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∗University of Antwerp - imec, IDLab, Department of Mathematics and Computer Science, Belgium

†Universidad de Antioquia, Calle 67 # 53 - 108, Medellı́n, Colombia

Abstract—Cloud providers rely on fault-tolerance mechanisms
to realize high-availability services on best-effort infrastructure.
Service replication limits the data-loss caused by failure, at
the expense of additional operational costs. Recently, with the
advent of Mobile Edge Computing, cloud environments are
becoming increasingly heterogeneous and dynamic, by the incor-
poration of (very) unreliable and resource-constrained devices.
In this paper, we investigate how to devise an economically
viable replication strategy, for a given service on a particular
cloud environment. Previous work either focused on finding
replication strategies for stateless services, ignoring recovery
processes and correlated failures, or considered system dynamics,
while lacking Service Level Agreement (SLA)-awareness. We
approach the replica management problem as a run-time revenue
maximization problem. Our proposed Dynamic Programming
(DP) algorithm can generate the optimal replication strategy
over the application lifetime. Through extensive simulations, we
show that our algorithm significantly improves provider revenue
over a wide range of cloud- and SLA-conditions, and adapt its
strategy to evolving operating conditions. The results show that
coupling dynamic failure models with SLA-awareness can lead
to profitable replication strategies, even in cases where providers
currently turn a loss.

I. INTRODUCTION

Service availability is an important non-functional require-
ment, as it refers to the systems capacity to recover from
failure. Availability requirements are generally subject of
Service Level Agreements (SLAs) between service providers
and their tenants. A typical SLA could state that a certain
service must be accessible without any interruption for the
next 24 hours, for the provider to receive a monetary reward,
or avoid paying a penalty. Service providers realize high
availability services on top of commodity hardware, through
techniques of virtualization and replication. The continued
growth of demand for cloud services, paired with soaring
operational expenses due to increasing energy prices, require
cloud providers to manage their resources more effectively [1].
Often, cloud providers replicate the services across different
locations to be able to conform to the SLA requirements
and cope with partially failing nodes. The main challenge
is to come up with a cost-effective replication strategy that
can protect against failure, while limiting expenses, based
on the projected operational costs and revenue generated
through SLA conformity. Operational costs are comprised
of hosting and migration costs. The former considers the
average monetary cost due to nodal and network resource
consumption under a certain service Replication Level (RL),
in the absence of any recovery or migration processes. The

latter encompasses the incremental service costs during those
recovery activities.

In this work we adhere to a very broad definition of services,
they can be Virtual Machines (VMs) or data chunks in a
replicated filesystem, such as the Hadoop Distributed File
System (HDFS). We investigate the problem of managing a
set of services to conform to the SLAs in terms of durability
with a minimum set of resources. Durability refers to the
system’s ability to withstand failure in the infrastructure. For
each service, a cloud manager needs to dynamically select
the level of replication so that the service is guaranteed to
be on-line until it is not required anymore (e.g., the end of a
map reduce computational task). In this, it should cope with
constantly evolving levels of failure.

Previous approaches were either based on overly simplistic
failure models, or focused on analytical calculation of a metric
with very limited practical meaning, namely the Mean Time
To Dataloss (MTDL). In this regard, Greenan et al. go as far
as referring to MTDL as the mean time to meaningless [2].
For instance, it is of very little value for a system designer
to make decisions based on an MTDL exceeding 1400 years,
when both the practical lifetime for an application running on
this platform, and the system component are under 10 years.

Furthermore, recent trend towards geographically decen-
tralized computing environments, such as cloud-federation,
edge-, fog- and mist-computing mean that (1) computing
environments are increasingly changing over time, (2) long-
term failure predictions are becoming increasingly irrelevant
and inaccurate and (3) failure and dynamicity are becoming
more present. Therefore, static replication strategies no longer
suffice, as clearly the best replication strategy will depend
on a combination of system parameters. Moreover, in these
decentralized systems, the mean time between failure is often
much shorter than the service duration, resulting in multiple
possible failures during the service’s lifetime. Finally, as these
environments are much more dynamic, the failure level itself
also changes quite drastically over time.

