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Abstract—Despite the efforts made from both the research community
and the industry in inventing new methods to deal with distributed denial
of service attacks, they stay a major threat in the Internet network. Those
attacks are numerous, and can prevent, in most serious cases, the targeted
system from answering any request from its clients.

Detecting such attacks means dealing with several difficulties, such
as their distributed nature or the several evasions techniques available
to the attackers. The detection process has also a cost, which includes
both the resources needed to perform the detection and the work of the
network administrator.

In this paper we introduce AATAC (Autonomous Algorithm for Traffic
Anomaly Detection), an unsupervised DDoS detector that focuses on
reducing the computational resources needed to process the traffic. It
models the traffic using a set of regularly created snapshots. Each new
snapshot is compared to this model using a k-NN based measure to detect
significant deviations toward the usual traffic profile. Those snapshots
are also used to provide the network administrator with an explicit and
dynamic view of the traffic when an anomaly occurs.

Our evaluation shows that AATAC is able to efficiently process real
traces with low computational resources requirements, while achieving
an efficient detection producing a low number of false-positives.

I. INTRODUCTION

When considering network anomalies, one of the most concerning
problem stays Distributed Denial of Service (DDoS) attacks. Using
a set of compromised hosts all over the Internet, these attacks try
to prevent the victim servers from delivering a proper service by
sending illegitimate requests to the victim’s network. This exhausts
some of the victim’s routers or servers resources causing from small
disturbance of the victim’s operations to its total inability to handle
legitimate clients’ requests. With the multiplication of connected
devices and the emergence of IoT, these kind of attacks is an
increasing threat. Therefore, being able to prevent DDoS attacks is a
priority for numerous Internet stakeholders.

Dealing with anomalies in general is a costly process requiring,
inter alia, the expertise of a network administrator. As his time is
a valuable resource, he needs specific tools that enable a relevant
and fast decision-making, reducing his work as much as possible.
Thus, setting up, configuring and keeping up to date an anomaly
detector should be an easy task. On every-day operation, it should
be able to handle traffic anomalies as autonomously as possible,
while providing pertinent and accurate information to the network
administrator for the diagnosis phase. Finally, such detector needs
to be scalable towards the traffic bandwidth, enabling a real time
operation with a reasonable amount of allocated resources.

Adding to those problems, the DDoS detection needs specific
approaches able to tackle the following challenges:

o DDoS can harm a whole system really fast, including the DDoS
detection and mitigation services. Thus DDoS should be detected
as soon as possible to avoid irreversible damages.

o The detector should be able to process traffic in real-time even
under network saturation.

o Isolating the malicious traffic from the legitimate one is a
difficult task: first because the malicious packets overwhelms the
traffic, and secondly because the DDoS traffic —as it consists

in fake requests towards the victim network— resembles the
legitimate one.

« If the attacker uses IP spoofing, tracking the source of the attack
is difficult.

Despite the constant interest of the research community, no specific
detector emerged as a perfect or consensual solution to the DDoS
detection problem.

Our work was conducted in the context of the AATAC (Au-
tonomous Algorithm for Traffic Anomaly Detection) project that aims
at finding practical solutions to the DDoS detection problem. This
project is carried out in collaboration with Border 6, a software
editor that offers a BGP routing optimization solution. As their clients
regularly suffer from such attacks, Border 6 is naturally interested in
investigating new solutions to the DDoS detection and mitigation
problem.

In this paper, we introduce a new unsupervised anomaly detection
algorithm eponymously named AATAC. This detector specifically
focuses on DDoS attacks. It uses regularly taken traffic snapshots
to detect unexpected changes in the whole network traffic. AATAC
is an autonomous detector, able to detect anomalies as soon as they
occur while processing the traffic in real time with a low amount of
resources needed. It also produces a low number of false-positives
while having a good detection rate. More than that, the last created
snapshots can be plotted when an anomaly occurs. This set of
graphs provides a dynamic view of the traffic that helps the network
administrator decision making regarding the anomaly.

The rest of the paper is as follows: related works are presented in
section II. The AATAC algorithm is presented in section III while its
performances are evaluated in section IV. Section V concludes the
paper and considers future works.

