
Identification of Communication Devices from
Analysis of Traffic Patterns

Hiroki KAWAI†, Shingo ATA†, Nobuyuki NAKAMURA‡, Ikuo Oka†,
†Graduate School of Engineering, Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Email: {kawai h@c.info., ata@ oka@}eng.osaka-cu.ac.jp

‡Oki Electric Industry Co., Ltd.
2-6-8 Bingomachi, Chuo-ku, Osaka 541-0051, Japan

Email: {nakamura758}@oki.com

Abstract—Recently, variety of communication devices such
as printers, IP telephones, network cameras are used widely,
with the support of networking in consumer electronics. As a
spread of IoT (Internet of Things), the number of embed devices
are significantly increasing, however, such devices have lack of
capability on security. It is therefore desirable that a network
identifies these devices to take appropriate operations. In this
paper, we propose an identification method of communication
devices from monitoring patterns of traffic, here we use statistical
metrics such as packet inter-arrival time or packet size, and
we apply a machine learning for the identification. Through
evaluations using real traffic, we show that our method can
achieve over 90% of identification to 9 commiunication devices.

I. INTRODUCTION

In recent years, many communication devices such as print-
ers, IP phones, network attached storage (NAS) are connected
to the network. Also, the use of such devices will be diversified
widely as the progress of development and deployment of
IoT (Internet of Things) applications and services, which
leads another concern on the device management. In order
to operate these devices safely and properly, it is necessary to
accumulate log information on the real-time state of devices,
which is typically done with a kind of device manager,
however, such managers are mostly vender-specific, i.e., there
is no interoperability between different devices and managers.
The objective of this paper is to realize a unified framework
for the management of various types of devices, by the
identification of devices based on the measurement of traffic
patterns generated by devices. Identification of the type of
device (we refer as device identification in this paper) would be
much important for achieving adequate treatment for the target
device. Furthermore, detection of anomaly behavior in M2M
(Machine-to-Machine) communication is much attracted, in
which communication devices have less capability to follow
unexpected events, as well as security attacks, due to lack of
computational resource. One possible solution is to detect an
anomaly behavior through the monitoring of communication
patterns (i.e., packets exchanged between devices), based on
the fact that the communication pattern during anomaly behav-
ior is significantly different from the one in normal condition.
Device identification would be useful for the initial step of
modeling traffic pattern in the normal behavior.

From above background, in recent years, demands for
device identification (particularly for embedded devices, IoT
devices, etc.) are increasing, and would be much important in
future.

Researches on device identification is something similar on
application identification techniques, which have been stud-
ied so far. Application identification based on flow statistics
can identify applications accurately whatever the traffic is
encrypted or not [1]–[3]. Recent studies have shown that
application can be identified from the statistics of flows with
around 80% of overall accuracy even if the application traffic is
encrypted. Techniques of application identification is recently
extended for the support of on-time identification [4], [5], ap-
plication identification in mobile devices [6] and identification
of user behavior in the same application [7].

In these methods, flow statistics (we refer traffic features in
this paper) such as packet size, IAT (packet inter-arrival time),
flow duration, total bytes and packets of flow are calculated.
Identification is performed by using supervised ML (Machine
Learning) based algorithms.

In this paper, we also use traffic features and ML algorithm
for device identification, however, our method is completely
different from other studies as follows. We use only two
types of traffic features, i.e., packet size and IAT, while other
methods use other types of traffic features to improve the
accuracy of identification. Unlike application identification,
communications between devices are continuous, and they
may be initiated from both side. Furthermore, the volume of
traffic is relatively small compared to user applications. As a
result, traffic features such as a total number of packets/bytes
in flow, duration of flow, or average transfer rate cannot be
applied for device identification, because these features are de-
pendent on the length of sessions. Instead, we use m-quantile
(m = 30) values of both packet size and IAT distributions to
improve the identification accuracy, where other methods use
m = 4. As a result of evaluation by real traffic, we show that
our method can achieve device identification (9 devices) with
around 90% of accuracy by using 30-quantile values of packet
size and IAT, after monitoring first 200 packets.
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Fig. 1. Measurement environment

II. MEASUREMENT ENVIRONMENT AND PROCEDURE

In this section we describe the measurement environment
and procedure for collecting, analyzing, and evaluating traffic
exchanged by targeted devices.

A. Measurement Environment

The outline of the measurement environment is shown in
Figure 1. We deploy an Ethernet switching hub with port
mirroring, and connect a target device (Identification Target)
intended to be identified. We also connect a measuring ma-
chine to the mirrored port. Identification Target communicates
with a terminal located in the same network or a server of
service provider (according to device type and measurement
scenario). According to the measurement scenario, additional
nodes (e.g., radius, DNS, dhcp servers) are also deployed
if needed. Except the measurement of wireless devices, all
devices are connected with wired cable to avoid any instability
of measurement results due to wireless environment. Some
devices communicates with a vendor-provided server (e.g.,
video portal, relay node, management server) located in the
Internet and sometimes communications are established by
using IPSec for security reasons.

