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Abstract—Network Functions Virtualization (NFV) allows ser-
vice providers to deliver new services to their customers more
quickly by adopting software centric network functions imple-
mentation over commercial, off-the-shelf hardwares. IP Mul-
timedia Subsystem (IMS) which is one of the most complex
NFV instances requires extremely low end-to-end latency (up
to 40 msec), and demands system availability as high as five
nines. We discover that highly modular 3GPP standardized IMS
network functions implementation over virtualized platform (1)
incurs latencies, and (2) does not tolerate faults. NFV-based IMS
modules incur high latencies by creating a feedback loop among
each other while executing delay sensitive data-plane traffic.
These IMS modules are also susceptible to failures, causing the
control-plane to terminate the application session while keeping
the data-plane to forward data packets. To address these issues,
we propose to refactor network function modules. We reduce
latencies by pipelining the communication between IMS modules,
and achieve fault tolerance by reconfiguring their neighboring
modules. We build our system prototype of open source 3GPP
compliant IMS over OpenStack platform. Our results show that
our scheme reduces latencies and failure recovery time upto 12X
and 10X, respectively, when compared to the stat-of-the-art 3GPP
compliant virtualized IMS implementation.

I. INTRODUCTION

To meet exponentially increasing service demands and to
even launch a new network service, a service provider of-
ten requires installing a new dedicated appliance that brings
complexity of integrating and deploying it in a network.
Moreover, purpose-built appliances rapidly reach end of life
because dedicated hardwares life cycles are becoming shorter
as innovation accelerates, reducing the return on investment of
deploying new services [1]. Network Functions Virtualization
(NFV) addresses these problems by implementing network
functions (NFs) in a software that can run on general-purpose
hardware servers [2]. IMS that provides multimedia services
(i.e. voice, interactive video streaming, and rich communica-
tion services, etc.) to LTE subscribers is the leading use case
of carrier network virtualization [3] [4]. IMS-NFV has been
prototyped by a number network operators and vendors. It
has been reported that their NFV implementations incur high
packet processing latencies and provide weak fault tolerance
[5]. Their solutions to reduce latencies [6] and improve fault
tolerance [5] are generic and do not incorporate IMS domain-
specific knowledge.

In this paper, we refer to IMS specifications as standardized
by 3GPP [7] and study how well standardized IMS procedures
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tolerate faults and reduce media-plane latencies over virtual-
ized platforms. This helps to highlight domain-specific issues
that all vendors’ virtualized IMS (vVIMS) implementation (be-
ing 3GPP compliant) may face.

First, we find that IMS NFs are highly modular where one NF
has many functional modules. During media plane processing,
different modules implemented in three different NFs interact
with each other in a loop; where a module in one NF uses
delegation model to delegate the processing of data packets to
a module in different NF, while retaining the overall control to
itself. Similarly, policies are defined at a module in one NF,
but are enforced at a module in different NF. As a result,
a loop is created between processor, controller and policy
modules, all residing in different NFs. Some of these modules
require realtime packet processing behavior to update control
information and policies. For example, a controller module
requires certain information, such as available bandwidth and
packets arrival rate, from a processor module to adjust voice
codec [8]. This real-time interaction between controller and
processor modules result in packet processing latencies.
Second, our study reveals that during media session setup,
both control and data planes create respective device session
states and transition from one state to the other as a call
progresses. Device states at control and data planes must
remain synchronized during call life cycle. However, we
discover that a particular module failure causes device states
to be desynchronized; the control-plane terminates the call but
data-plane keeps device state as Connected. The hanging state
machine phenomenon emerges when control-plane detects the
failure and changes device state to Morgue before terminating
the control-plane connection; whereas, the failure goes unde-
tected at data-plane that keeps receiving downlink data packets
(whose control-plane connection is aborted).

To address these issues, we propose to refactor IMS NFs
modules by (1) pipelining data packets processing and fetching
its control instructions, and (2) reconfiguring modules to
recover from a failure. To reduce media plane latencies, our
design predicts future packets and prefetches control instruc-
tions. Once future packets arrive, these control instructions are
used to steer media plane execution. For prediction, we use
exponential smoothing model [9] that weighs past observations
using exponentially decreasing weights, i.e. recent observa-
tions are given relatively more weight in forecasting than the
older observations. Because control instructions remain same
for a range of metadata values (that represent media behavior),
our design fetches accurate future control instruction even in



the presence of small prediction errors.

To improve fault tolerance, our design provides configurations
for each module during the system setup phase by adding
the back-up paths to their one-hop neighboring module. At
runtime, a neighboring module detects the module failure and
assumes the role of failed module by loading its execution
logic as provided in the configurations. This neighboring mod-
ule then connects with rest of the failed module’s neighbors
through a back-up link and resumes failed operation.

