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Abstract—Video streaming is responsible for the largest por-
tion of traffic in fixed and mobile networks. Yet, forecasts
expect this amount to grow further. Especially for mobile devices
connected to cellular networks, high QoE video streaming can
be a challenge as the user data volume is metered and eventually
limited. Also, the connection quality may vary severely. Prefetch-
ing videos is an approach to mitigate this issue. Here, videos
that the user is likely to watch in advance are prefetched on the
user’s smartphone, e.g., while he is connected to WiFi. However,
this approach can only be efficient if only the videos that are
interesting for the respective user are prefetched. This constitutes
a major estimation and prediction challenge. To this end, this
paper presents three contributions: First, a user study over
multiple months that draws valuable insights on the user video
request behavior. Second, we propose a novel privacy-preserving
prefetching framework denoted vFetch that prefetches videos
based, e.g., on the user’s affinity of YouTube channels. Third,
a trace-based evaluation and parameter study that demonstrates
vFetch’s efficiency with a hit rate of ∼50% for a 50 GB cache.

I. INTRODUCTION

Video streaming causes the majority of Internet traffic

nowadays. Popular services like YouTube, Netflix, and Ama-

zon Prime accelerate this trend. While the latter ones are

used to stream professionally produced movies or series,

YouTube offers more content that comprises especially short

videos. Also, YouTube represents the largest single source of

user-generated traffic estimated to range between 40% and

70% in most networks [1]. Together with mobile data rates,

also video traffic grows, caused by an increasing number

of mobile devices, usage of video streaming services, and

higher video qualities. However, the user perceived Quality

of Experience (QoE) strongly depends on the available band-

width. A reduced throughput leads to shorter video playback

duration [2] and even playback abortion [3] if the playback

does not start promptly. Allowing a fast video playback start

without interruptions in the presence of steeply increasing

traffic volumes states a major challenge on network man-

agement. Addressing this challenge, e.g., WiFi and femto

cell offloading are proposed and state recent research topics

envisioned as key elements in efficient content dissemination

and network management solutions. Preliminary work has

shown that prefetching on servers [4], [5], femto cells [6],

home routers [7], [8], and user terminals [9], [10] has the

potential to efficiently unburden networks by offloading video

traffic. While it is quite likely that a user watches the next

episode of a series if he has watched the preceding ones,

this is not as easy for services like YouTube. The intuitive

idea of prefetching recent videos from subscribed YouTube

channels is not sufficient, as we will show in the data analysis

section of this paper. Also selecting videos for prefetching

recommended by YouTube [11] and the video’s like count [12]

have shown a poor performance. Hence, we conclude that

personalized prefetching of videos is still a challenging task

since native features, such as the subscription status and the

global popularity, are usually rather ineffective for prefetching

algorithms. To this end, we conducted a months-long user

study and analyzed user behavior to deduce requirements on

an efficient prefetching system. In the next step, this paper

proposes vFetch, a video prefetching system for efficient

video selection based on content features and user channel

affinity. This allows efficient content placement of delay-

tolerant videos in the context of prefetching. Hence, traffic

peaks can be reduced and the traffic pattern be smoothened,

which reduces transit costs that arise due to burstable billing.

To this end, this paper presents three contributions: First, we

conducted a user study using a dedicated Android app and

derived insights from a thorough analysis giving guidance

on how to design a prefetching system. Second, using these

insights, we design a novel prefetching system named vFetch

considering pseudo subscriptions and user channel affinity.

Third, using the user study participants’ video requests, we

conduct trace-based simulations to demonstrate the efficiency

of vFetch and discuss key parameter configurations.

The remainder of this paper is structured as follows. Sec. II

gives an overview of relevant background and related work.

In Sec. III, the user study conducted is described. An analysis

of the user study is conducted in Sec. IV. Sec. V describes

the design of vFetch, which is evaluated in Sec. VI. Sec. VII

concludes the paper and discusses future work.