Hence, intelligent and dynamic replica management al-
gorithms are needed that can synthesize good replication
strategies. In this work, we are first to introduce and ana-
lyze the Generalized Replica Management Problem (GRMP),
which is the problem of finding a replication strategy that
maximizes expected revenue over the service lifetime. The
GRMP approaches the problem of data-loss prevention from
the economical perspective of a service provider. The goal of



this paper is to find an optimal placement strategy over the
envisioned service lifetime. Based on the current replication
state and the remaining required lifetime, the replication
algorithm decides whether scaling in, scaling out, or doing
nothing is most cost-effective.

We identify following major contributions. First, we in-
troduce the GRMP. Second, we propose an exact algorithm,
which considers both a dynamic replication model and SLAs
to maximize provider revenue. This algorithm can be used
to generate optimal policies over a wide range of operating
conditions. Third, we demonstrate that our approach can
significantly improve provider revenue in both time-invariant
and time-variant cloud environments, as our algorithm can
adapt to varying system parameters.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of related work. In Section III the
GRMP is introduced. We propose our solution in Section IV.
Subsequently, we compare the performance of our algorithm
to related works in Section V. Finally, we conclude the paper
in Section VI.

II. RELATED WORK

SLAs describe the Quality of Service (QoS)-level that its
users can expect. Nowadays, services can be anything ranging
from VMs, containers, databases, disk images.

SLA violations can lead to hefty fines for service providers.
To avoid these penalties, while relying on best-effort infras-
tructure (e.g., a data-center), suffering from failures caused
by faulty disks, software errors, power outage and network
problems, providers employ fault-tolerance. In literature, there
are two main protection schemes to make applications survive
failures.

First, there are schemes of protection, which before any
failures have happened, pro-actively instantiate additional
resources. When failures happen, there are still sufficient
resources available to make sure that the service remains
available. Second, reactive schemes do not instantiate any
additional resources before failure occurred, but try to bring
failed services back on-line by hosting them on different
nodes. Reactive methods do not use any additional resources
in the absence of failure. However, as bringing a new replica
on-line always requires some minimal setup time, service
outage cannot be avoided. Additionally, reactive methods
cannot avoid that at least some data is lost. Therefore, reactive
methods are typically only used to protect stateless services. In
protection schemes a trade-off must be made between resource
consumption and availability.

Considerable research effort has been devoted to the failure
behavior in replicated systems. In a first approach, researchers
have considered the failure behavior of services to be static.
For instance, Jayasinghe et al. model cloud infrastructure as a
tree structure with arbitrary depth [3]. Physical hosts on which
VMs are hosted constitute the leaves of this tree, while the
ancestors comprise regions and availability zones. The nodes
at bottom level are physical hosts where VMs are hosted. Wang
et al. estimate the availability of a single VM as the probability

that neither the leaf itself, nor any of its ancestors fail [4]. In
previous work, we have designed application-level replication
techniques for heterogeneous cloud networks, where a static
failure model was assumed [5]. While these approaches can
serve as a first approximation to assess the hosting costs, they
are not accurate as in reality failures exhibit both temporal
and spatial correlation [6]. Static approaches rely on three very
limiting assumptions. First, they assume a constant availability
value for each machine over time. In reality, at some moment
all machines seize permanently to function, consequently their
instantaneous availabilities decline over time. Additionally,
when a transient failure occurs it will take some minimum
time before the machine is back on-line. Hence, temporal
correlation in the availability of a single machine cannot be
ignored. Second, these approaches typically assume the same
set of machines to be used during the entire deployment.
In contrast, replicated systems often migrate copies that are
hosted on unrecoverable machines. These migrations will also
take some time, and induce migration costs, which cannot be
modeled in static models. Third, in reality a service becomes
unrecoverable when insufficient copies are on-line at a given
moment. Hence, the availability of a single service is time-
dependent as the probability that such a catastrophic event
has occurred inevitably increases over time.