B. Measurement Procedure

In this paper, we prepare total 9 devices shown in Table I as
target devices for identification. Target devices are classified
into 6 categories (Wireless, Digital Media Receiver, Network
Camera, NAS, Printer, Game). We first provide a simple
measurement scenario for every category. For each target
device, we then prepare a measurement environment, i.e.,
connect the target device to the hub, deploy additional nodes
if needed. Finally we manually operate nodes according to the

TABLE I
TARGET DEVICES FOR IDENTIFICATION

Device Type Measurement Scenario
Wireless Access Point Authentication with radius server
Digital Media Receiver 1, 2 Displaying video portal site
Network Camera 1, 2, 3 Playing real-time recorded video
Network Attached Storage (NAS) Uploading and downloading files
Printer Printing document
Consumer Game Online matchup

Fig. 2. Identification model

scenario, and capture all packets of both inbound and outbound
directions.

III. PROPOSED DEVICE IDENTIFICATION METHOD

In this section, we propose a method for device identifi-
cation, where we first explain the overview of identification,
and provide detailed description for each part in the following
subsections.

A. Method Overview

Following is the procedure of device identification method.
In this paper, we divide monitoring data into two parts, the
former is used as the training data for machine learning, and
the latter is used as the evaluation data for device identification.

1) Identify monitored traffic to TCP/UDP or IPSec by
checking the protocol number in the IP header.

2) Split a whole monitored traffic into flows by using 5-
tuple (source/destination IP address, source/destination
port number, protocol number)

3) Calculate traffic features for every flow
4) Perform device identification by using machine learning

B. Splitting Monitored Traffic into Flows

The procedure of flow split is shown in Figure 2. Since
IPSec traffic has multiple flows into a single stream and flow
information is encrypted, it is difficult to split IPSec traffic into



flows. We therefore suppose that a single flow is transferred
over the IPSec tunnel at the same time, and we distinguish
as a different flow if we find an idle longer than a predefined
duration (30 sec in this paper).

For splitting into flows, we first check the protocol number
in the IP header of monitored traffic. If the protocol number
is 6 (TCP) or 17 (UDP), we consider the traffic is normal
(non-encrypted), and classify into flows by using 5-tuples.
Otherwise, (or the protocol number is 50 (ESP)), we consider
the traffic is IPSec, and suppose to terminate the flow at the
idle.

C. Calculation of Traffic Features

We define a traffic feature as a metric of flow statistics. For
example, total number of packets/bytes in the flow, average
packet size, average packet inter-arrival time (IAT), and so on.
We use a set of traffic features to compose a multi-dimensional
vector, as an input of the machine learning. However, some
traffic features strongly depend on the conditional parameters.
For example, the total bytes or packets in flow on file down-
loading directly depends on the characteristics of the content
such as file size. To avoid any degradation of identification
accuracy due to conditional parameters, it would be better to
eliminate conditional dependent traffic features. However, the
accuracy of the identification is also affected by the number of
traffic features. Recent study has shown that there is a tradeoff
between the accuracy of identification of machine learning
and the total time for learning phase [8], and increasing the
dimension of vector is highly related to the learning time. That
is, the increase the number of traffic features may improve the
accuracy of the identification.

From above reason, we first use only two types of traffic
features, i.e., packet size and IAT, to remove any conditional
dependencies. To improve the accuracy, in other words, to
increase the number of traffic features, we use m-quantile
values of packet size and IAT instead of using 4-quantile
values using in most related works. In this paper we set
m = 30 for the device identification after the 200 packets
measurement. The size of m may vary based on the condition
how many packet can we use for device identification. The
smaller number of packets leads the smaller value of m.

All traffic features are calculated for every type of direction,
from server to client (S → C), from client to server (C → S),
and bi-directional (S ↔ C). In total, we use 180 traffic features
(30-quantile of packet size and IAT, 3 types of directions).

D. Identification using Machine Learning Algorithm

The calculated traffic features are input to the identificator,
and the result is obtained by identification using the machine
learning algorithm. For the SVM algorithm we use Weka 1

machine learning software.

IV. IDENTIFICATION RESULTS

1http://www.cs.waikato.ac.nz/ml/weka/

TABLE II
IDENTIFICATION OF 6 DEVICES

Target Device Identification Accuracy
Wireless Access Point 96.2%
Digital Media Receiver 1 98.4%
Network Camera 1 83.3 %
NAS 89.7%
Printer 90.6 %
Consumer Game 98.4%

In this paper, our final goal for the evaluation is to obtain
the overall accuracy of device identification from 9 devices
shown in Table I. However, to verify how similar devices (i.e.,
devices in the same category) can be identified correctly, we
conducted following two types of evaluation scenarios.

1) Identification of 6 devices: we choose one device
(Digital Media Receiver 1 and Network Camera 1)
from every category, and evaluate how these devices are
individually identified.

2) Identification of 6 categories: we use 9 devices
but identification is performed by category-basis, i.e.,
we identify the name of category instead of the name
of device. In this scenario, all network cameras are
identified as the same category (Network Camera) for
example.