II. BACKGROUND AND RELATED WORK

The two major goals of video prefetching are (i) network

offloading by downloading videos at off-peak hours to alleviate

networks at peak times and (ii) to avoid bad or fluctuating QoE

due to unstable cellular connection by downloading videos in

advance. Consequently, the QoE perceived by the user can be

increased as bandwidth and coverage often state problems for

mobile users watching videos, e.g., while they are commuting

by train. In the following, we discuss the key areas for the

application of prefetching and most relevant works.
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Kaafar et al. [13] propose a prefetching approach for CDNs.

Thereby, prefetching candidates are determined based on a rec-

ommendation approach. Summers et al. [4] analyze Netflix’s

workloads showing chains of sequential requests. Here, the

authors present prefetching algorithms that reduce the hard

disk and main memory utilization, thereby not focusing on

individual users. Golrezaei et al. [6] investigate the potential

of prefetching at femto cells for cooperative caching in mobile

networks to relieve the back-haul network. Bai et al. [14]

discuss caching mechanisms using information from Online

Social Networks (OSNs) for content published on Facebook

and Yahoo. These approaches propose solutions for social-

aware prefetching in the context of caching within the network,

e.g., a CDN or an ISP cache while addressing many users. In

contrast to this, vFetch addresses user-specific prefetching, i.e.,

individually downloading video content directly to the user’s

storage, e.g., on a home router or the user’s smartphone.

Two prominent works discuss the application of prefetching

to peer-to-peer (P2P) systems. Wang et al. [15] use Ren-

Ren, the Chinese Facebook variant to investigate the benefits

achievable through P2P-assisted video streaming. Their goal

is to reduce the initial video buffering time to increase the

user QoE. Therefore, the authors proposed prefetching the

first segment of videos, which are likely to be watched. To

determine these videos, the authors use social relationships

and user preferences as predictive features. Li et al. present

SocialTube [16], a P2P video prefetching system focusing

on social relationships. The authors observed that 0.4% of

the videos cause 80% of the traffic. Consequently, 99.6% of

the videos cause only 20% of the network traffic. A further

interesting observation is that 90% of a user’s video views can

be explained by direct and 2-hops friends. All studied users

watch at least 20% of the videos on their social network feeds,

while 33% even watch 80% of these videos.

While the previously presented approaches do not address

prefetching on mobile devices, Zhao et al. [17] develop a cus-

tomized Facebook application. Thereby, they investigate social

network-based prefetching algorithms. However, the findings

here are limited and require validation through simulation

experiments. Closing this gap, Gouta et al. [10] conduct sim-

ulations for prefetching on mobile devices using a trace from

a mobile network operator. The authors use a collaborative

filtering approach inspired by Google’s page rank algorithm

to predict videos for users based on user similarity. However,

the approach requires continuous monitoring of many users to

work efficiently. This violates the user privacy. In contrast to

this, vFetch is designed to work on a user device only using

the respective user’s data, which remain local not leaving his

device. In a previous work [5], we investigated recommender

approaches for music video prefetching on network caches

and mobile devices. Therefore, we used a dataset covering

two weeks for several thousand users, which does not allow

analyzing long-term user behavior and requires a continuous

user request monitoring. Plecsca et al. [9] leverage the users’

tendency to request videos related to the last video they

watched, e.g., by selecting videos from the related video

list of YouTube. To leverage this observation, the authors

proposed prefetching based on Markovian policies fed by

the YouTube video recommendation list. While this behavior

is valid, especially for fixed networks without mobile data

caps, the challenge of prefetching the first video in a video

session not addressed. Wilk et al. [12] present an analysis

of a user study focusing on Facebook. In their user study

with 14 participants, they investigate social-aware multimedia

prefetching by providing an Android app called SonNet to

the participants. The results show that video consumption

is quite diverse across users and that there is no single

predictor applicable for all users. Especially the number of

likes, comments, and the content coming from a 1-hop-friend

alone are not sufficiently predictive features. Therefore, this

work focuses on video content features instead of social rela-

tionships. Furthermore, Facebook API changes do not allow

using the SonNet app anymore. Summarizing, Zhao et al. [17]

present the most promising approach, where a customized

Facebook-like app has been developed using Facebook-based

prefetching algorithms. Unfortunately, it remains unclear how

the app orders Facebook posts and, generally, which design

choices the authors made to create the framework.