We evaluate our design and gather results from our 3GPP
compliant OpenIMS [10] implementation over Openstack [11].
Our results show that (1) our system reduces media latencies
upto 12X, and (2) resumes failed operation within 2.5 seconds,
which is 10X better than current state-of-the-art vIMS design.

II. IMS BACKGROUND

LTE provides best effort service to the users, with no
guarantee on the amount of bandwidth a user gets for a con-
nection and the delay experienced by the packets. Therefore,
network operators implement IP Multimedia Subsystem (IMS)
to provide guaranteed real-time multimedia services in their
LTE network. IMS is an architectural framework for delivering
IP multimedia services, such as Voice over LTE (VoLTE),
Video over LTE (VILTE), software as a service (SaaS), social
sites, navigation, and many more.

IMS Architecture: IMS operations are categorized into
control-plane and data-plane operations, as shown in Fig. 1.
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Figure 1: Standardized IMS architecture: An overview

Control-Plane supports media sessions control through Call
Session Control Function (CSCF) NFs, and Application Server
(AS) NF. The CSCF performs all the signaling operations,
manages Session Initiation Protocol (SIP) sessions and coor-
dinates with other NFs for session control, service control and
resource allocation. It consists of two main NFs: the Proxy-
CSCF (P-CSCF) and Serving-CSCF (S-CSCF). The AS, on
the other hand, implements multimedia execution logic and
policies, and coordinates with both CSCFs and data-plane NFs.
Data-Plane includes media-gateway NFs that process and
store data, and generate services for the subscribers. Once
user session has been established, the user data-plane traffic
is sent to Media Resource Function Processor (MRFP). The
MRFP connects LTE core domain (via PDN gateway - PGW)
with IMS domain for multimedia service and converts between
different transmission and coding techniques as controlled
by Media Resource Function Controller (MRFC). Moreover,
MREFC employs monitoring schemes to determine policy rules
in real-time.

IMS NFs are highly modular where different modules handle
different functionality such as execution logic, processing,
policy, security, session states, resource control and more. Fig.
1 shows few modules (rectangular shaped) implemented within
different NFs (rounded rectangular shaped).

III. MIGRATING CARRIER GRADE IMS 1O NFV

Network equipment vendors have spent decades understand-
ing telecom requirements for the high availability, low latency
and security of different types of network functions. They have
crafted solutions to these functions’ mission-critical demands
into their network equipment, with both hardware and software
elements within vendor appliances playing a part in meeting
carrier-grade requirements. Examples include Ericsson’s Blade
Systems (EBS) [12] and Alcatel-Lucent’s Element Manage-
ment System (EMS) [13]. These systems continue to provide
the required functioning despite occasional internal compo-
nents and modules failures, either transient or permanent.
Their software designs, such as Ericsson’s ERLANG [12] and
Alcatel-Lucent’s NVP [14], ensure redundancy, both for error
detection and error recovery.

However, recently, the concept of Network Function Vir-
tualization (NFV) emerges that aims in replacing dedicated
network appliances — such as network processing functions
and gateways — with software running on commercial off-the-
shelf servers. NFV has been keenly followed by the telecom
industry and its proof of concept implementations are already
in process [3] [15]. Most telecom operators are considering to
support their IP Multimedia Subsystem (IMS) implementation
over NFV [4] [16]. Operators can benefit from virtualized
IMS (vIMS) implementation; where they can quickly scale
up virtualized NFs (VNFs) to support growing demand of
multimedia-rich applications and services (e.g. VOLTE and
ViLTE) by using low cost commodity servers.

These multimedia services have stringent requirements on
latency (end-to-end latency goes as low as 40 msec [17])
and fault tolerance (operator networks want to achieve 5
nines availability). Telecom vendors and operators have in-
deed faced a lot of challenges in reducing latencies and
achieving fault tolerance. Startus Technologies warn that in
a virtualized environment, transparent fault tolerance hasn’t
been possible, making full-blown NFV a risky proposition for
telecom operators [5]. They provide Stratus solution in which
an application virtually runs on secondary server while it is
running on primary server. In case of failure, the application
transparently continues to run on the secondary server, with
the same state as the primary application. Juniper introduces
the concept of virtual reliability [18]. Their solution monitors
the health and performance of virtualized network objects
to detect and isolate faults. To address the latency, Ericsson
proposes the concept of Network Slicing, in which the network
is sliced to meet traffic characteristics [6]. Resources for
the network slices can be set up based on various service
characteristics e.g. bandwidth demand, latency demand etc.
Huawei introduces traffic scheduling management technique
to reduces incoming/outgoing messages queue [19].
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Figure 2: Even under the moderate call rate, the packets latencies are beyond acceptable
value. These latencies exponentially grow by adding fewer number of more calls and
potentially clog the whole data-plane.