Therefore, more dynamic failure models are needed to esti-
mate the total operation cost and service availability. Google
researchers propose a time-homogeneous Markov model for
replicated systems [8]. They define a cell as a pool of devices,
together with their higher level coordination processes. They
show that replication across multiple racks, or even across
geo-distributed clouds can be accurately modeled as multiple
linked cells. Their model considers failure correlation, recov-
ery and migration processes. The most important limitation
of the work is that they do not consider how to generate
a “good” replication strategy, given a certain system model.
Their availability model forms the basis for our proposed
approach.

In distributed file systems two redundancy schemes are
commonly used (1) replication, which creates identical replicas
for each data block, and (2) Erasure Coding (EC), which trans-
forms original data blocks into an expanded set of encoded
blocks, such that any subset with enough encoded blocks can
reconstruct the original data blocks [9].

For system designers, it is important to have a replication
strategy that addresses their specific challenges. The main
types of resources that comprise the subjects of a cloud re-
source management system are compute, networking, storage
and power [10]. In general, the provider’s objectives related
to resource consumption and the objectives of the cloud-user
conflict. For instance, Silberstein et al. focus on reducing
the bandwidth required for the EC recovery process [11].
The authors propose a lazy recovery scheme: recoveries are
queued and bundled, hereby reducing bandwidth consumption,
while also increasing the failure probability. While the authors
evaluate their proposed recovery schemes for a combination of
disk, machine and rack failures, they do not provide a practical



algorithm which can be used to select the best strategy. In
another approach, Wang et al. try to maximize reliability and
at the same time keep the hosting expenses under a maximum
level [12]. However, the applicability of their approach is
severely limited by the assumption of a static failure model.

The objectives of the providers center around efficient and
effective resource use within the constraints of SLAs with the
Cloud users [10]. Therefore, the providers need replication
management algorithms that consider the impact of manage-
ment decisions on operational expenses and the expected pay-
off through SLA conformity. As these cloud environments are
increasingly changing over time, the replication management
algorithms must become more dynamic.

Our approach exceeds the state-of-the-art in that it focuses
on the problem of revenue maximization during a certain time
window. Other approaches are generally limited to finding
analytical expressions for the MTDL, while lacking any notion
of resource consumption costs. Moreover, our approach is
not limited to an analysis of replicated systems, but yields a
practically usable replication management algorithm. Finally,
our proposed algorithm can generate strategies that vary over
the service lifetime.

In this paper, we will focus on SLA violation as a direct re-
sult of failure. The impact of workload variations on response-
time requirements is considered out-of-scope. However, we
will consider the indirect consequences of workload variations
on data-unavailability through their effect on system costs.

III. GENERALIZED REPLICA MANAGEMENT PROBLEM

In this paper, we research how one should manage the
RL of a certain service over time, in order to maximize the
expected revenue during its relevant lifetime. The remainder
of this section is structured as follows. First, we situate the
replication manager in the cloud management architecture.
Next, we discuss the replication model, its parameters, and
the validity of the model. Finally, we provide a description of
the GRMP.

A. Cloud management architecture

A typical cloud architecture is shown in Figure 1 [10].
Service requests originate from the cloud-users. These requests
are handled by the admission control function of the cloud
manager. Requests can be either admitted or declined. When
a request is accepted, then the replication manager decides
on both the required RL and the replica placement. When a
decision is made, the controller updates the placement config-
uration. This controller executes initial placement, recovery,
migration and tear-down processes on the infrastructure. The
monitoring and prediction component monitors the infras-
tructure and estimates the future system behavior based on
monitoring data. This component models system costs, failure
behavior, recovery times, and tracks the state of accepted
service requests. In this paper, we will focus on the replication
manager.
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Fig. 1: Cloud architecture. This work focuses on the replication
management components (grayed out).