In contrast to the existing prefetching approaches, this work

differs in three aspects. First, we do not require the user to

install a customized app that changes look and feel for the

user but rely on a seamless monitoring app, allowing usage

of the native YouTube app. Second, the user study conducted

uses the YouTube watch history from 27 active YouTube users

allowing us to study their individual behavior over several

months. Third, our aim to investigating prefetching policies

for individual users does not require extensive user traces as

necessary for non-privacy-friendly recommender approaches.

Instead, we design a simulator that is able to evaluate different

prefetching policies based on the collected ground-truth user

requests. Thereby, we consider the substantial contribution on

the case of key design aspects of user-specific prefetching

mechanisms. This is useful to dimension a plenitude of use

cases, e.g., YouTube apps, smartphone middlewares, or the

operation of cellular cloudlets.

III. USER STUDY

In order to collect real world user data, we developed an

Android app, denoted as SocialMonitor. We handed this app

out to YouTube users within the scope of a user study, that

startet in January 2015. We managed to acquire additional

participants in the following semesters, by asking students

in lectures as well as in the scope of theses to participate.

After the first start, the app informs the user about which

data is collected and for which purpose. If the user does

not agree with the privacy consent, no data is collected. The

SocialMonitor anonymizes all personal data on the user’s

device using a cryptographic hash function, before upload-

ing it to a trace collection server. The app users’ origin is

mostly Germany, India, and France and 58% are male. Their

average age is 24.5 with a standard deviation of 10.2 years.

The architecture of the SocialMonitor is depicted by Fig. 1.



Fig. 1: Architecture of the SocialMonitor App

Here, the Data Collector collects information on channel un-

/subscribe events, as well as the videos watched by the user

according to their YouTube watch history. This information

is passed to the Data Aggregator, which filters, anonymizes,

and locally stores the data. Once per hour, if the device has

a WiFi connection, SocialMonitor sends the data to the traces

server, where the data of all participants is stored. If no WiFi

is available, the data is stored at most three days before it is

sent via cellular connection. Thereby, all videos watched while

the user is logged-in using, e.g., the smartphone, browser, or

smart TV are collected. It is important to note that by using

YouTube’s watch history it cannot be determined on which

device a user watched a video. However, this information is

not necessary to determine user-specific prefetching policies in

general. The collected video IDs allow to derive more features,

e.g., the title, numbers of likes, the upload date, and the name

of the uploading channel. Next, the channel name is used to

determine all videos published while a user has subscribed to

the channel by using the YouTube Data API.

In the following, we only consider participants that watched

at least two videos per day on average and participated at

least two weeks in the user study. Furthermore, we only

consider devices with less than 10% of the watched videos

being deleted later on by YouTube, e.g., because of copyright

infringement. This results in 27 user devices, in the following

denoted as participants or users. Thereby, the number of our

participants and duration surpasses the related works with

TABLE I: Statistics of user study participants

Mean Median StdDev Min Max
Participation (days) 219.5 145.8 193.4 26.2 639.8

#Days with views 151.7 123 129.2 22 449

#Subscriptions 23.9 10 43.2 0 172

#Channels watched 882.6 464.5 763.9 8 2,410

%Watched Subs. 11.8% 5.3% 17.1% 0% 70.8%

#Subscribe events 24 11 43.4 0 173

#Unsubscribe events 23.9 10 43.2 0 172

10-15 users observed over 10 days - 8 weeks [11], [12],

[17]. Statistics on our participants are shown in Table I

showing that users are quite diverse w.r.t. the number of days

they participated in the study, the number of the subscribed

channels (#Subscriptions), and the number of channels they

requested videos from (#Channels watched). On average, our

users participated 145.8 days in the study and watched videos

on 123 days. The videos came from 464.5 channels (median

value) with a large std. of about 763.9 channels. The mean

number of subscribed channels is 23.9 and 11.8% of the videos

coming from subscriptions were watched by the participants,

while the max. value is 70.8%. Complementing Fig. 2, the

row %Watched Subs shows detailed statistics of the share of

watched videos from subscribed channels.

