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Abstract—Network virtualization is a technique that abstracts
the underlying physical infrastructures into multiple isolated
networks. Currently, network virtualization based on Software-
Defined Networking (SDN) has attracted interests from industry
and academia to utilize limited network resources by using
benefits of SDN. SDN has useful features such as programma-
bility, flexibility, and agility. In order to virtualize networks in
SDN, a network hypervisor intercepts and modifies OpenFlow
messages so that it provisions multiple virtual networks, virtual
Software-Defined Networks (vSDNs). However, existing SDN-
based network hypervisors do not provide an easy-to-use method
to connect a created vSDN with external networks. It limits the
usefulness of vSDNs. To resolve this problem, we propose a virtual
gateway for external connectivity in vSDN. The proposed virtual
gateway is implemented using ONOS virtualization subsystem.
The virtual gateway is able to provide external connectivity and
other useful network functions such as firewall, traffic shaping,
and load-balancing. To demonstrate the feasibility of virtual
gateway, we evaluate round trip time and deployment time
to show a connectivity and overhead of the virtual gateway
deployment.

Keywords—Software Defined Networking (SDN), Network Vir-
tualization, Network Hypervisor, Virtual Gateway, Virtual Net-
work Management, virtual SDN (vSDN)

I. INTRODUCTION

Network virtualization [1] is an attractive technique to
flexibly and efficiently utilize limited network resources such
as CPU or memory of network devices and bandwidth of
each link. Over the past decade, server virtualization has been
used widely in the real world to make more efficient use of
server resources, physical space of servers as well as electricity
[2]. For instance, a hypervisor is implemented for server
virtualization. Hypervisor is a platform to monitor resources of
a physical machine and allocate resources to each virtual ma-
chine operating on the physical machine. This concept makes it
possible to efficiently utilize resources of a physical machine.
Likewise, a network hypervisor is emerged to virtualize a
physical network. With a network hypervisor, virtual networks
can be created by sharing physical network infrastructures
[3]. In order to satisfy virtualization requirements, Software-
Defined Networking (SDN) can be a good solution due to
its useful features including a global view of the network.

Moreover, an SDN controller can provide effective functions
to manage virtual Software-Defined Networks (vSDNs).

SDN is a new networking paradigm which decouples the
control plane from the data plane. SDN provides a centralized
control plane, an SDN controller, to manage the underlying
forwarding network devices. An SDN controller provides a
flexible and efficient interface to enable a network manager to
apply network functions rapidly. On the other hand, owing to
the decoupling, a communication protocol between the control
plane and the data plane is required. For that reason, OpenFlow
[4] is defined and used as a de-facto standard protocol in SDN.
Moreover, an SDN controller has a global view of the network,
so it is possible to monitor network resources and manage the
networks dynamically. With SDN, a network hypervisor placed
between the control plane and the data plane intercepts and
modifies OpenFlow messages for network virtualization.

Currently, there exist SDN-based network hypervisors such
as FlowVisor [5], Vertigo [6], FlowN [7], and OpenVirteX
[8]. They are used to build isolated vSDNs. These network
hypervisors build vSDNs based on slicing. Network slicing is
a concept to imply that actions in one slice do not negatively
affect other slices, even if they share the same underlying
physical hardware [9]. Since each vSDN operates on its net-
work slice, each vSDN is isolated. However, those hypervisors
only focus on creating vSDN. In addition, they do not provide
a method to connect vSDN with external networks, external
connectivity.

Accordingly, several solutions have been emerged for ex-
ternal connectivity such as virtual router using OpenStack
[10] and Microsoft’s virtual machine manager (VMM) [11].
However, they just deploy a virtual machine as a virtual router
and attach an additional interface which provides network
address translation (NAT). Since their virtual machine is
used for external connectivity, it is difficult to apply various
network functions including traffic shaping, load-balancing,
and firewall. In addition, to the best of our knowledge, there
is no solution to provide external connectivity for vSDN by
SDN-based network hypervisor. For that reason, we propose
a concept and design of a virtual gateway. The proposed
virtual gateway is deployed in vSDN, and it provides methods
to handle packets which need to traverse through external
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networks. Moreover we provide an easy-to-use way to deploy
the virtual gateway via ONOS [12]. Specifically, we leverage
ONOS virtualization subsystem.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the overall archi-
tecture of the proposed virtual gateway. Section IV presents
an implementation of the proposed virtual gateway. Section V
shows evaluation. Finally, Section VI presents the conclusion
and future work.