TABLE I: Replication model parameters.

Parameter Description
Lmin Minimum RL for the data to be recoverable.
Lmax Maximum RL to be considered.

ION States for which the data is recoverable.
IOFF States for which the data is unrecoverable.
Ai Set of possible actions (go-to states) from state i.

Ci,j(n) Cost of action j in i, at the start of MI n.
Pi,j(n) Transition probability from state i to j during MI n.
h Management period, i.e. the time between MIs.

B. Replication model

Google researchers showed that large-scale replicated sys-
tems can be modeled as time-homogeneous Markov pro-
cesses [8]. In their model, the current behavior of the replicated
system is uniquely determined by the current number of
copies available. Hence, the process is memory-less, i.e. as
time passes the process loses the memory of the past. They
represent both failure and recovery processes by constant
transition rates between states. Consequently, their approach
can only be used to evaluate a fixed strategy. In our model,
we use a time-inhomogeneous Markov chain. We observe
the process periodically and assume that the behavior can
only change at the start of a new period. An overview
of the replication model parameters is given in Table I.
In the following we illustrate how these parameters can be
determined in an HDFS context. Lmin depends on the chosen
replication scheme. When the number of active copies drops
below this value, then the data is irrevocably lost. For naive
replication the minimum replication level is always 1, while
for (k, n)-EC, this value is equal to k. Lmax is the maximum
number of copies that can be active at the same time. For naive
replication, this value is only limited by the number of nodes
available in a cell. However, to limit computation time its value
can be set to a reasonable upper limit, and can then be further
increased should a strategy with maximum RL be chosen by
our algorithm. For EC, Lmax equals n. Figure 2a shows an
example for a single-cell replicated system with Lmin = 1 and
Lmax = 2. The states I in the model comprise two types. First,
there are regular states (uncolored) for which the number of
reserved copies, and the number of active copies are the same.
There is a state corresponding to RL 0, 1, . . . , Lmax. These
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Fig. 2: Problem description.

states are also present in [8]. Second, we introduce action
states (colored), which represent a decision to change the RL.
In HDFS the current RL can be queried via the Application
Programming Interface (API). The desired RL can be set via
the same interface. The action costs can be estimated using
advanced energy profiling methods, such as the one proposed
in [15]. For practical purposes it typically suffices to consider
the hosting costs proportional to the RL. The migration cost
can be approximated as proportional to the amount of data
transferred through the network. In the following, we assume
that scaling out takes a certain exponentially distributed time,
while scaling in happens instantaneously. For a multi-cell
configuration, the states and actions can be derived in a similar
way.

The action states with an intermittent border represent
actions which can only be taken upon the initial deployment
of the service, when 0 copies are active. The corresponding
actions are assumed to take place immediately. After initial
deployment, the data is available or unrecoverable, depending
on whether the service state is in ION or IOFF respectively.
ION = {1, 1→ 2, 2} and IOFF = {0}. A0 = {0→ 1, 0→ 2},
A1 = {1 → 0, 1, 1 → 2, 1 → 3}, A2 = {2 → 0, 2 → 1, 2}.
Note that when the service is in an action state at the beginning
of an MI, then the only possible action is to stay in this same
state. In any state, choosing to stay in the same state, is a valid
action. For any of the instantaneous actions, there are is only
one possible next state. These states are not considered in ION
and IOFF as the service will never be observed in this state at
the start of an MI.

The recovery rates can be estimated directly from historical
data. The transition probabilities corresponding to failures can
be determined in two ways. First, in real deployments the
transition rates can be derived directly from observed replica
failures, e.g., using maximum likelihood estimation. Second,
they can be determined from the nodal failure distribution.
Given a failure burst, we can compute the expected fraction
of copies made unavailable by the burst. Assuming that copies
are uniformly distributed across nodes of the cell, the replica
failure rates in the model can be determined from the device
failure distribution combinatorially [8]. This approach will
taken in Section V.

