
Control Plane Latency Reduction for Service
Chaining in Mobile Edge Computing System

Chi-Hsiang Hung, Yao-Chou Hsieh, and Li-Chun Wang
Institute of Electrical and Computer Engineering , National Chiao Tung University, Hsinchu, Taiwan

Email: hungch@g2.nctu.edu.tw, d408052003@hotmail.com.tw, lichun@g2.nctu.edu.tw

Abstract—Software-Defined Networking and Network
Function Virtualization technologies are utilized to construct
service chains cheaply and elastically. In Mobile Edge Computing
platform, cloud servers can be deployed near to base stations.
Migrating service functions of service chains to edge can reduce
network latency or save unnecessary bandwidth consumption
between edge and cloud datacenter. However, the control plane
latency of SDN/NFV Mobile Edge Computing Platform is
subject to the scalability of flow table in SDN switches due
to flow table overflow problem. In this paper, we proposed
Hash-based Group Management scheme to reduce the number
of maintained flow entries by assigning users into groups and
design a hash-based structure to efficiently maintain the group
information. In our simulation results, the proposed scheme can
reduce the number of maintain flow entries and table overflow
ratio to improve the control plane latency.

Keywords—SDN, NFV, Mobile Edge Computing, Service Chai-
ning

I. INTRODUCTION

Service Chaining [1] is an enabling technology for the flex-
ible management of specific service traffic, enforcing policies
along the flow route according to the service requirements. A
Service Chain (SC) is defined as steering of traffic through a
set of service functions (SFs) in a specific order. Software De-
fined Network (SDN) [2] and Network Function Virtualization
(NFV) [3] are technologies commonly used to realize service
chaining. Usually, the SDN will be implemented by a standard
called OpenFlow [4] which is managed by Open Networking
Foundation (ONF). With the SDN and NFV, operators can
easily build a customized SC according to different requests.

Mobile Edge Computing (MEC) [5], [6] is an emerging
technology that provides cloud and IT services within the close
proximity of mobile subscribers. It allows the availability of
the cloud servers inside or adjacent to the base station. As
services run close to end devices, it considerably can provide
lower latency, faster reaction, higher users Quality of Service
(QoS), and less congestion in other parts of the network.
Traditionally, mobile network operators deploy various SFs in
a main data center, which is called as core site, near to the core
network. However, in MEC environment, operators can deploy
light weight datacenters, which is called as edge site, near to
base stations. In a MEC system, each site has an independent
SDN controller and a cloud controller. By deploying SFs in
edge sites, operators can reduce the network latency or offload
the workload or bandwidth from core site. For migrating some
SFs from core site to edge site, the MEC system needs to

orchestrate multiple sites resources to provide an end-to-end
SC. It will increase network latency due to interactions of
control plane between multiple sites. In the point view of SDN
network in MEC, the network latency for control plane are
caused by the following three parts:

1) Path decision for SC and flow entry installation. For
a SC request, routing path according to the policies
needs to be transferred into flow entries and installed
in OpenFlow Switches (OFSs) distributed in edge site
and core site.

2) Information synchronization between multiple sites.
In order to serve an end-to-end SC request, information
of SFs between edge site and core site needs to be
synchronized.

3) Table overflow handling for OpenFlow switch. Mo-
dern commodity switches only accommodates a few
thousands of flow entries [7] using TCAM. When the
number of entries exceeds the size of flow table, the least
recently used entry will be removed. As a result, OFSs
will re-send Packet-In messages to do routing lookup
again by controller for the removed flow entry. It will
increase a lot of the network latency.

For each SC request in MEC system, it is necessary to
have a fast and efficient flow entry management mechanism
to mitigate unnecessary network latency in the control plane.
There are some works which are addressing about the issue
of reducing the number of flow entries for service chaining.
In the EnforSDN [8], if a SC which includes a firewall can
be bypassed after the first packet has been checked by this
firewall. Therefore, the routing path is decreased one hop to
reduce the number of flow entries in OFS. However, it is
only suitable for SCs that include firewall function. In the
LightChain [9], they optimize the placement of SFs in a SC
to reduce the number of flow entries by eliminating ping-pong
traffic in a data center. However, this approach is suitable
when the original SC path induces ping-pong traffic. Besides,
the optimization process will increase network latency in the
control plane. In the OpenSCaaS [10], they use a source MAC
address to encode a SC request. Users who require the same
type of SC will be given the same source MAC. Therefore,
users with same source MAC will use the same flow entries
and the total number of flow entries can be reduced. However,
when too many users are given the same source MAC and
served by the same server, the latency and packet drop rate

978-3-901882-98-2 c© 2017 IFIP



will increase due to the overloading of servers.
In order to reduce the control plane latency for service

chaining in MEC system, we focus on reducing number of flow
entries used in the system. In this paper, we proposed Hash-
based Group Management scheme (HGM) to manage the flow
entries for service chaining. We assign users who subscribe the
same SC and Service-Level-Agreement (SLA) into the same
group, and each group has a group id tagged on packets sent
from the group members. The OFSs can then match the group
id to decide routing path of the packets to reduce the total
number of flow entries. To efficiently maintain information
of all groups, we also proposed a hash-based group table to
reduce the computation time for assigning user into groups to
reduce the control plane latency.