II. RELATED WORK

One of main components for network virtualization in SDN
is an SDN controller. An SDN controller can be a tenant
controller of each virtual network, and also provide methods
for network virtualization itself. For instance, OpenDayLight
[13] and other similar controllers provide sub-systems to build
virtual networks. However, those controllers would allow the
control of virtual network slices only via the application-
control plane interface (A-CPI). Thus, these SDN controllers
could not communicate transparently with their virtual net-
work slices [14]. In order to overcome this limitation, SDN-
based network hypervisors have been implemented. A network
hypervisor is a critical component to abstract the underlying
physical infrastructures.

FlowVisor [5] is one of the oldest network hypervisors in
SDN. FlowVisor defines a slice as a set of flows, one flow
is called flowspace of slice, and 10 fields are defined by
OpenFlow V1.0. FlowVisor distinguishes slices by setting the
flowspace not to overlap among different slices. Each slice is
assigned to one tenant, and tenants can manage the allocated
slice separately using an OpenFlow-based controller. Thus,
tenants can have their own virtual network based on slices.
Beyond the FlowViosr, Vertigo [6] was implemented based
on FlowVisor. Vertigo allows tenants to define virtual links
within their network slice, allowing them to create topologies
per tenant. While FlowVisor’s network slice is represented
only as a subset of the physical network, Vertigo can create
a slice of all physical network subsets as well as abstract
the physical network into a single big switch. However, since
Vertigo is also based on FlowVisor, it has the problem of not
providing completely isolated address space to tenants. FlowN
[7] introduced a database management system to manage
the mapping between physical and virtual networks. Using
OpenFlow technology, each tenant can run network control
logic directly on their controller, reducing the burden on
physical switches. The mapping information between physical
and virtual networks is designed to be manageable in an
expandable form. By introducing a new network abstraction
model, the network can be abstracted and it allows each tenant
to construct an arbitrary network topology. FlowN uses a
container-based network virtualization method that shares a
single FlowN controller across multiple tenants rather than
assigning controllers independent of each tenant. This has
the disadvantage that the control logic of each tenant must
be embedded in the FlowN controller. On the other hand,
OpenVirteX (OVX) [8] allows to assign different OpenFlow

controllers to each tenant, allowing network managers to
configure and control the tenant-specific virtual network. OVX
is located in the virtualization layer in the virtual network
composed of the physical layer, the virtualization layer, and
the network operating system layer, and performs mapping
of virtual resources and physical resources with the help of
network embedder. Moreover, OVX is a network virtualization
platform designed to be highly scalable. OVX is capable of
N:1 mapping between virtual resources and physical resources,
providing flexibility of virtual network configuration.

Most network hypervisors are deployed between the control
plane and the data plane as a proxy. In addition, they mainly
focus on creating virtual networks by slicing. However, they
do not consider a method to connect each virtual network
with external networks. If a virtual network needs to connect
with other networks, a general method is to deploy a virtual
machine which has an additional interface connecting with ex-
ternal networks and then deliver packets through that machine.
Although it can provide external connectivity, it is insufficient
as a network solution and it has limitations to deal with all
packets which traverse via the virtual machine.

III. PROPOSED ARCHITECTURE

vSDN is deployed by creating virtual devices and links
mapping to physical infrastructures. Thus, to provide external
connectivity for vSDNs, firstly, a physical network should
have a physical gateway connecting with external networks.
After that, a virtual gateway component is created and then
embedded on the physical gateway. The virtual gateway does
not need to be embedded on the physical gateway directly.
Instead, the virtual gateway can be embedded in one of
OpenFlow switches of the physical network. After embedding
the virtual gateway, a network hypervisor should install flow
rules and additional actions to deliver packets to a physical
gateway. Our proposed concept is presented in Fig. 1.