II. RELATED WORKS

In an industrial context, autonomy is probably among the most im-
portant properties of a detector. For this reason, we present here sev-
eral related works from the least to the most autonomous approaches,
grouped into three categories. We first introduce several knowledge-
based approaches, which heavily rely on expert knowledge of existing
attacks. Other approaches based on the traffic properties statistical
analysis are then presented, followed by most recent approaches
based on machines learning techniques. We present here detectors
that are representative of approaches that are either well known, or
from recent state-of-the-art techniques. We focus on detectors that
have practical developments, i.e. that could be used in an industrial
context.

A. Knowledge-based

Also known as Misuse-based, the knowledge-based techniques rely
on knowledge gathered about seen anomalies. They thus provide
a detection focused on known attacks. Expert systems, signature
analysis and state transition analysis are common knowledge-based
approaches.



Gil and Poletto [1] presented the well known MULTOPS (MUIti-
Level Tree for Online Packet Statistics) detector. This approach
monitors several traffic characteristics in a tree-based structure,
where each node stores the packet rate statistics of a given subnet.
MULTOPS processing assumes that DDoS attacks produce unusual
imbalanced traffic flow. It thus detects bandwidth attacks by spotting
significant imbalance between incoming and outgoing packet rates.
MULTOPS needs few resources to operate, but outputs only the per-
subnet packets rate, a non-comprehensive information complicating
the diagnostic phase. Wang et al. [2] present a new way to model
DDoS attacks by using Augmented Attack Tree (AAT). This approach
models the attack goals (tree nodes) along with attack means (tree
branches), and detects a set of known types of DDoS. However,
it does not detect unknown attacks. FastNetMon [3] is an open-
source threshold-based detector that provides a practical solution to
the DDoS detection and mitigation. FastNetMon uses a set of counters
to detect abnormally high bandwidths or packet rates towards given
subnets. With few computational resources, FastNetMon generates
alarms with information on detected attacks, and can automatically
run a banning script. However it might fail in correctly segregating
the malicious traffic from the legitimate one.

In general, Knowledge-based techniques, despite producing a low
number of false-positives, need a lot of work from the network
administrator to keep the detection up to date with state-of-the-art
attacks. Indeed, either building new signatures or setting up a new
specialized detector for each new attack is a tedious task. Moreover,
having a detector (or a rule) dedicated to each attack might imply
high computational requirements when the number of attacks to be
detected increases.

B. Statistical

To overcome knowledge-based detectors limitations, researchers
proposed techniques based on anomaly detection. These detectors
autonomously monitor the patterns of the traffic and detect events
(flows, packets, etc...) that deviate from those usual patterns. The
most common approaches rely on statistical analysis.

Udhayan and Hamsapriya [4] introduce the statistical segregation
method (SMM). This method samples the flows in consecutive in-
tervals, compares the samples towards the attack state condition, and
sorts them according to the mean as a parameter. A final correlation
analysis is then performed to separate attack flows from the legitimate
ones. A flow-based detector is introduced in [5] which analyses the
fast entropy (modified version of the entropy) of requests per flow.
An adaptive threshold is finally computed to detect anomalies within
the traffic. The AFEA detector [6] is also based on similar techniques.
Ozcelik and Brooks [7] present a detector using the traffic headers
entropy post-processed with a wavelet filter and CUSUM to improve
the detection accuracy. The entropy, as a measure of the predictability
of the traffic features, as been commonly used to detect DDoS attacks.

C. Machine learning based

Various DDoS detectors proposed in the literature take advantage
of the recent emergence of machine learning techniques. Such tech-
niques are meant to autonomously extract metrics that encompass
the traffic characteristics, either from a labelled (semi-supervised
techniques) or an unlabelled traffic dataset (unsupervised techniques).
They usually provide more information than statistical techniques.

Supervised machine learning autonomously learn the traffic char-
acteristics using a hand-crafted labelled dataset, then detect deviation
toward the produced model while in operation. These approaches are
not truly autonomous, as they need to be re-trained every time the

traffic evolves. Such approaches can be based on Artificial Neural
Network [8], SVM [9] or decisions trees [10].

Most recent approaches use unsupervised learning techniques.
Based on the assumption that anomalies are rare events, they au-
tonomously build a model of the usual traffic and detect significant
deviations from this model. Consequently, these approaches do not
need any previous knowledge on the traffic characteristics, they are
thus flexible need few work from the network administrator. However,
they usually need a lot of computing power, as characterizing the
traffic without any previous knowledge is a difficult task.