However, all above solutions are generic and may fail when
domain-specific issues lead to higher latency and failures. This
motivates us to study 3GPP standardized IMS specifications
and to discuss how well IMS standards handle latency and fault
tolerance requirements. Moreover, our study is also useful to
vIMS community in general. This is because IMS is 3GPP
standardized and vendors and operators vIMS implementation
must comply the standardized specifications.

IV. 3GPP STANDARDIZED IMS

The service requirements, architecture and protocol func-
tionalities of IMS are standardized by 3GPP. The 3GPP
standard specifications ensure that the device and IMS network
elements comply to established procedures for their control
and user plane functionalities. These specifications describe
different IMS functions and their implementation framework.
These include IMS access network [20], core network [21],
call control functions [22], application functions [23], media
functions [24], charging function [25], IMS interactions with
circuit switched network [26], IMS security [27] and many
more [7].

In the absence of vendor specific mechanisms, IMS NFV
implementation relies on 3GPP standardized procedures to
meet multimedia traffic requirements and to provide IMS fault
tolerance. We put forward two simple questions. First, how
well 3GPP standardized procedures meet multimedia quality
of service (QoS) requirements in vIMS? and (2) how quickly
these procedures recover VIMS failure? To find answers to
these two questions, we prototype open source 3GPP compli-
ant vIMS implementation by making significant changes into
OpenIMS [10] platform. We develop various software modules
as described by 3GPP IMS specifications [7] and observe these
modules’ interaction with each other for on-going media flow.

A. Media-plane latencies exponentially increase with call rate

In reality, LTE network operators receive hundreds of thou-
sands of multimedia requests (including VoLTE calls) per
second [28]. Each of these media requests has stringent latency
requirement as defined by LTE standard (refer to Table 6.1.7:
Standardized QCI characteristics in [17]). For example, voice,
video, push to talk voice, and IMS signaling have latency
bounds of 100 msec; whereas interactive gaming and mission
critical jobs have latency bounds of 50 msec and 60 msec,
respectively. To test how well standardized implementation of
vIMS meets latency requirements, we launched simultaneous
call requests by varying call rate from 2 calls per second
to 300 calls per second. We find that media-plane latencies
significantly rise as we add moderate number of simultaneous
calls into the vVIMS system. Fig. 2(left) shows that the packets

delay remains under 30 msec for first 100 calls per second.
The latency doubles to 60 msec when we add as few as 25
more simultaneous calls; and reaches upto upper bound of
VOLTE call’s acceptable value (100 msec) for only 180 calls
per second. The delay increases up to 4 times of VOLTE call’s
acceptable value (400 msec) by adding 0.5 times the existing
number of calls (270 calls/sec). In our experiment, we did not
terminate the already established calls because in reality IMS
system should accept more number of calls on top of already
on-going calls. VIMS provides seamless voice service under
15,000 active calls in total, as shown in Fig. 2(right).
Impact: This experiment explains that state-of-the-art vIMS
design fails to meet QoS requirements on media traffic in
operational LTE network. Therefore, operators are required to
install many more NFs instances to meet current subscribers
demand. This will increase their capital and operational ex-
penditures (CAPEX and OPEX) which is against the NFV
philosophy. High latencies may also cause failures, when
vIMS completely stops responding because of system overload
(by throwing too busy error) [29] and requires NFs reboot.
Analysis: Frequent loops between media plane modules
The root cause of above issues is due to frequent interactions
between different modules residing in different NFs. These
interactions form a loop and packet processing latencies soar
to the level where handling of media packets is no longer
meaningful (i.e. voice jitters with large packet delays). Even
worse, further increase in call rate causes packets congestion
at different modules and renders these module non-responsive.
IMS media-plane functionality is divided among 3 NFs (AS,
MRFC and MRFP), as described by 3GPP specifications
TS23.333 [24], TS23.218 [30] and TS24.147 [31]. When
AS NF receives originating call notification, it sets-up media
policy and informs MRFC to prepare network resources at
MRFP. MRFC fetches media execution script documents,
located at AS and forwards it to MRFP script execution engine.
When media (VoLTE data packets) starts arriving at MRFP,
media packets are processed and call metadata (e.g. call arrival
rate, bandwidth usage, available buffer size etc.) is generated.
This metadata is fed back to MRFC that adjusts call execution
logic (e.g. codec bit rate, codec sample size and codec interval
etc.) and informs MRFP. MRFP adjusts the number of packets
that need to be transmitted every second (i.e. PPS = (codec bit
rate) / (voice payload siz)) and the bandwidth (total packet size
* PPS). This loop between different modules of MRFC and
MRFP continues, as shown in Fig. 3a, during media execution.
We find that on top of media execution loop, there exists
script fetching loop, as shown in Fig. 3b. This is mainly be-
cause AS retains full media execution control by dynamically
generating XML scripts to be used by MRFC and MRFP
(as explained in 4.3.1 Delegation Model of 3GPP document
24.880 [32]). IMS employs web model where media applica-
tion behavior is defined in terms of markup languages/scripts
(e.g. VoiceXML, SCXML, CCXML, and others)! [33] [34].