Fig. 1. Overall design



A. Requirements

To connect a virtual network with external networks, an
easy-to-use way enabling the connectivity is essential. Thus,
we propose and design a virtual device as a virtual gateway.
The proposed virtual gateway allows vSDNs to connect with
external networks. When a packet which should be delivered
to or from external networks exists, the virtual gateway must
deal with the packet. Since each host of virtual network usually
is assigned its private IP address, the virtual gateway should
provide NAT function to avoid address conflict. Otherwise,
a physical network itself can provide the feature, that is, a
virtual gateway can just deliver packets through the physical
gateway. For that reason, a main requirement of the proposed
virtual gateway is to connect with a physical gateway and
apply additional functions which should be used for external
connectivity. Moreover, we should guarantee that our proposed
method does not negatively affect on virtualization principles.
The detailed requirements are as below.

• Virtual network embedding mechanism for mapping a
virtual gateway to a physical gateway

• Tunneling based on VLAN tagging
• Maintaining network virtualization principles
• NAT function to avoid address conflict
• Forwarding application for virtual network

B. SDN-based Network Hypervisor Approach

SDN-based network hypervisor is responsible for network
virtualization by intercepting and modifying OpenFlow mes-
sages. Due to the feature of SDN, the network hypervisor
can also have the global network view. The network hy-
pervisor consists of multiple layer to support virtualization.
First, the hypervisor includes southbound interface (SBI) and
southbound message handler to handle each SDN protocol’s
packet. Based on OpenFlow, network hypervisor manages
physical network resources such as devices, links, ports,
and so on. Those resources are abstracted and provided for
the upper layer as objects. Through the abstracted resource,
virtualization layer can deal with them. A main role of the
virtualizaion layer is to virtualize physical network in terms of
three concepts including address virtualization, topology vir-
tualization, and control plane isolation. Address virtualization
enables each tenant can use independent IP address without
considering other networks. Topology virtualization provides
a virtual topology to each tenant. Thus, a tenant can have
virtual network topology based on its requirement. Finally,
control plane isolation is responsible for connecting each
virtual network with only allowed tenant controller. Our virtual
gateway leverages the topology virtualization to create and
connect. The overall SDN-based network hypervisor design is
shown in Fig. 2.

C. Virtual Gateway Design

Whenever there are packets which are to be delivered to
external networks, a virtual gateway delivers them through a
tunnel by VLAN tagging, and then the physical gateway for-
wards the packets to the external networks. Since each vSDN

Fig. 2. Network hypervisor design

uses independently private IP address, NAT function should
be provided. This is because packets of each virtual network
should use public IP address when they connect with outside.
With NAT, a virtual gateway translates and identifies packets
and then forwards them to a destination. Moreover, a virtual
gateway should provide additional functions such as traffic
shaping, load balancing, and firewall to handle traffics. In order
to provide the functions, a virtual gateway has components to
store policies how to apply the functions. As a virtual gateway
is created and configured by a network hyperviosr, these
policies are also deployed by a network hypervisor. Through
the functions, a virtual gateway allows each tenant to operate
virtual networks satisfying their requirements. Additionally, a
virtual gateway is one of virtual devices, so flow rules must
be installed. Thus, it has a virtual flow rule table for virtual
flow rules. Virtual flow rules should be installed by referring
function policies to handle traffics properly. In order to forward
packets through the virtual flow rules, virtual gateway has to
translate them to physical flow rules and install to the physical
infrastructures. For that reason, a virtual gateway includes a
flow rule translator. Finally, flow rules with proper actions are
installed in the underlying infrastructures, and it can handle
traffics. A design of virtual gateway is presented in Fig. 3.

IV. IMPLEMENTATION

The proposed virtual gateway is an easy-to-use way en-
abling vSDN to connect with external networks. It is embed-
ded automatically onto a physical gateway and handles all traf-
fics which transverse between vSDN and external networks. In
this paper, we implemented the proposed virtual gateway as a
virtual device, that is a virtual switch. Virtual device has virtual
ports, virtual links, and provides connectivity with hosts. To



Fig. 3. Virtual gateway design

virtualize physical network, virtual devices should be mapped
to physical devices, that is, virtual network embedding. An
SDN-based network hypervisor is responsible for this embed-
ding process. We exploited ONOS virtualization subsystem as
a network hypervisor. The virtualization subsystem is a net-
work framework included in ONOS. ONOS has a layered ar-
chitecture, and each layer has a specific components which are
application, manager, and provider. As a network hypervisor,
it provides virtualization layers including virtual services and
providers named Default*Providers, such as Default Virtual
Network Provider and Default Virtual Packet Provider [15].
Since this virtualization subsystem is a part of ONOS, it also
exploits other subsystems. For example, to identify each edge
port and generate address resolution protocol (ARP) request
messages which are required in our proposed method, several
existing services such as EdgePortService, PacketService can
be combined. By using this feature, a process for virtual
gateway deployment was implemented.