The remainder of this paper is organized as follows: Section
II presents the overview of service chaining in MEC system.
Section III details the proposed Hash-based Group Manage-
ment (HGM). Section IV describes simulations and evaluation
for the HGM. Finally, we conclude the paper and suggest some
future research in Section V.

II. SYSTEM OVERVIEW

Fig 1 shows the architecture of our MEC system. Each UE
will connect to an edge site through LTE or WiFi. In each
site, we have a SDN controller, a data center, and our Hash-
based Group Management (HGM). In each data center, there
are various SFs that can be deployed for different SCs. HGM
is a SC manager which can select the corresponding SCs for
users according to the users’ demand and use SDN controller
to set the routing path of SC through REST API. In front of
the OFSs in edge site, there is also a classifier that can classify
the incoming flows into different group and tag group id on
packets. In this architecture, we assume that C is the set of
all kinds of SFs that can be deployed in core site. E is the
subset of C and is consisting of specific SFs that are able to
be deployed in each edge site with limited resources. Such
that, SFs of a SC for one user may be deployed in edge site
and/or core site. In our MEC system, when an edge site is not
able to provide all SFs of a SC, a query for the remaining SFs
will be passed to core site to fullfil the complete SC.

When UEs connect to the edge sites, they will subscribe
SCs with SLA like acceptable latency and required bandwidth.
Once the HGM receives the request of each UE, it will arrange
resources for deploying SCs. In order to reduce the number of
flow entries, HGM will assign users who subscribe the same
SC and latency into the same group. Each group will have a
group id tagged on the packets from group members. The id
is tagged on either VLAN or IP TOS field of a packet by the
classifier. The OFSs match the group id instead of MAC/IP
address to decide the path to reduce the number of maintained
flow entries. Besides, we also set a resource upper bound like
bandwidth or user number for each group to avoid overloading
of each SF. Once a group reaches its resource upperbound, new
group will be created for the new users.

To efficiently maintain the information of all groups, we use
a hash-based group table to reduce the computation time for

Fig. 1: The architecture of MEC system.

Fig. 2: Linear search v.s. Hash table

assigning user into a group, such as Fig 2 shows. In general,
information of groups will be maintained in a linear table.
However, when we need to search an available group, we
need to check each slot, which may increase the computation
time when the table size is large. Therefore, with a hash-based
structure, we can use a constant time for searching a group
regardless of table size.

III. PROPOSED HASH-BASED GROUP MANAGEMENT

In the proposed MEC system, each HGM maintains a Group
Table GT which is implemented as a hash table with a linked
list in each slot. Each node of the list records the information
of a group like group’s id GID, service chain type SC,
currently used bandwidth UBw, number of users UC, and the
information of group members UserSet. When mobile users
are online, they will send a SC request including service chain
type SCu, latency Lu, and bandwidth Bwu to HGM. Then
HGM will start Group Assignment function to assign user into
suitable group depending on users request. Since SFs of a SC
may distribute in edge and/or core site. The distribution of
SFs for request SCu can be classified in the following two
cases: (1) Edge site provides one or more SF of a SCu. In
this case, the users group will be assigned by the HGMedge,
and the group information will also be maintained at edge
site. (2) Edge cannot provide any SF of a SC. In this case,



the users group will be assigned by the HGMcore, and the
group information will also be maintained at core site.

A. Group Assignment in Edge

Algorithm 1 shows the group assignment procedure in edge
site. In this algorithm, if edge site cannot provide any SF of the
SCu, the request will be forwarding to the HGMcore. After
receiving the GID from core site, it will setup a bypass path
to core without going through any SF in edge site. However, if
edge can provide one or more SF of the SC, we can serve the
user in edge site. When user u is online, the HGMedge uses
SCu and Lu to generate hash index by using hash function.
With the index, the HGMedge can check whether a list of
groups in GT with the same SLA for SCu exists or not. If
the list exists, ten check the reminder resources of each group
in the list one by one. If the HGMedge can find a suitable
group to serve user, it will assign the user to this group and
update the group information. However, if the list is empty or
the reminder resources of all groups in the list are insufficient,
the HGMedge will create a new group for the user and insert
it to the head of the list. Once a new group is created, SFs
will be deployed on the servers. We will also setup a new SC
path in both edge site and core site and ask classifier to tag
GID into users packets.