Figure 2b illustrates that in our model the replication state
of each service is observed periodically, namely at the start
of each MI n. For each service the first MI (n = 0) takes
place upon initial deployment. Subsequent MIs (n > 0) are
separated by the management period h.

TABLE II: Service parameters as per SLA.

Parameter Description
δ Required lifetime in time-units.
T Required lifetime in MIs.
R Reward received when available at n = T .
V Penalty when not available at n = T .

At the start of MI n, the current replication state i of the
service is observed and the replication manager decides to
take action j ∈ Ai. The cost incurred to the system for taking
action j is given by Ci,j(n).

C. SLA model

The following SLA is considered. A service request has a
duration δ, comprising exactly T management periods. Hence,
for this service a decision will be made at the start of MI
n ∈ {0, 1, 2, . . . , T − 1}. If the service is accessible until δ
time-units after initial deployment, then the service provider
receives a reward R. In case the service is no longer available,
then the provider receives a penalty V . Figure 2b illustrates
the flow of a request. Table II provides an overview of the
service parameters.

D. Formal problem description

The GRMP is formally defined as follows. Given the
replication and service model defined in Section III-B and
Section III-C respectively, and that revenue of the provider is
determined by the costs that he makes and the potential reward
or penalty that he receives from the user. In order to maximize
expected revenue, which action should the replication manager
take at MIs n = 0, 1, . . . T − 1?

IV. ALGORITHMIC DESCRIPTION

Given the inputs described in Table I and Table II, we
maximize the expected reward over the entire request duration.
First, the algorithmic approach is described. Then, we present
the algorithm in pseudo-code.

A. Approach

The memoryless-property of the Markov model implies that
the behavior of the replicated service at the start of each MI
is only determined by its current replication state i, hence
the same goes for the expected reward. At the start of MI n,
the actions that will be taken for MI n + 1 up-to T − 1 are
unknown. We denote the best action when in state i at MI n
as Ji(n) ∈ Ai.

The expected reward of taking action j ∈ Ai at MI n,
namely Ri,j(n), is determined by two elements. First, the
immediate cost of this action. Second, the probability to
transition from j at n to all other states j̃ ∈ I at the start of MI
n + 1, and associated expected reward Rj̃(n + 1). Therefore
∀n ∈ {0, 1, T − 1} :

Ri,j(n) = −C(i,j) +
∑
j̃∈I

Pj,j̃(n)Rj̃(n+ 1) (1)



For state i ∈ I, n = T the reward is defined by the SLA:

Ri(T ) =

{
−V, i ∈ IOFF

R, i ∈ ION

(2)

Hence, using Equation 1 and Equation 2 we can recursively
determine the actions that maximize expected reward. ∀n ∈
{0, 1, T − 1}, i ∈ I :

Ji(n) = argmax
j∈Ai

Ri,j(n) (3)

and
Ri(n) = max

j∈Ai

Ri,j(n) (4)

Summarized, to maximize the overall expected reward at
the start of MI n, one needs to select the action with the
highest expected reward, given the current replication state
i. To calculate the expected reward for each possible action,
it suffices to know the cost of this action, the transition
probabilities to all states in I, and the associated expected
rewards, at the start of the next MI.

B. Algorithm
Using the approach described in the previous section, we

can find the best policy recursively. Algorithm 1 describes how
the best strategy can be found using Dynamic Programming
(DP). The values of Ji(n) and Ri(n) will be stored in tables
J and R respectively, to prevent unnecessary recalculation.

First, the decision table J and the table containing the
expected values R are initialized (Line 4 and 5). Ji(n) == ∅
signifies that the entry has not been calculated previously.
Calc(i,n) returns the expected reward for (i, n) and writes
the value in the table. All decisions and expected rewards
for all states in I and for MI n + 1, . . . , T will be either
retrieved from the tables, or calculated and stored. If the
decision for (i, n) was already tabulated, then the correspond-
ing value is returned (Line 10). If after initial deployment,
insufficient replicas are accessible, then the expected value is
−V (Line 15). When the service has reached the deadline,
and sufficient copies remain, then the expected value is R
(Line 20).

