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,” in I[EEE ICDCS’14, 2014, pp. 228-237.

A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix
estimator for OpenFlow networks,” in PAM’10, 2010, pp. 201-210.

Y. Zhang, “An adaptive flow counting method for anomaly detection in
SDN.” in ACM CoNEXT’13, 2013, pp. 25-30.

Z. Su, T. Wang, Y. Xia, and M. Hamdi, “FlowCover: Low-cost flow mon-
itoring scheme in software defined networks,” in IEEE GLOBECOM’ 14,
2014, pp. 1956-1961.

N. Grover, N. Agarwal, and K. Kataoka, “liteFlow: Lightweight and
distributed flow monitoring platform for SDN,” in IEEE NetSoft’15,
2015, pp. 1-9.

Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic mon-
itoring in software defined networks,” in ACM HotSDN’14, 2014, pp.
85-90.

Virtual Networks over Linux (VNX),
“http://web.dit.upm.es/vnxwiki/index.php.”

DPDK: Data plane development kit, “http://dpdk.org/.”

Tcpreplay, “http://tcpreplay.synfin.net/wiki/tcpreplay.”

MAWI Traffic Repository, “http://mawi.wide.ad.jp.”