Algorithm 1 Group Assignment in Edge
Require: SCu, Lu, Bwu, IPu
Ensure: GID
1: SCedge = SCu ∩ E;
2: SCcore = SCu − SCedge;
3: if SCedge == φ then
4: GIDedge = NULL;
5: SendRequestToCore(GIDedge, SCcore, Lu, Bwu, IPu);
6: GIDcore = ReceiveFromCore();
7: path = NULL;
8: InstallF lowEntry(path, GIDcore);
9: InstallTag(IPu, GIDcore);

10: return GIDcore;
11: end if
12: i = hash(SCu, Lu);
13: g = List head of GT [i];
14: if g 6= NULL then
15: if UBwg + Bwu ≤ MaxBwg and UCg + 1 ≤ MaxCg then
16: UBwg = UBwg + Bwu;
17: UCg = UCg + 1;
18: UserSetg = UserSetg ∪ IPu;
19: InstallTag(IPu,GIDg);
20: return GIDg;
21: end if
22: end if
23: j = CreateNewGroup(SCu, Lu, Bwu, IPu);
24: Insert j to the head of GT [i];
25: path = DeploySF (SCedge, GIDj);
26: InstallF lowEntry(path, GIDj);
27: SendRequestToCore(GIDj, SCcore, Lu, Bwu, IPu)
28: InstallTag(IPu,GIDj);
29: return GIDj;

B. Group Assignment in Core

In the core site, the HGMcore will execute Group As-
signment function when it receives requests from edge site.
Algorithm 2 shows the group assignment procedure in core
site. In this algorithm, if the request contains a GID, the
HGMcore just needs to deploy the SFs that edge site cannot

provide. Then it will setup the SC path in core site with the
GID. Otherwise, the HGMcore needs to assign the user into
groups maintained in core site or create a new group for user
and send the assigned GID back to edge site.

Algorithm 2 Group Assignment in Core
Require: GIDedge, SCcore, Lu, Bwu, IPu
Ensure: GIDcore
1: if GIDedge 6= NULL then
2: path = DeploySF (SCcore, GIDedge);
3: InstallF lowEntry(path, GIDedge);
4: return NULL;
5: end if
6: i = hash(SCcore, Lu);
7: g = List head of GT [i];
8: if g 6= NULL then
9: if UBwg + Bwu ≤ MaxBwg and UCg + 1 ≤ MaxCg then

10: UBwg = UBwg + Bwu;
11: UCg = UCg + 1;
12: UserSetg = UserSetg ∪ IPu;
13: return GIDg;
14: end if
15: end if
16: j = CreateNewGroup(SCcore, Lu, Bwu, IPu);
17: Insert j to the head of GT [i];
18: path = DeploySF (SCedge, GIDj);
19: InstallF lowEntry(path, GIDj);
20: return GIDj

IV. SIMULATION AND EVALUATION

We use Mininet [11] to simulate our MEC topology as Fig
1 shows. In this topology, there are three edge sites and a
core site. In each site, there is a Ryu controller with HGM,
two OFSs, and two servers. There is also a classifier in each
edge site. To simulate user traffic in the MEC system, we
generate 1∼5 flows with different SC requests randomly for
each user in the three edge sites. Table I shows the parameters
of the system setting in our simulation. In order to evaluate
our HGM, firstly we evaluate the computation time of HGM.
Secondly, we compare the table overflow ratio user-based and
group-based scheme. Finally, we evaluate the control plane
latency in our environment.

TABLE I: parameters in the simulation

number of flow entries/switch 8,000
number of SFs in edge site 2
number of SFs in core site 5
resource of a group 10 users and 1Gbps bandwidth
number of SFs/SC request 1∼5

SLA of a SC request 4 latency level
10∼50 Mbps bandwidth

In order to make the simulation environment closer to the
real network conditions, we deploy PC which running Ryu
controller and Pica8-3297 OFS to measure the latency for
flow entry installation, table miss handling. For cross site
communication of HGMs, we deploy 3 PCs which include
1 classifier and 2 Ryu controller with HGM. Table II shows
the results of the latency in the two testbeds. Then we will
apply the results to the subsequence simulation to evaluate
the performance of proposed MEC system.