IV. DATASET ANALYSIS

In the following, the user behavior relevant for prefetching

of the selected 27 users is further analyzed, see Table II. All

of the following statements refer to a daily scale and give a

general overview of the participants’ behavior. On average, 9.7

videos are provided to the users by subscriptions. Overall, the

participants watch 10.5 videos from 7.2 channels. However,

the participants watch only 16.7 of the videos offered from

subscriptions on average and 83.3 from other sources. Please

note that we calculated the Watch time by summing the

duration of the videos watched, resulting in a median value of

74.6 minutes per day. However, the maximum value exceeds

the minutes of the day indicating that this user did not watch

the videos completely but skipped videos, which is a common

behavior for YouTube users observed before [18].

A. Subscriptions

Fig. 2 depicts the CDF of the share of watched videos

from subscribed channels. Note that the participants of our

user study did not watch most videos from their subscriptions.

Surprisingly, only for about 7% of the subscribed channels, the

participants are interested enough to watch all videos. Further,

for 19% of subscribed channels, no video is watched and 80%

of the subscribed channels are watched 34% or less. Hence,

we conclude that the channel subscription status alone is not

an effective feature for video prefetching. Consequently, the

ratio of videos watched from a subscribed channel has to be

monitored to determine if videos from it should be prefetched.

TABLE II: Daily user statistics

Mean Median StdDev Min Max
Subs. videos offered 9.7 5 69.0 0 6,293

Number of views 10.5 8.1 12.2 2.9 69

#Subscription views 3.6 0.7 10.1 0.1 48.32

#Channels watched 7.2 5 8.5 0 80

%Subs. watched 16.7% 0% 28.0% 0% 100%

%Others watched 83.3% 100% 28.0% 0% 100%

Watch time (min.) 172.7 74.6 269.3 0.15 3,644



Fig. 2: CDF of videos watched from subscribed channels

B. Video Age

To constrain the set of videos which come into consideration

for prefetching, we analyzed the video age, i.e., the time

between the video was uploaded and the time it was watched

by the participants. Fig. 3 depicts the video age distribution in

days per participant. In all of the following figures, the user ID

ranging between 1–27 is assigned by the number of average

daily views of the user, i.e., user 1 is most active. While there

is a tendency to watch videos within the first two weeks after

their upload, for most of the participants, the median shows a

time difference between 102 and 103 days. Surprisingly, this

indicates that mostly videos older than one month are watched.

YouTube video requests can have many reasons, e.g., a new

video on a subscribed channel, a search for an ephemeral

interest, or a share on Facebook. Therefore, we further looked

into the age of videos requested from subscribed channels.

Fig. 4 shows that here, the video age is lower compared to

the general age of all videos watched. Note that the y-axis

measures in hours instead of days. Six participants, present in

Fig. 3 are missing in this figure as no videos from subscribed

channels were watched. About half of the participants watch

subscribed videos with a median age of around 103 hours,

i.e., 42 days. For 7 participants the median was even smaller

than 102 hours, i.e., 4 days, showing a diverse behavior among

the participants. However, for distinct participants the second

and third quartile are narrow, which suggests a stable per-user

behavior. Dividing the participants’ standard deviation by their

mean results in values smaller than 9 for all participants except

participants 3, 4, 5, and 6 which range between 38 and 80.

Hence, the user behavior is quite constant. Hence, we conclude

that videos from subscriptions have to be prefetched within the

first 7 hours after their upload to not miss more than 25% of

videos requested, e.g., by participants 3, 4, 5, and 6.