For example, unsupervised Artificial Neural Network were widely
used for DDoS detection, as with [11], [12] or more recently [13].
Other unsupervised approaches might rely on Nearest-Neighbours
based techniques [14] or clustering [15]. The recent framework
STONE [16] provides both the DDoS detection and mitigation. To
model the traffic, STONE clusters arriving flows using their source
prefix. Some clusters properties are then registered and will be used
for the detection. STONE performs an efficient detection but relies
only over three traffic features, which is few to manually verify that
the detected behaviour is truly anomalous. Our previous detector
UNADA [17] or its more recent version ORUNADA [18] are based
on clustering. They achieve good detection results and provide the
network administrator with automatically created signatures of the
malicious traffic. Their autonomy makes them a good detector, but
their high computational power requirements does not make them
applicable in all situations.

1II. AATAC ALGORITHM

In this section we describe a new DDoS detector algorithm called
AATAC. AATAC intends to tackle the DDoS detection problem by
providing a solution balancing the detection cost with the compre-
hensiveness of the produced results.

AATAC was first built to limit the work of the network administra-
tor. It is an unsupervised detector assuming that DDoS significantly
impact the traffic statistical distributions when occurring. It inherently
needs no training data, requires few configuration and autonomously
adapts to the traffic shape changes. Moreover, when it raises an
alarm, AATAC also provides the network administrator with a set of
dynamic 2D plots representing multiple traffic feature distributions
or global values. This helps the anomaly diagnostic phase. Finally,
and as proved by our evaluation in section IV, AATAC performs an
efficient detection producing a low number of false-positives. This
avoids wasting the network administrator’s time with false alarms.

A. Overview

As illustrated by Figure 1, AATAC processing is split into two
components. A first part, the continuous processing quickly handles
network instances, it updates a set of automatically decreasing
densities, most of them beign organized as histograms characterizing
some traffic feature distribution (IP addresses, ports...). The second
part, the discrete processing, builds at a regular interval a relevant
short-time characterization of the traffic called traffic snapshot. Each
traffic snapshot is composed of a set F' of snapshot features that
can be divided into two subsets:

Fliistributions Whose features are histogram prototypes, built from
the densities organized as histograms and characterizing a
traffic feature distribution,

Fyi0ba1 whose features use a single counter value, and characterize
a global property of the traffic.

The AATAC separation into two parts makes it able to process
the traffic in an almost linear time. It makes it robust to sudden



traffic increases and reduces its computational needs when dealing
with larger bandwidths.

B. Online processing

The continuous part of the algorithm uses as input a per-flow
aggregated data. A flow is usually defined as a 5-tuple: IP source
address, IP destination address, source port, destination port, protocol.
Each flow is associated with several characteristics such as its average
packet size, its number of packets or even its number of SYN packets.
Those characteristics are called flow features. Each flow should be
associated with a timestamp set to either the beginning or the end of
the flow.

AATAC uses histograms to model a flow feature distribution. Given
a flow feature ¢, an histogram assigns a probability to each value that
¢ may take within its set of possible values X;. Each histogram is
used to produce a single snapshot feature f € Fyistributions-

The histogram construction, and its processing, was originally
inspired by D-Stream [19], a grid-based stream clustering algorithm.
Each instance = added to the model is assigned a density coefficient
D(z,t) that decreases when x ages. If the instance arrived at a time
tc, its current density coefficient at a time ¢ is:

D(z,t) = wy A7 ' (L

where A € (0,1). The w, variable is a weight assigned to x. X is
a parameter of the algorithm called decay factor, which illustrates
how fast the density coefficient of an instance decreases over time.

The input space is then divided into a set of equally-sized parti-
tions, also called grids, that can be assimilated to an histogram bins.
For each grid g, let us consider the set E(g,t) of all instances that
fell into this grid at a given time ¢. Each grid g is assigned a density
value D(g,t) calculated as follow:

D(g,t) = ZweE(g,t) D(z,t) )

As the number of instances constantly increases over time, it is
not conceivable to store all records to calculate the value of D(g,t).
Luckily, this value can be calculated in an incremental fashion: Let
us consider a grid g that received a last instance at a time ¢; with a
corresponding density D(g, ¢;). Whenever g receives a next instance
at a time t,,t, > t;, the new density of g can be calculated as
follows:

D(g,tn) = A" " D(g, t1) + wn 3

with w,, the weight of the new instance. Therefore, keeping up-
to-date the density of a grid needs only to store two values: a last
update timestamp t; and the corresponding density D(g,t;). The
instance weight w,, parameter is set to 1 when considering a per-
flow distribution, while multiplied by the number of packets in the
flow for a per-packets distribution.