'Voice Extensible Markup Language (VoiceXML), State Chart extensible
Markup Language (SCXML), and Call Control eXtensible Markup Language
(CCXML)
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Figure 3: Frequent interactions between different modules

These scripts are located on the AS and retrieved by the
MREFC using HTTP protocol. Scripts running on the MRFP
provide media behavior notifications to AS (via MRFC), and
receive media control updates from AS. This delegation model
generates the loop between AS, MRFC and MRFP for media
execution.

B. Media packets keep forwarded to device whose control-
plane is aborted

Certain modules act as bridges between NFs. 3GPP specifi-
cation TS23.218 [30] describes these modules that include In-
coming/Outgoing Leg Control, Incoming/Outgoing Leg State,
Registrar, Notifier, and others. Failure of these bridging mod-
ules results in control-plane termination. However, data-plane
being decoupled from control-plane stays connected via dif-
ferent set of NFs. We dial originating VOoLTE calls and slowly
increase the call rate (adding 1 call per second). We then
trigger S-Incoming Leg Control module failure at 25" second
(i.e. on setting up 25" call), as shown in Fig. 5. On module
failure, P-CSCF does not accept any new call and makes 5
retries (with retry interval of 1 second) to receive a response
from S-CSCF. On 5" unsuccessful retry, P-CSCF drops all
calls by sending SIP BYE message to originating device (as
shown in Fig. 5(left)). However, this SIP BYE message from
P-CSCF was not forwarded to terminating devices because of
the failure of only bridging module (S-Incoming Leg Control)
between originating and terminating devices. Also, MRF does
not receive this call disconnect message from AS (via failed
S-Incoming Leg Control module) and maintains data-plane
connection with LTE PGW.

Terminating devices keep generating uplink media packets that
are forwarded to MRF through data-plane. Fig. 5(right) shows
number of media packets received at different time interval.
As shown, MRF forwards the terminating devices packets
towards originating device, but does not receive any packet
from originating device. In short, terminating devices keep the
VOLTE call intact and experience speech mute issue, where
they do not receive a response from originating device.

Impact: Media plane packets keep flowing from terminating
devices towards originating device, and IMS does not have any
mechanism (e.g. timers) to fully terminate the media connec-
tions. During this failure, IMS relies on human intervention
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Figure 5: All calls are dropped when S-Incoming Leg Control module failure is triggered
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to stop the call (expecting the called party hangs-up the call
after speech mute issue).

We find that the impact of this issue can be reduced (upto
30 seconds) when originating and terminating devices are
located behind the NAT. In this case, STUN (Session Traversal
Utilities for NAT) Binding Requests are used by these devices
as a keep-alive mechanism to maintain NAT bindings for
signalling and media flows [35]. If a device does not receive
a STUN reply (within 30 seconds), it considers the flow
and any associated security associations invalid and performs
the initial registration procedures. However, operational LTE
network operators are using IPv6 and do not install NAT in
their network [36]; as a result, our finding has greater impact
for operational IMS systems. Furthermore, in accordance to
3GPP requirements [35], device does not implement keep-
alive mechanism when a NAT is not present (i.e. given battery
considerations for wireless devices).