When we need to deploy a virtual gateway, the first step
is to find physical interface/port which is a connect point
connecting with external networks. This step is for embedding
a virtual gateway to the connect point. Owing to the global
view of SDN controller, ONOS can get all port information.
Since a network device can have multiple ports, there are
a number of ports in the network. Thus, tracking all port
information is an inefficient method. Instead, we get only edge
ports of each switch. The edge port information is provided by
edgePortService of ONOS. However, this information is insuf-
ficient to identify an interface connecting with outside. This
is why we generate ARP requests via edge ports. We assume
that a default physical gateway IP address is announced. By
using the IP address, each ARP request packet is generated
and forwarded to receive a reply message. Accordingly, one
of ports can receive reply ARP message if the port connects
with physical gateway which provides external connectivity.
After the reception, ONOS creates a virtual gateway and adds
virtual port mapping to the identified physical port. As a
result, a virtual gateway which has external connectivity is
provisioned. The detailed process is presented in Algorithm 1.
In addition, we exploited PacketService to allow virtualization
subsystem to listen data packets received from network devices
and to emit data packets out onto the network. This enables

a network hypervisor to generate ARP request packets and
receive ARP reply packets. Basically, PacketService emits
packets through a connect point which consists of network
device ID and a port number. Thus, virtualization subsystem
can send a packet through a connect point. Moreover, ONOS
itself provides a OutBoundPacket service to build a packet
emitting onto the networks. By using this service, we can
generate ARP request packets. After sending ARP request
messages, it should listen an event which ARP reply messages
are arrived. By default, each network device has a default
rule to deliver ARP packets to the controller [16]. Thus, we
deployed a PacketProcesser which is responsible for listening
a packets from a network devices and processing them. This
PacketProcessor is added when the first ARP request packet
is sent, and then it is removed at least one ARP reply packet
is returned. We extended a command line interface (CLI) to
provide a way for virtual gateway deployment. Thus, external
connectivity of each vSDNs can be provided optionally. If
there is a vSDN which does not want to connect with external
network, it is possible. The overall service relationship is
shown in Fig. 4.

Fig. 4. Service relationship for virtual gateway deployment

ONOS virtualization subsystem also provides a simple vir-
tual network embedding mechanism based on port-based map-
ping by isolating each virtual network using VLAN tags. After
virtual network embedding, ONOS needs to install virtual flow
rules for packet forwarding in the virtual network. The virtual
flow rules should be translated and then deployed in each
physical device. For example, a flow from port 1 of virtual
device 1 out through port 3 could be changed into the flows
from port 2 of physical device 1 out through port 1 of physical
device 2. To construct a path connecting physical device 1
and 2 for a virtual flow rule, ONOS virtualization subsystem
introduce a notion of Internal Routing Algorithm. By obtaining
internal routing path using Internal Routing Algorithm, the
substrate topology virtualization can be achieved. Additionally,
we implemented forwarding application on ONOS to achieve
flow rule deployment of each virtual network.



Algorithm 1 Virtual gateway deployment
Require: Input (vNetId, vDeviceId, Gateway ip)
Ensure: Output (vGateway)

1: edgePorts← edgePortService
2: for current port ∈ edgePorts do
3: Generate ARP Request Msg
4: ARP Request Msg.dst ip ← Gateway ip
5: if Receive ARP Response Msg then
6: port ← Response Input Port
7: Create vDevice(vDeviceId)
8: Create vDevice Port(vDeviceId, vPortNum)
9: Bind vPort(vDeviceId, vPortNum, port)

10: break
11: end if
12: end for

V. EVALUATION

To evaluate the proposed virtual gateway, we built a emu-
lated SDN testbed using the Mininet emulator. This testbed ran
on a bare metal server (hexa-core 3.47 GHz Intel Xeon CPU
with 48 GB RAM). In this testbed, we created a network topol-
ogy shown in Fig. 5. It is a k-level tree topology. According
to the k value, the number of switches is determined. We built
network topology from k=1 to k=7, so the number of switches
is from 1 to 127. Since each host of the network uses a private
IP address, we deployed NAT component between the physical
gateway and the Internet. As a result, all traffics which needed
to transverse the external networks are translated via the NAT
component.