In all other cases, the best decision and corresponding
expected reward must be evaluated for all possible actions
(Line 23). Then, the action with the highest expected reward
is selected (Line 25) and the maximum expected value is stored
and returned (Line 27). Note that, the values are written to the
table to prevent unnecessary recalculation of J (Lines 14, 19,
25) and R (Lines 13, 18, 26).

The worst-case complexity can be derived as follows. The
decision table contains |I| × (1+ T ) entries. However, for the
column at n = T no actions need to be calculated (Line 14
and 19). For each entry (i, n) (Line 23), |Ai| possible actions
must be evaluated. We introduce A as the maximum number
of actions for any state. Evaluation of each action requires
|I| multiplications and additions. Hence, filling in the table
is O(|I|2TA). Note that we opted for a recursive formulation
to ease readability. In a real deployment, overhead should be
limited by an iterative implementation.

Algorithm 1 Proposed optimal replication algorithm.
1: var I, ION,A,C,P, T, R, V
2: for each i ∈ I do
3: for each n ∈ 0, 1, . . . T do
4: Ji(n) = ∅
5: Ri(n) = 0
6: end for
7: end for
8: procedure CALC(i, n)
9: if Ji(n) ! = ∅ then

10: return Ri(n)
11: end if
12: if i /∈ ION && n > 0 then
13: Ri(n) = −V
14: Ji(n) = 0
15: return −V
16: end if
17: if N == T && i ∈ ION then
18: Ri(n) = R
19: Ji(n) = 0
20: return R
21: end if
22: for each j ∈ Ai do
23: Ri,j(n) = −C(i,j) +

∑
j̃∈I Pj,j̃(n)CALC(j̃, n+ 1)

24: end for
25: Ji(n) = argmaxj∈Ai

Ri,j(n)
26: Ri(n) = Ri,Ji(n)(n)
27: return Ri(n)
28: end procedure

V. PERFORMANCE EVALUATION

We implemented a discrete event simulator that adheres
to the architecture depicted in Figure 1. The simulator was
implemented in Java. We simulate a single cell with 100
nodes. Since the model approximates devices within a single
cluster to be homogeneous, individual nodal and bandwidth
requirements can be ignored, as long as the aggregate capacity
within the cluster suffices. Additionally, the number of nodes
does not impact the expected reward, as only the nodes on
which the service are hosted impact the costs and availability.
However, increasing the simulated node count does impact
the simulation time as more failure events will be generated.
Failures arrive at a rate λ. For the number of failures in one
failure-event we used the bi-exponential model proposed by
Nath et al [16]. The probability of a failure event where i out
of u nodes fail is given by

pi = (1− α)f(ρ1, i) + αf(ρ2, i) (5)

For each node the Mean Time To Failure (MTTF) is given by

MTTF =
u

λ
∑u

i=1(ipi)
. (6)

Equation 6 can be used to generate failures with the same
burst size distribution, but with different MTTFs by varying
λ. We consider α = 0.009, ρ = 0.3 and ρ = 0.96,
unless specified otherwise. These values were extracted from
real live deployments on PlanetLab [16]. In the experiments,
recoveries can only be initiated at the start of a MI. To prevent
accumulation of failure events during an MI, the period must
be sufficiently smaller than the MTTF. Under this condition,
the exact value of the MI does not influence the expected
reward.
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A. Static naive replication

1) Simulation setup: In this setup, we consider a replicated
system with Lmin and Lmax equal to 1 and 5 respectively. A
hosting cost model with a cost per unit time of 0.1 per replica
is used. The cost is proportional to the number of duplicates
reserved. Two replication algorithms are considered. First,
Optimal time-dependent is our proposed algorithm. Second,
Fixed Replication(L) is the default replication strategy in
HDFS. This strategy always tries to return to a predefined
RL, L = 1, 2, 3, 4, 5.