C. Video Origin

As mentioned previously, a video request can have multiple

origins. From the data at hand, we can only determine if

a video belongs to a subscribed channel or not. However,

we observed substantial video views from participants to

channels they have not subscribed but have a non-ephemeral

interest in. Hereafter, we refer to these channels as pseudo
subscriptions. Hence, we distinguish between three video

categories: 1) The video is published on a channel that a user

Fig. 3: Age of all videos watched for distinct users (days)

Fig. 4: Age of subscription videos watched per users (hours)

has subscribed to. 2) The video comes from a channel that

the user regularly watches videos from but did not subscribe

to, e.g., recommended by the YouTube landing page. 3)
The video does not belong to the previous two categories

and, therefore is considered as a random view and may

come from a website embedding, a YouTube search, or a

recommendation on YouTube landing page, which however

matches an ephemeral user interest. To distinguish between

categories 2 and 3, we set the following two criteria for a

match with category 2: First, the user has watched at least

two videos of this channel. Second, the user has at least

watched 80% of the videos published on this channel. Hence,

the first video watched does not render the channel to a

pseudo subscription. Note that the channel status may change

from category 2 to 3 and the other way around over time as

user interests may change. Fig. 5 shows the share of video

sources, i.e., the categories from above, for our participants.

Their avg. number of daily video views, as depicted on the x-

axis, sorts the participants depicted. The green share represents

videos from subscriptions. The yellow share belongs to pseudo

subscriptions. The remainder of requests do not belong to

subscriptions and not to pseudo subscriptions and thereby

explain the gap to 1. Surprisingly, subscriptions and pseudo

subscriptions cannot explain most requests, which, therefore

seem to be random. However, subscriptions are responsible

for about 10% of views for most participants with less than



Fig. 5: Share of videos requested per subscribed (green) and

pseudo subscribed channels (blue), stacked per user

8 views a day. For participants with more than 7 views per

day, much higher subscription shares are observed, reaching

more than 33% for 4 participants which requested more than

10 videos per day on average. Videos can only be prefetched if

user interest can be estimated in advance. Hence, we conclude

that the bars in Fig. 5 represent the individual maximum

prefetching potential, which is quite diverse for different study

participants ranging between 3% and 77%.

D. Repeated Video Requests

For prefetching, videos that are watched multiple times are

especially valuable as they increase the cache hit rate (CHR)

more than videos that are only requested once. Therefore,

we investigated which videos users repeatedly request. Fig. 6

shows the number of videos which have been requested more

than once by a user, grouped by their YouTube category. This

category can be chosen out of a set of categories by the video

uploader and can be retrieved by the YouTube Data API. On

the one hand, videos belonging to Music and Entertainment
show a high re-watch behavior. One explanation for this is

that these videos belong to entertaining categories. In contrast

to this, informative video categories, e.g., Travel&Events,

Fig. 6: Videos requested more than once per YouTube category

Fig. 7: Views over the hours of the day

News&Politics, and Shows exhibit rarely repeated requests.

Music videos show the highest re-watch behavior by a median

of 13 times. This confirms the fact that most video requests

on YouTube belong to the category Music [5] with about

42%. Hence, we conclude that videos belonging to entertaining

categories should not be deleted by the prefetching system

after being watched. One way to achieve this is by a least-

recently used (LRU) managed cache storing prefetched videos

and keeps repeatedly requested ones longer in the cache.

E. User Request Time

It is important to know, when a user regularly watches

videos to be able to prefetch videos before they are watched.

Fig. 7 depicts a heat map of views over the hours of the day,

for the ten participants with most average views per day. The

fields with the darkest color range from 11% to 17% due to

the robust coloring scheme. For all participants, hours exist

where they are more likely to watch videos, e.g., 30% of views

between 7 and 10 am for the user depicted in the first row.

This information is especially important when prefetching for

users watching videos briefly after their upload to download

them timely and, hence, not miss prefetching opportunities.

V. VFETCH SYSTEM DESIGN

vFetch’s primary goal is allowing user devices such as

smartphones, or stationary last mile hardware such as home

routers and cloudlets to determine videos to prefetch. Thereby,

the user data is processed in a user-owned environment and

therefore the user privacy is not violated as it is the case

for most recommender systems. To avoid a loss of informa-

tion on YouTube’s side, vFetch sends user viewing statistics

to YouTube allowing to distinguish between prefetched and

watched videos as well as playback duration and quality

information. For the evaluation of this paper, we implemented

vFetch to work with the user study participants’ traces. There-

fore, we use it in combination with a discrete event simulator

for distinct user simulations, keeping track of the past and

the current simulation time to only use information that is

available at the current simulation time, i.e., no information

from the future. Fig. 8 presents vFetch’s system architecture.