Fig. 5. Testbed (k=4)

A. Round Trip Time

vSDN which has the virtual gateway can communicate
with external networks. To show the external connectivity,
we generated ICMP ping messages between two hosts that
one of host is located in vSDN and the other is located
in external network. In addition, we experimented it on 4-
level tree topology and deployed an external host as a virtual
machine through Google cloud platform [17]. Thus, they are
connected via the Internet as shown Fig. 5. In this condition,

h1 generates ICMP ping messages 100 times to the external
host, h2. Moreover, we indirectly show how virtual network
affects network performance compared to physical network.
For that reason, we measured latency, Round Trip Time (RTT),
by considering 3 scenarios 1) without network virtualizaion
in physical network, 2) with a virtual gateway in vSDN (big
switch), and 3) with a virtual gateway in vSDN (physical
network clone). According to the experiment, RTT is measured
as shown Fig. 6. We measured RTT in terms of initial RTT
and average RTT. The initial RTT includes installation time
for virtual flow rules. When a virtual gateway is not deployed
in vSDN, all requests targeting to external networks fail to
receive reply messages. On the other hand, if a virtual gateway
is deployed, ping messages can be delivered from h1 to h2
and RTT is measured. On the physical network, initial RTT
is 116ms and average RTT is 75.44ms. In contrast, initial
RTT is 163ms and average RTT is 75.56ms on vSDN as a
big switch. Finally, intial RTT is 166ms and average RTT is
129.92ms on vSDN as a physical network clone. Since the
scenario 3 is more complex vSDN, both measurement results
are increased. According to the result, we can conclude that
the virtual gateway allows vSDN to connect with the external
network. Furthermore, it shows that when traffic is delivered
to the external network based on virtual network, it increases
latency. This is why the virtualization gives a virtualization
overhead to the physical network.

Fig. 6. Round trip time

B. Deployment Time

In order to evaluate overhead for virtual gateway deploy-
ment, we measured deployment time when virtual gateway
creation is required through CLI. After request, a virtual
gateway is created and it finds a physical port connecting with
external network and maps to the port. We measure the period
from a request and to the end of mapping process as shown
Fig. 7. If the number of switches are small, from 1 to 15,
the average deployment time is quite small as well. They are
21.5ms, 21.8ms, 20.2ms, and 24.5ms respectively. However,
if there are many switches, deployment time increases as



well. In this case, average times are 172ms, 2304ms, 4221ms
respectively when the number of switches is from 31 to 127.
This is because the number of switch increases, edge ports
increase as well. Thus, a network hypervisor needs more time
to identify each edge port and generate an ARP request packet
via the port.

Fig. 7. Deployment time

VI. CONCLUSION

Network virtualizaion with SDN has attracted significant
attention in the network area. With the useful features of
SDN and SDN-based network hypervisor, vSDNs can be
created. However, existing SDN-based network hypervisors
do not provide a way for external connectivity as a network
solution. Thus, in this paper, we have proposed a virtual
gateway in vSDNs for external connectivity. A virtual gateway
is embedded on a physical network and it roles as a virtual
device. Our contribution is to propose a concept of virtual
gateway which can be easily created and embedded to allow
each vSDN to connect with external networks.

Our future work includes defining functional requirements
for a virtual gateway in more detail and implementing services
for them. In this paper, we initially have shown a feature
and functionality of virtual gateway using SDN-based network
hypervisor, ONOS virtualization subsystem. Thus, the top pri-
ority task as a future work is to implement network functions
provided by a virtual gateway such as traffic shaping, firewall,
and load-balancing. Additionally, current virtual gateway only
provides port-mapping based embedding mechanism which
does not consider current utilization of the underlying network.
For that reason, it needs to support automated and optimal
virtual network embedding mechanism. Furthermore, since
virtual networks run on the underlying physical network in-
frastructure, failures from the physical network can propagate
to the running virtual networks. Likewise, if a physical device
mapping to a virtual gateway has a problem, virtual networks
lose external connectivity. In order to minimize the problem,
we need to provide a resilience solution. Finally, we plan to
improve the proposed virtual gateway using results obtained

from additional experiments, and evaluate in terms of various
performance matrices.
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