2) Results: The influence of the MTTF on the expected
reward is shown in Figure 3. The request duration is 1000, and
h = 100. R and V are 1000 and 10000 respectively. The mean
instantiation delay equals 10, for any recovery process. For
all MTTFs the expected reward per request of our proposed
algorithm is equal to, or higher than for the fixed replication
strategies. For low MTTF values the expected reward is
dominated by the impact of SLA violation. The expected
reward per request is equal to that for FixedReplication(5).
When the MTTF goes up, then the expected reward increases
for all fixed RLs. For high MTTFs failures are very unlikely
and the best policy will be to minimize the operational costs.
In Figure 4, the cost per unit time is varied from 0.1 to 16.
The hosting cost has a dramatic effect on the expected reward.
Clearly, our algorithm performs best over all cost levels as it
is aware of the operational costs. For low operating costs, the
maximum RL is optimal. However, when the cost increases,
then the maximum RL becomes the worst. For a cost per unit
time of 0.8 our algorithm performs 17% better then the others.
For a cost per unit time of 1.6 our approach is still profitable
(+448) while the others have a negative expected reward (-498
and worse). These results show the importance of considering
operational costs.

Next, we investigate the influence of request duration on
the expected reward in Figure 5. MTTF = 8000, instanti-
ation delay=10, h = 100, cost per unit time=0.1, R=10000,
V=100000. Reward and penalty are assumed proportional to
the request duration, which is more or less realistic. For
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Fig. 4: Static naive replication: influence of the hosting cost
on expected reward for MTTF=8000.
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Fig. 5: Static naive replication: influence of the required
lifetime on the expected reward.

low request durations, all six algorithms perform similarly
as the probability of failure is negligibly low. When the
request duration increases, then the expected reward increases
for all algorithms. The performance of Fixedreplication(5)
coincides with our algorithm. Note that this is because the cost
per unit time is only 0.1. Hence, for the maximum duration
of 20000 time-units, the total operating cost per request can
only vary between 0 and 1000. However, the pay-off can be
either 10000 or -100000.

The associated computation time to generate the decision
Table for each request is shown in Figure 6. The computation
time is averaged out over 10 runs. The computation time
goes up linearly with the number of decision intervals, as
determined in Section IV-B.

B. Static Erasure Coding replication

1) Simulation setup: In this setup we consider a (10, 14)-
erasure coded system. This time as cost we consider the data
transferred by the recovery process. To completely recover
from f failures, with a block-size b, (f+k)×b must be trans-
ferred. We compare our algorithm to LazyReplicaton(L), for
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Fig. 7: Static EC replication: expected reward as a function of
the failure correlation (stripesize=256MB).

L = 0, 1, 2, 3 [11]. A recovery is only instantiated when more
than L failures have been detected.

Again the request duration is 1000. R = 10000, V =
100000, h = 100, MTTF = 8000. The mean recovery time
is 50.

2) Results: In Figure 7 and Figure 8 the probability of a
large scale failure burst α is varied. For low α the failures
are relatively uncorrelated, while for high α there is a high
probability of a large-scale failure burst.

Clearly, the expected reward goes down as the failure
correlation increases. Overall, our proposed algorithm exceeds
the performance of the others. Note that for a stripesize of
256MB LazyReplication(2) performs second best, while for
a stripesize of 512 MB LazyReplication(3) performs second
best. This can be explained by a doubling of the recovery cost,
which results in an optimal policy with a higher probability
of data-loss.