Analysis: Control-plane termination does not stop data-
plane flow Both P-CSCF and MRF maintain dialogue states
to keep track of user states in control-plane and data-plane,
respectively [22]. The issue arises when MRF moves to Con-
nected state, whereas P-CSCEF fails to move from Moratorium
state to Established state because of S-Incoming Leg Control
module failure. This results in hanging state machine at
MREF. MRF being in Connected state believes that control-
plane connection has been established between originating
and terminating devices and multimedia traffic can flow at
any time instance. However, P-CSCF has not completed its
control-plane connection establishment procedure yet; and
finds S-Incoming Leg Control module being unresponsive. On
detecting failure, P-CSCF first tries to reconnect by sending
Reconnect control message towards S-CSCF, where S-CSCF
tries to forward the message to S-Incoming Leg Control
module for message delivery to AS. Meanwhile, P-CSCF
times-out and declares S-CSCF to be busy by generating 600
BUSY EVERYWHERE message code. P-CSCF then acts as
a User Agent (UA) and generates SIP BYE message towards
originating device and S-CSCF, and transitions into Mortal
state. When originating device receives SIP BYE message, it
terminates both control and data plane connections; whereas
S-CSCEF tries to forward SIP BYE to AS so that the ongoing
multimedia connection with the terminating device and MRF
be stopped. However, S-CSCF drops the packet because it
could not forward it to AS due to constant S-Incoming Leg
Control module failure. As a result, terminating device does
not receive SIP BYE message and keeps its control and data
planes sessions. When terminating device generates its media
packets, it then forwards them to MRF. MRF finds originating
device dialogue state as Connected and forwards the received
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Figure 4: When S-Incoming Leg Control module fails, the control-plane communication between originating and terminating device breaks. The originating device connection is
aborted by P-CSCF (where P-CSCF state transitions to Mortal state). However, this abort control signal does not reach to terminating device. As a result, terminating device keeps

forwarding media packets to media-plane (MRF)

data packets to PGW. However, these packets are dropped at
PGW because PGW cannot reach the originating device.
Note that S-Incoming Leg Control module failure goes unde-
tected by AS because S-CSCF keeps replying layer 3 keep-
alive message to AS NF.

V. DESIGN

We put forward two design goals: (1) reducing media
latency, and (2) improving system fault tolerance. At high
level, we refactor NFs modules by (1) pipelining media plane
processing and media control commands, and (2) quickly
isolate faulty module by reconfiguring its neighboring mod-
ules. Fig. 6 gives an overview of our design. To reduce
media plane latencies, Media Update module receives media
metadata from Media Processor module and predicts future
metadata values. It then requests control information for
these predicted metadata values from MRFC. In other words,
MREC prefetches control information from MRFP for future
purpose and steers Media Processor module accordingly. This
prefetching of control information and processing of media
packets are done in parallel, unlike serially in the state-of-the-
art vIMS implementation. This is achieved because MRFC can
likely predict future media behavior as the media processing
conditions change. Similarly, MRFC prefetches media execu-
tion scripts from AS by predicting media execution conditions.

Our design reconfigures each module by adding back-up
path with each of one-hop neighboring module. As shown in
Fig. 6, Session Controller module at S-CSCF adds a back-up
link to its one-hop neighboring module (Incoming Leg Control
module) at AS. When Incoming Leg Control module at S-
CSCEF fails, then Session Controller assumes the role of failed
Incoming Leg Control module and connects with Incoming
Leg Control module of AS through back-up link. Session
Controller loads failed module’s execution logic and device
session states upto to saved check-point. It then replays some
of the already executed commands to resume failed operation.

A. Pipelining control instructions with media plane execution

MRFP processes media packets based on instructions it
receives from MRFC and AS in real time. Ideally, these
latencies do not go beyond few piseconds, but they significantly
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Figure 6: Design overview

increase under high call rate and fine-grained script execution
control. To address this issue, we propose pipelining media
processing and its control instructions request. This allows us
to convert serial operations of processing of media packets
at MRFP and fetching control instructions from MFRC into
parallel operations. The control instructions are provided based
on media behavior which can be determined through media
metadata. When MRFP processes the packets, it also calculates
the metadata (e.g. voice payload size, packets arrival rate or
packets per second, available and consumed bandwidths and
more) for these packets. To pipeline control instructions, we
are required to predict future metadata generated by future
media packets and then prefetching control instructions for
these packets. We use a simple prediction algorithm, where
we first calculate the deviation of received metadata value
from its previous value and add this deviation into current
value, as explained by algorithm 1. These new metadata values
become our predicted medtadata for which we request control
instructions from MRFC. Because control instructions remain
same for a range of metadata values, our prediction does not
prefetch wrong control instructions for most of the cases. For
example, voice codec G.711 is applied for all packets with
voice payload size in between 160 to 240 Bytes, and jitter rate
in the range of 30 to 50 packets per seconds [8]. In other words
voice processing instructions have built-in tolerance range that
we exploit in our favor. However, as actual metadata comes
closer to tolerance range, our algorithm may prefetch wrong
control instruction by predicting wrong metadata. We address
this issue by predicting batch of metadata that also optimizes
our prefetching algorithm.