Fig. 8: Architecture of the vFetch Prefetching System

The User Traces collected during the user study serve as

an input for vFetch. The traces contain information about,

e.g., the videos requested by a user as well as un-/subscribe

events for YouTube channels. Each video is identified by a

video ID, for which further metadata is offered by the Video
Metadata database, containing, e.g., the title, the description,

the upload timestamp as well as the name of the channel on

which the video is published. The Event Processor processes

user events in chronological order, e.g., a new video uploaded

by a channel, a video request, or a un-/subscribe event.

Furthermore, it retrieves for each video the corresponding

metadata from the Video Metadata database. The User Profile
module contains information about the videos watched by

the user, i.e., the Watch History, Subscriptions, and Pseudo
Subscriptions of the user. Thereby, it captures the user in-

terests. We expect the consideration of pseudo subscriptions

as introduced in Sec. IV-C to further increase the efficiency

of vFetch. Therefore, only videos published after the start of

the users’ participation in the user study are considered. To

count as a pseudo subscription, a user must watch at least

two videos and overall more than 80% of the channel videos

uploaded since the user study start. According to [16], 80% is a

reasonable value to infer a strong interest for a channel. Based

on this information, the Candidate Video Queue determines

videos that the user is likely to watch by ordering and filtering

them appropriately as described in the following. Videos which

are older than the threshold tcandidate are removed from the

candidate queue, as the probability of a corresponding request

is low as shown in Sec. IV-B. Within the candidate queue,

videos are ordered by the user’s affinity to the channel, which

has uploaded the video, i.e., the ratio of videos watched from

this channel. Therefore, the video candidates with the highest

estimated user affinity are prefetched first. In the following,

we discuss and reason requirements for vFetch.

A. Requirements

While a simple FiFo (First In First Out) policy would

always put the oldest videos in front of the candidate queue

to get them prefetched first, this is not an efficient policy.

A substantial part of videos requested is only a few weeks

or even hours old, as shown in Sec. IV-B, Therefore, we

define requirement i) Videos older than one month should be
removed from the candidate queue, as it is unlikely that the
user watches them compared with younger videos. The next

simple behavior we want to discuss is LiFo (Last In First

Out), which is likely to have a higher prefetching efficiency.

However, just prefetching the most recent videos does not

consider the user’s heterogeneous channel interests as shown in

Fig. 2. Therefore, we define requirement: ii) The user’s affinity
to a subscribed channel must be considered by selecting which
videos to prefetch. We implement this by taking the affinity

as videos watched from channel
videos published by channel

for a time span starting with the

first request of the user for this channel. Even though the

participants subscribed to channels, only 16.7% of videos

published by these subscriptions are watched, as show in

Table II. For most, but not all participants, the videos watched

from not subscribed channels dominate. In a further analysis

on video origins presented in Sec. IV-C, we observed that

even though the participants did not subscribe to a chan-

nel, a significant share, i.e., ≥ 80% of videos are watched

from distinct channels. Therefore, we define requirement iii)
Pseudo subscriptions must be considered as relevant sources
of video views. For some videos, the participants have a longer

lasting interested, leading to repeated requests to Music and

Entertainment videos as shown in Sec. IV-D. Therefore, we

deduce requirement iv) Videos should be cached and kept in
the cache after they were watched. This seems to contradict the

recommendation of Gouta et al. given in [10] to delete videos

after they have been watched from local storage. However,

the authors excluded music videos from their analysis which

are the most repeatedly watched category of YouTube videos

as shown in Sec. IV-D. vFetch fulfills this requirement by

filling prefetched videos in an LRU-managed cache so they

can be repeatedly locally played back. In order to serve videos

by prefetching, they have to be placed timely on the user

device. From the analysis results in Sec IV-B and Sec. IV-E,

we deduce requirement v) Videos must be prefetched timely
after their upload and before the preferred times of the user
watching videos.