Figure 9 and Figure 10 show the relation between data-
loss probability and expected transfer costs for the generated
policies. The reward is varied logarithmically between 102 and
108, and the penalty equals 0. It is clear that the performance

2 4 6 8 10

10
-3

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fig. 8: Static EC replication: expected reward as a function of
the failure correlation (stripesize=512MB).
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Fig. 9: Static EC replication: relation between recovery volume
and probability of data-loss (MTTF=2000).

of our proposed algorithm dominates the Lazy Replication
algorithm. Moreover, the distribution of data-points shows that
the proposed algorithm can generate a rich set of replication
strategies, that trade-off recovery costs for data-loss. This
figure illustrates the importance of balancing availability and
operational costs to maximize expected revenue.

C. Dynamic replication

1) Simulation setup: In this setup we consider naive repli-
cation with minimum 1 and at most 10 replicas. Again, we
consider a hosting cost per unit time of 0.1. We simulate
a dynamic environment, where the failure behavior changes
abruptly. MTTF = 5000 for t ∈ [0, 500000[ and equals
10000 for t ∈ [500000,+∞[.

The request duration is increased to 10000, with h = 100,
with both R and V equal to 100000. The mean time between
requests is exponentially distributed with mean 100. In total
10000 service requests are generated.

Every 100000 time units the failure arrival rate λ is re-
estimated using a rolling window of 100000 time units. Based
on this λ̂ the failure probabilities are re-estimated and a new
decision table is generated. Because the reward and duration
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Fig. 10: Static EC replication: relation between recovery
volume and probability of data-loss (MTTF=15000).
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Fig. 11: Dynamic replication: reward per request.

of the generated requests are identical, this table can be shared
by all services.

2) Results: For each service request the accumulated re-
ward (including penalty, reward and costs) and the accumu-
lated cost is tracked. At the start of each MI the current
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Fig. 12: Dynamic replication: cost per request.

replication state is evaluated. When the service is off-line, then
a penalty is incurred. In case the deadline has been reached,
then a reward is added. In both cases a reward or penalty
is added and the accumulated reward is written to a logfile.
No future MIs are scheduled for this service. In case the
deadline was not reached (yet), then the replication manager
consults the decision table. If the decision table is older than
100000 time units, then a new decision table is generated. The
replication manager selects the next action from the table and
the corresponding cost is accumulated.

Figure 11 and Figure 12 show the received rewards and host-
ing costs incurred for the generated requests. The smoothed
traces result from a moving average with window size 1000.
While the failure probability is lowered at t = 500000,
the decision table is only updated with the new value of
λ̂ at t = 600000. In [500000; 600000[ the expected reward
increases gradually, as the probability of data-loss goes down.
While this is not immediately clear in the raw data, the
smoothed line clearly goes up. In this same period the average
costs increase slightly, because more services live through
their entire required lifetime, resulting in a higher overall
resource consumption. At t = 600000 the decision table is
updated. The reward goes up linearly in [600000; 610000[,
because the decision table is updated for running services. At
t = 610000 we see that both average reward and cost remain
stable. Compared to t < 500000 our replication algorithm has
switched to a lower RL, increasing the average reward and
lowering operating costs.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a novel unified approach towards
the analysis or replicated systems, and the synthesis of a cost-
effective replication strategy. We approach the problem of
replica management in fault-tolerant cloud environments as a
run-time revenue optimization problem. While some related
works have either solely focused on analysis of replicated
systems, others made very unrealistic assumptions on recovery
and failure rates. Our approach is based on a dynamic failure
model and can be applied to both single datacenters and geo-
distributed cloud environments. As the cell dimensions go
up, the underlying model becomes more accurate and the
computation time remains the same. Therefore, our approach is
particularly of interest for revenue optimization in very large-
scale cloud networks.

We show that, while other works propose fixed placement
strategies for specific cloud environments, our adaptive algo-
rithm yields significant profitability improvements in a wide
range of cloud and SLA conditions.

The major limitation of our work is that the computation
time of the proposed algorithm is proportional to the number of
MIs. Currently, the MI must be small to the MTTF. Therefore,
future work includes switching between replication strategies,
instead of deciding on individual replication operations at the
start of an MI. This modification relaxes the requirement on
the MI, in that it only has to be small compared to the required
service lifetime.
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