Considering a time ¢t > t;, if g did no received any instance
between ¢t and t;, its density at ¢ is:

D(g,t) = X"""D(g,t1) 4)

Similarly, the traffic-wide features (in Fgiobq1) are processed in a
similar manner. A unique density is assigned to each feature which
is updated as a grid that would receive all instances. The weight
parameter w, depends here on the feature. For example, the density
of the rotal SYN packets feature is weighted using the number of
SYN packets in an arriving flow.

C. Offline processing

The discrete processing is applied every AT seconds. It is split
into three parts: the continuous processing data structure update, the
snapshot creation and the anomaly detection.

1) Online data structure update: As the continuous processing
data structure is required to be up-to-date when the discrete process-
ing is performed, the grids’ densities must be updated. This is done
applying equation 4 with ¢ = tsnapshot, the snapshot creation date.
The densities of the traffic-wide features are updated in a similar
manner.

To avoid the number of grids in a given feature space to overgrow,
AATAC performs a dynamic resource allocation. This implies that
grids having a density lower than a given value D; should be
removed from the model. Indeed, these sparse grids (having a low
density) haven’t received instances recently, and are thus no more
representative in a picture of the current traffic.

2) Snapshot creation: To reduce the complexity of the anomaly
detection phase and keep light the model of the traffic, AATAC
records a simplified version of each histogram. Those are called
histogram prototype, and are made only from grids having a density
over a threshold D,,. These grids, said dense, are selected because
they provide much more information on the traffic than the low-
density grids, despite needing as much memory to be characterized.
These histogram prototypes are created by gathering adjacent dense
grids into clusters. To produce the histogram prototype, our algorithm
uses for each cluster: the average density of its grids (avg.) and
its boundaries (min. and max.). The histogram prototype, which
is basically a piecewise linear curve, includes, for each cluster, the
following set of points: (mine,0), (minc, avge), (maz., avg.) and
(maz.,0). Grids that have a density between D; and D, are called
transitional.

The final snapshot is created storing the produced histogram
prototypes (in Fygistributions) along with the current values (updated)
of the traffic-wide features densities (in Fyopqi). They constitute the
set of snapshot features. A snapshot is noted S, and its value for
feature f is noted S(f).

3) Anomaly detection: The anomaly detection phase uses the
set Ly of the last N snapshots created by the previous phase.
AATAC applies a per-snapshot feature k-nearest neighbour (k-NN)
based technique [20]. Siqs¢ being the last snapshot added to the
model, k-NN searches for Sk, its k nearest neighbour in the set Ly
considering a feature f. The distance between Sk(f) and Siast(f)
is an estimation of the local density around Sjqs: considering the
snapshot feature f. This value is used as an outlier score, illustrating
how unlikely is the Siqs:(f) value.

The distance function used for features from Fyopq; is the absolute
value of the numerical difference (the one-dimensional Euclidean
distance). For features into Flgistributions, and because histogram
prototypes are basically piecewise linear curves, AATAC uses the
area between the two curves as a distance function. The distances
between the last N snapshots are stored in an incrementally updated
distance matrix.

Finally, AATAC applies a per-feature standard normalization con-
sidering the set L. The output value is then used as a score, which
is compared towards a threshold Tanomaty. If the score goes over
this threshold, AATAC considers that the last produced snapshot is
anomalous and raises an alarm.

D. Selecting appropriate parameters for AATAC

The decay factor A parameter characterizes how fast the grid
densities decreases over time, it thus impacts the similarity between
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Fig. 1: AATAC architecture

two snapshots: the density of g in a given snapshot is always under the
influence of previously stored densities. High values of A can produce
strongly correlated snapshots (reducing the information provided by
each snapshot) but low values may also provide a too short-term view
of the traffic. We call R = A*7 the ratio corresponding to how much
the densities of a given snapshot weight in those of the following one.
As this ratio is more meaningful than the lambda parameter, it can
thus be used to fix lambda with A = “V/R.