B. Download Scheduling

The Event Processor takes the first entries of the Candidate
Video Queue, filtered by video age on a regular basis and

passes them to the Download Scheduler. This module deter-

mines when vFetch downloads videos the by keeping track

of the user’s diurnal connectivity patterns. As the focus of

this paper is on general prefetching policy design, we will

keep this module simple here and leave application-specific

designs for future work. In this work, the Download Scheduler
uses the clustering algorithm DBSCAN [19] to determine

when a user is most likely to watch videos by clustering of



the previous watch times. Thereby, the Download Scheduler
can download the videos in advance, preferably during off-

peak hours or when WiFi is available. An example of ten

participants’ video watch behavior w.r.t. the hours of the day

is given in Sec. IV-E. The time interval of four hours before the

estimated user watching time is split into 30-minute segments.

If vFetch is running on a smartphone, the Download Sched-
uler can determine the interval with the highest likelihood

of an available WiFi connection. Thereby, we consider that

prefetching is preferably done via WiFi connections. Once an

interval is selected, the Download Scheduler assigns up to

three prefetching events to this interval. Hence, vFetch can

prefetch up to 3 videos per 30 minutes. The overall number

of videos to prefetch is determined by the avg. number of

videos the user watches per day over the preceding, at most,

28 days. Thereby, downloading unnecessarily many videos is

avoided. The prefetched videos are stored in a LRU-managed

cache. Thereby, vFetch leverages that, e.g., music videos, are

likely to be repeatedly requested. vFetch, can be used, e.g., by

a smartphone, cloudlet, or a femto cell service, if the user trace

information is replaced by real user activities and the video

metadata database is replaced by direct calls to the YouTube

Data API. Depending on the use case, the download scheduler

has to be configured, e.g., depending on the storage resources

as well as connectivity and mobility pattern of the user.

VI. EVALUATION

Our evaluation consists of a trace-based simulation using

the data gathered within the scope of the presented user study.

Due to legal restrictions, we do not allow our app to download

videos although this is technically possible as shown in [20].

In the following, we evaluate vFetch’s performance based on

various parameter configurations.

A. Storage Size and Caching

In the following, we show the impact of different stor-

age sizes on vFetch’s F1-Measure as well as the caching

performance given by the Byte Hit Rate (BHR). We choose

storage sizes that resemble two cases: (i) vFetch running on

modern smartphones, i.e., storage sizes of {1, 5, 10, 50} GB,

and (ii) vFetch running on cloudlets and storage-equipped

home routers that have more storage available, e.g., 100 GB.

By choosing larger cache sizes, more prefetched videos can

be stored for a longer time.

Fig. 9 depicts the impact of different storage sizes on

vFetch’s performance. The first row shows the results for

videos from predictable sources, i.e., subscriptions, pseudo

subscriptions, and watch later list entries. The second row

shows the results considering all videos watched, also from

unpredictable sources. Furthermore, we distinguish between

prefetching and the case when prefetching is combined with

request-based caching, i.e., requested videos are placed in

an LRU cache additionally to the prefetched ones. In both

rows, we show the F1-measure and the Byte Hit Rate (BHR).

The F1-measure [21] is the harmonic mean of precision and

recall and a robust measure for the quality of the prefetching.

Fig. 9: Performance impact of storage size. top: videos

watched from predictable sources, bottom: all videos watched

Precision and recall are about the same for our evaluation, as

can be seen by the similarity between F1-measure and BHR,

since the BHR is the precision considering repeated requests.

From the first row of Fig. 9 it can be observed that given a

fixed storage size introducing caching to prefetching severely

decreases the F1-measure and the BHR for predictable videos.

Considering all requested videos, caching additionally to

prefetching increases the performance metrics by a factor of

2.8 on average. This finding shows that predictability contains

more valuable information, which is used by prefetching, than

the mere object requests, which drive the LRU cache. Overall,

for the mixture of predictable and ephemeral user interests, we

observe that the combination of prefetching and caching yield

the best results. Our insight here is that a differentiation based

on predictability of the user interests leads to an adapted use

of prefetching and caching.