Optimization using batch prefetching: Prefetching future
control instruction, although, helps to run packet processing
in parallel; it does not reduce the control instruction fetching



Algorithm 1: Prefetching algorithm with/without optimization
1: procedure PREFETCHING

2: Predict:

3: metadata <+ receive metadata from Media Processor
4: €; < calculate prediction error from receivedmetadata
5: for all metadata values m do

6: Am=m - Mprevious

7: Mpew = AmM + m + ¢;

8: metadatap'r'edicted += Mpew

9: end for

10: Predict with Optimization:

11: metadatay, < historical values of metadata

12: a; < smoothing constant, where 0 < a<1

13: for all metadatay, values m do

14: Mpew,t = Mprevious,t—1 + (1 - O4)11171,ew,15—1

15: metadatapredicted += Mpew

16: end for

17: Send(metadatayredicted)

18: ReceiveFrom() < receive control info from MRFC
19: Update(Control) /* Update Media Processor */
20: end procedure

loop. We propose generating batch of metadata by taking
historical metadata measurements into account, and then re-
questing their control instruction. To achieve this, we use
exponential smoothing model [9], described in algorithm 1, to
forecast series of future metadata values. This model weighs
past observations using exponentially decreasing weights,
i.e. recent observations are given relatively more weight in
forecasting than the older observations. Using exponential
smoothing model, we generate a batch of predicted metadata.
This batch contains 5 (also configurable) sets of metadata,
where each metadata set contains several metadata values.
Then this batch is forwarded to MRFC and respective control
instructions are received. Similarly, MRFC provides script
documents against predicted metadata sets that it fetches from
AS. Thereafter, when Media Update module receives actual
metadata values from Media Processor module, it immediately
replies respective control instruction (as closest as possi-
ble) from prefetched control instructions set. Media Update
module also observes the deviation of predicted and actual
metadata values and requests or delays prefetching future
control instructions by generating new batch of metadata. This
procedure helps in reducing request/reply loop between MRFC
and MRFP.
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Figure 7: Failure detection and recovery procedure through FSM
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At the heart of failure recovery in our design is fault detec-
tion, its isolation and module reconfiguration. We show fail-
ure recovery procedure through Finite State Machine (FSM)

diagram, as shown in Fig. 7. In the following, we explain
failure detection and recovery procedure through SIP INVITE
message example. Note that our design can also detect and
recover from failure when failure occurs during call setup
phase, (such as during INVITE, RINGING, TRYING SIP
message failure), or after call setup phase (such as NOTIFY,
UPDATE, CANCEL SIP message failure).

Failure detection procedure: When Session Controller of
S-CSCF receives the INVITE request from P-CSCF, it enters
into SIP Received state and starts the timer A, as shown in
Fig. 7. Timer A is configurable timer, which is set to be 1
second in our implementation. Thereafter, INVITE message
is forwarded to the next hop, i.e. towards S-Incoming Leg
Control module, and Session Controller moves its state to
SIP Forwarded sate. If S-Incoming Leg Control module does
not reply to SIP INVITE message and Timer A expires, then
Session Controller module enters into fast-retransmit stage
— which is failure detection stage. The rationale of fast-
retransmit is to quickly recover from failure by reducing the
retry interval. Session Controller module starts Timer B, and
resends SIP INVITE message after moving to Fast Retry state.
In Fast Retry, SIP INVITE message is resent at an interval of
200 msec until Timer B expires, which is set to be 1 second
in our implementation. In other words, we propose 5 retries
of the failed SIP message. Assume, S-Incoming Leg Control
still does not reply to SIP request; as a result Timer B expires
and S-Incoming Leg Control is declared to be failed.

Failover procedure: After detecting failure, we perform
fail-over procedure. When Timer B expires, Session Con-
troller module declares S-Incoming Leg Control module out-
of-service and takes charge of the non-responding module.
In this process, Session Controller first deactivates the link
between itself and S-Incoming Leg Control module. Then
Session Controller module loads the failed module’s exe-
cutable through preloaded configurations. Next, it announces
module failure to failed module’s neighbors via backup link
and declares itself being in-service module serving the failed
module’s execution. The recipient neighboring modules update
their routing path and connects to Session Controller. Once the
connection is setup, the Session Controller module replays the
failed messages (i.e. SIP INVITE message in our example) at
newly setup module and resumes the control-plane operation.