3) Identification of 9 devices: we use all 9 devices and
identify them individually, i.e., all network cameras are
identified as different devices.

We show the results of above evaluation scenarios in fol-
lowing subsections.

As an evaluation metric, we calculate the accuracy, which
represents the number of correctly identified flows divided by
the total number of evaluated flows.

A. Identification of 6 Devices

The overall identification accuracy is 96.0%. Identification
accuracy by devices is shown in Table II. The table shows that
the identification accuracy of Network Camera 1 is relatively
lower than others, because the number of flows used (in terms
of both for training and evaluation data) is smaller. Network
Camera has a tendency that a flow continues for a long time,
once a terminal establish a connection to the device. Efficient
collection of training data for long-lived flows is important.

B. Identification of 9 Devices

The overall identification accuracy is 88.3% in this case.
Table III show the breakdown of identification accuracy. From
this table, we can observe that the accuracies of Network Cam-
eras 1 and 2 are low. Since these network cameras generate
quite similar traffic, they are mis-identified each other. The
identification accuracy of Printer is also low, because flows
are often incorrectly identified as Digital Media Receivers.

One typical observation is that many flows of Digital
Media Receiver 1, Network Cameras 2 and 3 are identified
as Consumer Game.



TABLE III
IDENTIFICATION OF 9 DEVICES

Target Device Identification Accuracy
Wireless Access Point 91.7%
Digital Media Receiver 1 97.1%
Digital Media Receiver 2 93.0%
Network Camera 1 75.6%
Network Camera 2 76.1%
Network Camera 3 89.2%
NAS 81.7%
Printer 69.8%
Consumer Game 78.9%

TABLE IV
IDENTIFICATION OF 6 CATEGORIES

Target Device Identification Accuracy
Wireless Access Point 80.6%
Digital Media Receiver 96.1%
Network Camera 91.4%
NAS 78.3%
Printer 76.7%
Consumer Game 75.6%

C. Identification of 6 Categories

The overall accuracy is 88.1%, and individual accuracies
are shown in Table IV. Compared to Table III the accuracy
of Network Cameras becomes much higher. It is because in
this case mis-identifications among different network cameras
are treated as the same Network Camera category. The same
tendency can be observed in Digital Media Receiver case.

D. Further Enhancement of Identification Accuracy by Using
History of Traffic Features

Recall, one of the important things to improve device
identification is to increase the number of traffic features.
However, using large value of m in m-quantile is not always
improve the accuracy. For the accurate identification, each
value of m-quantile is needed to be stable, which means an
enough number of packets statistically reasonable for each
range, otherwise each value of m-quantile has wider range
and then it leads potential mis-identifications.

For this problem, one effective approaches to increase the
number of traffic features is to reuse the previously calculated
traffic features in addition to the current traffic features.

We now suppose a real-time device identification which is
conducted progressively, i.e., from the beginning, identification
process is performed periodically for every, e.g., 50 packets
arrival. The first identification is made at the time of the
50=th packet arrival, and traffic features are obtained by using
statistics of first 50 packets. Next, the second identification
is made at the 100-th packet arrival. Originally, the second
identification is performed by using traffic features by using
statistics of first 100 packets. In this case, we do no longer use
traffic features calculated in the first identification. However,
these traffic features may also be used for the second identi-
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Fig. 3. Impact on Reuse of Traffic Features (9 Devices Identification)

fication to improve the identification accuracy. In this respect,
the total number of traffic features may be twice.

The purpose to reuse the previously calculated traffic fea-
tures have two objectives, (1) improve the overall identification
accuracy by using the same number of packets, and (2) reduce
the total number of packets needed to achieve the same accu-
racy. We evaluate both prespectives in this subsection. Figure 3
shows identification accuracy among different identification
conditions. Here we assume device identification is made for
every 50 packets and the final identification is made at 200-th
packet arrival. Bars for 100, 150, 200 are the identification
results by using only traffic features calculated from 100, 150,
200 packets, respectively. Suffix ’/2’, means that we reuse
traffic features at 50-th packet additionally. Suffix ’/3’ means
that we reuse both 50-th and 100-th, and ’/4’ means that we
reuse all calculated traffic features (720 in total). As observed
in these results, we can agree that the identification accuracy
can be improve by the reuse of traffic features, especially,
the improvement is up to 6% (88% to 94%) at 200-th packet
identification.

V. CONCLUSION

In this paper, we have proposed a method for identification
of communication devices (especially targeted for embed or
IoT devices) based on the measurement of traffic pattern
statistically. In order to realize concrete identification against
degradation of identification accuracy due to conditional pa-
rameters, we use only m-quantile of packet size and IAT with
m = 30. By applying SVM-based machine learning algorithm,
we have shown that our device identification can achieve up to
96.0% in identification of 6 devices, 88.3% in 9 devices, and
88.1% in 6 categories. For future research topics, we will adopt
further investigation of key traffic features which significantly
impacts the identification accuracy, to reduce the total number
of required packets and realize earlier device identification.
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