Both R, N and AT parameters have a deep impact on the temporal
representation of the traffic. While larger values for any of those
parameters imply a less sensitive detection to short-term changes
into the traffic, those parameters should be balanced considering other
criteria. Reducing AT reduces the time needed to detect an anomaly,
but triggers the discrete treatment more often. Increasing N provides
a longer term view of the traffic but increases the computational time
needed for the discrete processing. Finally, R acts as an adjustment
parameter, impacting how the traffic representation of a snapshot
is instantaneous. The best parameters are highly dependant on the
monitored traffic, and should be balanced according to the required
sensitivity, specificity and computational resources available. These
three parameters should be experimentally set before Tanomaiy,
which is used as a final adjustment to the sensitivity of AATAC.

The D; and D,, values should by fixed independently from one
snapshot feature to another, as they may depend on the weight
assigned to added instances. To set them, we use the average density
in an histogram while operating on a sample traffic. Indeed, we
consider that a density is pertinent enough if it represents, at least, a
significant part of the summed densities. As D; is only used to avoid
memory leaks from the multiplication of unused grids, and because
densities decreases in an exponential manner, D; can be chosen very
small. Thus, a value around 0.01% of the average density is a good
choice. The D, threshold is more difficult to fix. It is used to select
dense enough grids to be stored into the snapshot. We empirically
fix this value around 5% of the average density.

As the k parameter (for the k-NN-based score), corresponds to
the number of nearest neighbours used to estimate a local density,

it is thus to be considered along with NV, the total number of
snapshots kept for the k-NN-based analysis. k also impacts the
algorithm sensitivity. Thus fixing its value should be done considering
previously selected parameters. There is no strict method to fix k but
it can be fixed from experimentations on a training dataset. However
a common rule of thumb is to fix k = %\/N , which empirically
achieved good results.

E. Alarm analysis

An advantage of AATAC is its capability to produce a graphical
representation of each snapshot. Indeed, histogram prototypes can
be plotted as curves, and global densities as a simple dot. Thus,
whenever AATAC generates an alarm, the last /N snapshots can be
plotted as a sequence of graphs, providing a dynamic view of the
traffic properties when an anomaly occurs. They can be plotted along
with the outlier score to give a better understanding of the occurring
anomaly. During our evaluation, we were able to produce videos of
the traffic anomalies [21].

IV. PERFORMANCE ANALYSIS

To evaluate its performances, we implemented AATAC in C. It
uses the libpcap [22] capture format as input and performs a flow
extraction using tumbling window. The timestamp associated to each
flow is set to the date of each window end. Experimentations are
run over a single machine powered by a 3.00GHz Intel Xeon CPU
(E5-2623 v3). It features 8 cores (16 with hyper-threading), but our
implementation does not fully benefit from this feature. Indeed, only
the discrete part of AATAC is per-dimension parallelized.

Our evaluation discusses AATAC properties in terms of detection
accuracy and computational resource consumption, depending on its
parameters. Obtained results are then compared with FastNetMon and
ORUNADA.

A. Detection accuracy

1) Evaluation methodology: To evaluate our algorithm ability
to efficiently detect DDoS attacks, we needed a labelled dataset



containing various types of DDoS attacks within realistic and up-
to-date traces. Unfortunately, we were not able to find a publicly
available dataset meeting those criteria. Thus, in the context of
the ONTIC project, we created a set of 13 synthetic attacks in an
emulated network. Each of these attacks was inserted in a 1 hour
long subset of the ONTS dataset, which consists in five months of
anonymized and payload-free traces, captured at the entrance of a
large cloud service provider. These traces are publicly available on
the ONTIC project website [23]. The dataset including the generated
attacks is called synthONTS, it is still a work in progress as it should
be completed with other attacks.

To perform the evaluation, we run AATAC over each trace included
into the synthONTS dataset. This evaluation over labelled traces
allows an estimation of several characteristics of the detector, in terms
of accuracy, such as the true-positive rate (T PR, the probability that
there is a real anomaly when the detector raises an alarm) and the
false-positive rate (FPR, the probability that the detector raises an
alarm while there is no anomaly).