In order to replay the lost messages and to resume the
service, in-service module should have access to the session
states of the failed module. But these session states are
also lost during module failure. To address this, we exploit
the fact that both Session Controller and S-Incoming Leg
Control modules communicate in a feedback loop of request
and response. The requester can always know the session
states at responder when it receives the reply. For example,
device initiates call request by sending SIP INVITE message
that ultimately reaches at S-Incoming Leg Control module
of S-CSCF. S-CSCF then forwards it to AS-Incoming Leg
Control module of AS. On receiving SIP message, AS creates
device session that includes user identities, charging function
address, and device authentication information etc. AS then



modifies the SIP INVITE message and sends it to S-CSCF. On
receiving modified SIP INVITE message, S-CSCF modules
store updated session along with checkpoint. Now assume,
the failure occurred during next SIP message transmission (i.e.
SIP PROGRESSING message). On the failure, the in-service
module (which takes charge of failed module) replays the SIP
messages starting from stored checkpoint. That is replaying
all the SIP message upto the checkpoint over newly launched
module (residing locally).

VI. IMPLEMENTATION

The details of our implementation efforts are as follow.

A. State-of-the-art implementation of IMS

OpenIMS provides basic IMS implementation where it
does not implement all of the modules as defined by 3GPP
specification [7]. We modify OpenIMS source code to add
many more modules (such as breaking incoming and outgoing
connection through Incoming/Outgoing Session Control Leg
modules). Moreover, OpenIMS has coupled all IMS NFs by
implementing them over single virtual machine (e.g. VMware)
that provides optimal performance when hundreds of users
are accessing IMS network at the same time. For NFV
deployment, we first decouple IMS NFs into separate VMs.
Then these VMs are bridged through virtual network interface.
These stand-alone VMs are deployed over OpenStack to
achieve state-of-the-art vIMS implementation. We also provide
1:1 redundant copy of IMS NFs to achieve minimum industry
requirement for NFV. We use default timers as specified by
IMS and OpenStack documents [37] [38]. We consider this
3GPP compliant implementation as state-of-the-art vIMS with
which we compare our design.

B. Implementation of proposed vIMS

Pipelining control instructions with media plane pro-
cessing To support pipelining, we first break the dependency
between Media Processor and Media Update modules and
setup two interfaces among them. Media Processor uses first
interface to send metadata towards Media Update, and re-
ceives control instructions over second interface. It implements
callback function to receive control instructions from Media
Update module.

Failure detection procedure: We detect failure by observing
state transitions in an FSM (as shown in Fig. 7). In FSM
implementation an operation must start from an initial state
and should transition to another accepted state. To achieve
this, we create FSM transition table in which a given state
transitions to a new state when either the response is generated
for a request (i.e. no failure case) or its guard timer has expired
(i.e. failure happens).

Fail-over procedure: We keep record of on-going device
session (before failure) through an hash table. When failure
occurs, the FSM transitions to Failover state. In Failover
state, in-service module (that detected failure) retrieves last
stored device session information from the hash table. Then

in-service module updates the network configurations at in-
coming and outgoing interfaces and takes charge of failed
module’s operations.

VII. EVALUATION

We evaluate how our proposed design reduces latencies
and improves VIMS fault tolerance. The state-of-the-art vIMS
described in Section VI-A serves as the baseline of our
experiment with which we compare our design. We run our
tests on a local network of servers with Intel Xeon(R) ES-
2420 V2 processor at 2.20GHZ x 12, 16M Cache size, and
16GB memory. For each VM, we use Ubuntu Server 14.04.3
LTS with the OpenIMS Core. Each IMS NF is implemented
over a separate server to make cluser of VMs in OpenStack.
These VMs also share their resource with OpenAirlnterface
(an open source LTE platform) elements used for bridging
IMS NFs with LTE.
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Figure 8: Comparing state-of-the-art vIMS media plane latencies with proposed VIMS

A. Reducing latencies

To evaluate how our proposed design reduces media-plane
latencies compared to state-of-the-art vIMS design, we launch
a number of voice calls and inject voice packets over estab-
lished media connection between caller and callee. These calls
are launched in systematic way, where our script increases the
call rate by adding one call every second. In first second, 2
calls are dialed (2 calls per second), then 3 calls per second
and so on, upto 300 calls per second.

In state-of-the-art design, as the call rate increases the media-
plane latencies start increasing, as shown in Fig. 8. Only
60% of the traffic remains below 100 msec (upper bound
of voice QoS requirement), where rest of 40% traffic incurs
as high latency as 600 msec (6 times the upper bound of
voice QoS requirement). The main reason behind this was
the frequent interaction between Media Processor and Media
Control modules. Media control module exercises fine-grained
control on how voice packets are processed. It also interacts
with Media Policy module to fetch call execution XML, using
which Media Processor processes the packets.

Fig. 8 shows that proposed design significantly reduces media-
plane latencies. These latencies remain under 50 msec even
when MRF is processing around 40,000 simultaneous calls
(when all active calls add-up, starting from 2 calls/sec to 300
calls/sec). This significant improvement was achieved because
Media Processor module does not fetch control instructions
and simply processes the packets as soon as voice packets
arrive. The control instructions are sent to Media Processor
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over a separate interface, without meddling media packets
execution.