TABLE II: latency of operations

operation delay (ms)
flow entry installation (table has capacity) 2.42
flow entry installation (table is full) 4.06
table miss handling 7.48
tag entry installation 1.44
communication between HGMs 0.221

A. Computation time of HGM

Here we compare two different data structures used to
maintain the group information. The first one is general linear-
based structure and the second one is the proposed hash-based
structure. In the linear-based structure, the system needs to
search an available group for a user by checking the records
one by one. The proposed hash-based structure needs only one
hash operation for checking whether the group information
exists or not. Fig 3 shows the comparison of computation
time of these two approaches. The linear-based approach is
susceptible to the increasing of the number of users. However,
the hash-based approach is relatively fast.

Fig. 3: Computation Time of HGM

B. Table overflow ratio

Fig 4 shows the table overflow ratio in core site. In the User-
based scheme, almost 1,500 users will make the capacity of
OFSs reach the upper bound. When new users keep entering
the system, the table overflow may occur, which means some
active entries will be replaced. However, in HGM scheme,
table overflow will not occur until there are more than 15,000
users. When the number of users are more than 25,000, the
table overflow ratio is less than 10% by using HGM. It’s more
scalable than User-based scheme.

Fig. 4: Table overflow ratio

C. Control plane latency
Fig 5 shows the average latency per flow for configuring

the routing path for each flow. In general User-based scheme,
for the first packet of each flow, we need to install the rules
related to the request. However, in HGM scheme, we only
need to install rules when a new group is created. Therefore,
the average latency for configuring a flow by using HGM is
close to 50% than User-based scheme when the number of
users is lower than 2,500. When the number of users is more
than 5,000, the table overflow ratio is growing up rapidly by
using User-based scheme. Table III shows the comparison of
latency per flow between the two schemes for the number of
users is more than 5,000. The results show that, the average
latency per flow by using HGM is 20% to 24% of User-based
scheme.

Fig. 5: Control plane latency of each flow

TABLE III: Comparison of latency per flow

#users User-based HGM Ratio
5,000 5.81 ms 1.42 ms 0.24x
10,000 6.71 ms 1.41 ms 0.21x
15,000 7.05 ms 1.42 ms 0.20x
20,000 7.23 ms 1.54 ms 0.21x
25,000 7.32 ms 1.78 ms 0.24x

V. CONCLUSION

In this paper, we designed HGM and distributed them into
each site to manage the service chaining for MEC system. The
HGM assigns users who subscribe the same SC and SLA into
the several groups with a group id to reduce the maintained
flow entries. The time complexity of group assignment is
reduced to a constant time by using hash-based group tables.
In our simulation results, the HGM can mitigate the table
overflow ratio significantly. Besides, the average latency for
each flow can be reduced 20% to 24% than using User-based
scheme when the number of user is more than 5,000. The
proposed HGM is efficient to reduce the network latency of
control plane in SDN/NFV-based MEC system.

In this paper, we focus on the evaluation of the proposed
HGM, therefore we consider that the resource is infinite in
edge sites. In the future, we will set a resource upper bound
in each edge site and adjust the number of edge sites of MEC
system to analysis the system scalability and the control lane
performance in core site.



REFERENCES

[1] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service Function Chaining in Next Generation Networks:
State of the Art and Research Challenges,” IEEE Communications
Magazine, vol. 55, no. 2, pp. 216–223, 2017.

[2] “The Software Define Network architecture overview Version 1.1.”
[Online]. Available: https://www.opennetworking.org

[3] “An Open Platform to Accelerate NFV.” [Online]. Available:
https://www.opnfv.org

[4] “The OpenFlow specification.” [Online]. Available:
https://www.archive.openflow.org/wp/documents.

[5] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci,
and T. Magedanz, “Mobile edge computing towards 5G: Vision, recent
progress, and open challenges,” China Communications, vol. 13, pp.
89–99, 2016.

[6] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in
10th IEEE International Conference on Intelligent Systems and Control
(ISCO), 2016, pp. 1–8.

[7] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Computer Networks,
vol. 71, pp. 1–30, 2014.

[8] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein, “En-
forSDN: Network policies enforcement with SDN,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2015, pp. 80–88.

[9] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimization
of VNF placement for service chaining in NFV,” in IEEE NetSoft
Conference and Workshops (NetSoft), 2016, pp. 33–37.

[10] W. Ding, W. Qi, J. Wang, and B. Chen, “OpenSCaaS: An Open Service
Chain as a Service Platform Toward the Integration of SDN and NFV,”
IEEE Network Magazine, vol. 29, pp. 30–35, 2015.

[11] “Mininet overview.” [Online]. Available:
https://www.mininet.org/overview.