The most common tool to evaluate an intrusion detection system
accuracy is the Receiver Operating Characteristic (ROC) curve. This
curve plots the TPR against the corresponding F'PR for a given
IDS. Thus, an ideal detector should be plotted at (0, 1). AATAC’s
ROC curves are plotted varying the detection threshold Tanomaty. To
evaluate a detector operation point independently from the threshold
value, the Area Under the ROC Curve (AUC) is used. A perfect
detector has AUC = 1 while a random one has AUC = 0.5.

Despite providing interesting and readable results, ROC curves
applied to synthONTS suffer from the base-rate fallacy [24]. This
is a common bias that happens when considering such rates without
considering the base-rate, i.e. the probability that an anomalous event
occurs. To overcome this problem, we complete our ROC-based
evaluation with another evaluation method from Nasr et al. [25].
This method uses the positive predictive value (also known as
Bayesian Detection rate) which corresponds to the probability of an
intrusion given that the IDS raised an alarms. From the result of an
experimentation, it can be computed as follows:

Number of true-positives

PPV =
Number of positives

(&)

This value is plotted against the corresponding false-positive rate,
constituting the actual IDS operation curve. This curve is compared
to the zero reference curve (ZRC') which corresponds to the trade-
off between PPV and the false-positive rate F'PR. Concretely, the
various PPV values for the ZRC are calculated considering a
detector that detects all anomalies (TPR = 1), but that generates
an increasing number of false-positives. As the PPV calculation
encompasses the base-rate, this method does not suffer from the base-
rate fallacy.

The accuracy of the detector is finally estimated using the detector
intrusion detection effectiveness (Erp € [07 1]), which is the normal-
ized variance between the actual IDS operation curve and the ZRC.
It is calculated as follows:

Trp

! PPVipda) (6)
0

Trp

PPVzgrc da
0

Trp
( PPVzrco da —
0

Eip =

Where TFp is the maximum acceptable false-positive rate exhib-
ited by the IDS. The lower E;p, the more effective the detector.

2) Evaluation results: In our experimentations, we tested several
values for R: 1%, 2%, 5%, 10%, 50% and 90%, and several values

N

R 100 500 1000

0.01 0.9211 0.9668 0.9722
0.02 0.9202 0.9666 0.9721
0.05 0.9197 0.9598 0.9716
0.10 0.9181 0.9595 0.9717
0.50 0.8860 0.9487 0.9639
0.90 0.9083 0.9445 0.9443

TABLE I: AUC for multiple values for R and N

for N: 100, 500, 1000. As the traces are quite short, AT is set to
1 second to have enough recorded snapshots to train AATAC. The
different ROC curves obtained are pictured in Figure 2. Despite that
it seems that we obtain better results with lower values of R, they
tend to produce a lot of false-positives. However, as we can see
from the different operation points, the best point appears to be with
R = 0.90, N = 500 and a threshold Tanomaty = 3.0. For this
operation point, we have TPR = 0.83 and FPR = 0.0013. While
the TPR is relatively low, due to the fact that the dataset contains a
low number of anomalies, the F'PR in this situation is very good.

The AUC values, as depicted in table I, confirms those preliminary
results: the higher values for AUC correspond to the lowest values
for R and the highest for N. However, the IDS operation curve (for
N = 500) depicted by Figure 3 shows different results than the ROC
curves. Indeed, the base-rate fallacy is removed from this evaluation,
showing that, considering a low enough false-positive rate, a higher
value of R corresponds to more efficient detection. The calculated
instruction detection efficiency is depicted in Table II (values where
Erp = 1.0 stands for conditions for which there were no valid
PPV for any FPR < Trp). For any Trp € {1072,107%,107*},
AATAC appears more efficient with higher values of R. Increasing
N still improves the detection efficiency.

Needing R = 90% is quite high (as a reminder, this means that
a snapshot includes 90% from the previous one in its densities).
However, this can be explained by the fact that we used a short
snapshot interval time AT. Indeed, this large value of R makes the
detector less sensitive to short-term variations, which reduces the
number of generated false-positives.