B. Improving fault tolerance

Our design improves fault tolerance by (1) quickly detecting
the failure, and (2) running failover procedure after isolating
faulty module. In our experiment, we trigger S-Incoming Leg
Control module failure during control-plane operation (i.e
when call is being established) and let our system detect the
failure and perform failover procedure.

How quickly failure detection mechanism triggers: In our
design, we are not using keep-alive mechanism to detect the
failure. Therefore, we are interested to observe how quickly
the failure detection mechanism starts once the failure has
occured. We argue that fault tolerance is only important for
running system, i.e. when control-plane and data-plane mes-
sages are flowing through the system. Faults in idle systems
do not have any impact on user applications. Fig. 9a shows
that failure detection mechanism triggering time sharply drops
from 6 msec to 1 msec when the call rate increases from 2
calls per seconds to just 7 calls per second. This is mainly
because a call request triggers at least 4 SIP messages (i.e.
INVITE, PROGRESSING, RINGING, and 2000K) that arrive
within the call establishment time (on average 26 msec). This
means roughly every 6 msec, one SIP message is processed
at IMS — that is also the gap between failure occurrence time
and start of failure detection procedure time. However, this
gap significantly reduces to 1 msec as soon as fewer than 10
calls are added to the system. In other words, we can say that
our design is efficient in triggering failure detection procedure,
which is almost real time.

Failure detection: Failure detection in our proposed IMS,
Behind NAT IMS (that uses Session Traversal Utilities for
NAT (STUN) protocol [39]), and OpenStack implementations
is based on timers. In our proposed design, failure is detected
when both timers, Timer A and Timer B, expire after 2
seconds. Behind NAT IMS implementation declares failure
after default value of 30 seconds, whereas OpenStack imple-
mentation takes 16 seconds at minimum to detect the failure
[40].

Failover: Once the failure is detected, the failover procedure
starts. Fig. 9b shows the time different systems take to
restore the service after failure. Our proposed design simply
reconfigures modules and loads the failed module’s executable,
and takes only 500 msec to recover from failure (after failure
detection). However, both Behind NAT and OpenStack take
roughly 10 more seconds after failure detection (8 seconds to

prepare backup NF and restores the service, and 2 seconds to
register device and establish call).

VIII. RELATED WORK

Our work is in contrast with other recent efforts on NFV,
vIMS and middle boxes’ fault tolerance space.

NFV: [41] provides general purpose NFV platform. [42]
and [43] make use of software and hardware choices to meet
specific service demands. [44] [45] and [46] discuss NFV
integration in mobile network. But these works do not discuss
how NFV can provide same level of latency and fault tolerance
as that of original carrier grade solutions.

vIMS: Recent works [47] [48] [49] study IMS-NFV. [47]
[48] discuss IMS performance over virtualized instances (both
at core and edge). [49] provides robust IMS over cloud through
redundant modules. In contrast, we discuss VIMS latency and
failure issues for modular vIMS implementation, and do not
require any module redundancy. [50] provides dynamic re-
source allocation algorithm for vIMS, [50] discusses merits of
deployment strategies of vIMS. [51] enhances vIMS features
for M2M. But these efforts do not discuss latency and fault
tolerance aspects in vIMS.

Fault Tolerance: [52] and [53] propose logging NF states
during normal operations and reconstructing them after a
failure. Their approaches cannot address real-time and tran-
sitory NF sessions recovery. [54] [55] and [41] discuss fault
tolerance in non-IMS (SIP based) voice over IP applications.
[56] discusses general load balancing strategies in vIMS and
does not discuss vIMS working during faults.

Latency: [57] and [58] imply dynamically scheduling
schemes to meet changing traffic demands in NFV. [59]
and [60] propose mobile edge computing designs to reduce
latencies. [61] proposes trading the latency off with other
performance metrics.

All of above approaches fail to reduce system latencies
which come from virtualizing system and its components
interactions. They do not guarantee failure recovery when a
particular software module stops working. Our design refactors
system modules that not only improves fault tolerance but also
reduces latencies.
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IX. CONCLUSION

We show that highly modular vIMS design incurs latencies
when different NFs modules interact with each other over
a chain of operations. Also, such design, relying on cloud
platform’s failure detection mechanisms, does not tolerate
module’s faults. This results downlink data-plane operations
to carry-on, even though device control-plane has been ter-
minated. Our design, refactors NFs modules and reduces
latencies by pipelining control and processing operations. It
also reconfigures modules to tolerate faults by first isolating
faulty module and then resuming the failed operation.
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