Since the BHR is the precision of vFetch considering

repeated requests, it indicates the number of unnecessary

downloaded, i.e., never watched videos. In Fig. 9, the data

points comprising the 95% confidence intervals represent the

average BHR of each participant. In addition to the depicted

results, we also evaluated this configuration while omitting

pseudo subscriptions. The results significantly differ, i.e., the

median BHR was almost 0 as pseudo subscriptions are the

dominant source of videos for many participants. Summariz-

ing, vFetch outperforms existing prefetching mechanisms with

a BHR between 0.3% and 14% compared with ≤ 0.03% [11],

[16], [22] when applied to YouTube as shown in [11].



Fig. 10: Performance impact of watch history threshold

B. Watch History

The watch history is a list of videos the user has watched

in the past and can be defined as a time-to-live cache, i.e.,

the video records are refreshed upon request and remain

in this list for a maximum lifetime denoted watch history

threshold. By using this threshold, we seek to adapt to the

potentially changing request behavior of users, e.g., during

holidays or vacation. Furthermore, vFetch determines the

number of daily prefetches based on the watch history by

using the average number of requested videos per day. Hence,

if the user requests fewer videos, less videos are prefetched.

Fig. 10 depicts the influence of the watch history threshold

on vFetch’s F1-measure and Cache Hit Rate (CHR). Here, the

first column displays the results for 1GB cache size and the

second column the case of 50GB cache size. Additionally, both

cases: pure prefetching and request-based caching together

with prefetching are depicted. Here, we observe diminishing

Fig. 11: Share of fetched data watched and not watched

returns on the F1-measures and the cache hit rates when

increasing the watch history threshold. The results indicate

that there is no best value for all users; however, we would

suggest a window of two weeks to balance performance and

length of the watch history. Please note that for window sizes

≥ 2 weeks, prefetching surpasses request-based caching in

combination with prefetching considering both CHR and F1-

measure when benchmarking them against each other.

C. Storage Overhead
In Fig. 11 we depict the share of bytes fetched and watched

by a user, as well as, the prefetched and not watched bytes. A

value of 100% represents the overall bytes prefetched. Values

higher than 100% are possible when users repeatedly watch

the same video. It can be seen that the overhead in terms of

bytes from prefetched but not watched videos is below 80% for

half of the participants. As prefetching is usually performed

overnight, e.g., by a cloudlet or by a smartphone connected

to WiFi and the charger, we consider an overhead ≤ 80% as

reasonable for a prefetching system, i.e., 1
5 of prefetched bytes

are consumed. WiFi is about 23 times less power consuming

than LTE [23]. Hence, vFetch, with an average overhead of

80%, is about 4-times more energy efficient compared to

streaming over LTE. Note that vFetch has a low average

overhead of 70%, compared with 82% in case of CPSys [24].

VII. CONCLUSION AND FUTURE WORK

This work investigates the behavior of YouTube users par-

ticipating in a study over several months. We analyze the user

behavior along different axes such as the watched categories,

how often, and when the users watch YouTube videos. Further,

we show that using pseudo subscriptions as source of user

predictability results in a significant performance increase

compared to just using videos from subscribed channels and

entries of the YouTube watch later list. Based on the concluded

insights, we derived five requirements for a prefetching system

and presented vFetch, a novel prefetching system considering

user pseudo subscriptions and user channel affinity. Our trace-

based evaluation shows the sensitivity of vFetch to key param-

eters such as the watch history lifetime, different cache sizes,

and the performance impact of request caching in addition to

prefetching. vFetch achieves an average cache hit rate of 54%

on 50 GB storage size. We observe diverse results for different

users, indicating that prefetching is efficient for only a subset

of our participants, i.e., where predictability can be leveraged.

The average overhead of the prefetching system of 70% when

applied to all users still remains below the overhead of 82%

from the comparable related work in [24]. In future work,

we plan a machine learning-based extension of vFetch that is

able to identify, e.g., user topic interests and therefore is able

to increase the performance of vFetch.
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