B. Real time

To estimate the capability of AATAC to process the traffic in
real-time, we ran another evaluation. In the context of the Border
6/LAAS-CNRS project, we had the opportunity to capture the traffic
of a company whose main activity consists in hosting online sales
websites. The traffic is 3 Gbit/s and 440.000 pkt/s average. This
evaluation was ran over one day of network traces containing the
beginning of a DDoS attack (the rest was removed by the mitigation
system of the company). As they are the only parameters that may
significantly impact the processing time, we chose to vary only
AT € {1s,5s,10s,30s,1min} and N € {100, 1000,5000} for
our evaluation.

As we run our experimentations from recorded traffic, we use
the processing time as our evaluation measure. The continuous and
discrete part of the algorithm are distinctly considered:

o For the continuous part we measure the ratio between the
processing time over the corresponding traces interval treated,

« For the discrete time we measure the time needed to produce
a single snapshot, independently of how many of them were
created.

The results with 18 features are depicted in table III. The values

are averaged within the different value of AT. From those results
we can see that even with relatively low computer resources, our
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0.05/0.4278 |0.1616 |0.1587 [0.5602 |0.1174 |0.1088 |1.0 0.0201 |0.0185 % Ao
0.10 (| 0.4414 |0.1599 |0.1593 |0.5602 [0.1140 [0.1073 | 1.0 0.0209 [0.0178 o1 Zor0 Reference Cuweﬁ;%g‘)’ e
0.50 (| 0.4372 |0.1537 |0.1465 |0.5930 [0.0989 [0.0796 |1.0 0.0218 |0.0205 ' 105 1o 103 102
0.901|0.4636 {0.0790 [0.1114 |0.6973 |0.0586 |0.0843 |1.0 0.0158 |0.0216 False positive rate

TABLE II: Intrusion Detection Effectiveness for multiple values of N, Trp and R

N \ 100 1000 5000

Continuous (maximum for s of trafic) 0.80 0.79 0.89
Continuous (average for 1s of trafic) 0.21 0.25 0.26
Discrete | 0.028 0.027 0.033

TABLE III: Processing time in seconds

implementation of AATAC is able to handle the traffic in real time.
Even in stress situations, the detector still takes less than one second
to treat one second of traffic. Thanks to the simplicity of the discrete
processing, the time needed to produce a snapshot and compare
it to the N last produced ones appears negligible (around 30us),
independently of V.

C. Comparative evaluation with other detectors

For a fair evaluation of AATAC, we compared the obtained
results over synthONTS with the best performances obtained by
two other detectors: FastNetMon [3] and ORUNADA [18]. While
those detectors are respectively representative of knowledge-based
and unsupervised detectors, they were also available to us.

In terms of detection accuracy, ORUNADA in its best operation
point is able to detect all DDoS attacks included into the syn-
thONTS dataset, but also detects other kinds of anomalies that were
already present in the original traces. However, in this configuration,
ORUNADA needs a lot of resources to perform the detection: it needs
220% of one CPU computing power to operate in real time.

FastNetMon manages to operate a real time detection on the traffic
with two cores at 60% load. In its best operating point, it detects 6
out of 13 DDoS attacks, and produces one false-positive.

In its best operation point, mentioned earlier, AATAC can operate
at 21% load on a single core. Those results confirms that AATAC
can operate with few resources, while still providing an accurate
detection.

V. CONCLUSION AND FUTURE WORKS

In this paper we introduced AATAC, a new anomaly detector
that focuses on DDoS attacks. We proposed a detector divided into

Fig. 3: IDS operation curves for
N =500 and several R values

two components, one that processes the traffic in linear time while
a second one performs the traffic analysis and anomaly detection.
As showed in our evaluation, the several algorithmic optimizations
make AATAC able to process actual traffic in real time with few
computational resources. That being said, AATAC still performs
an efficient detection, producing a low number of false-positives.
Also, AATAC provides the administrator with pertinent information
on the detected anomalies. Its unsupervised nature makes it an
autonomous detector, needing little configuration and maintenance
to be operational.

The short duration of the discrete treatment makes us consider
running a more complex analysis over the snapshots to provide the
administrator with more information over detected anomalies. This
treatment could include a correlation analysis of the several features
scores. A final goal should be to suggest the network administrator
with automatically generated filtering rules.

As a request from our collaborators from Border 6 and regarding
implementation concerns, we also consider evaluating AATAC over
sampled traces. We plan to evaluate the impact of sampling on both
the computational resource consumption and the detection accuracy.
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