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Abstract—An essential requirement in operating a carrier-
grade network (CGN) is ensuring the high availability and relia-
bility. Software-defined networking (SDN) is expected to address
such requirement while improving the network management.
One challenging issue faced in the process of enhancing the
reliability of SDN-enabled CGN is how to achieve rapid recovery
with minimal effort. There are two well-known approaches
to determine the failover scope: end-to-end (global) detouring
and local detouring. Particularly, the local detouring approach
provides an efficient means to achieve faster recovery, as it
locally detours the disrupted flows around the failed network
components using a preconfigured alternative path. However, it
requires thousands of flow entries per switch to be configured.
To address the technical challenges, we propose a fault-tolerant
forwarding table design (FFTD), which groups the flows using
group entries and aggregates the flows using a tagging mechanism
for scalable and rapid recovery from the dual-failures of switches
or links without overburdening the controller and the flow table’s
memory. Our extensive emulation results reveal that the proposed
FFTD satisfies the CGN’s 50 ms recovery requirement. Addition-
ally, it reduces the alternate path flow storage requirement by
up to 99%.

Index Terms—OpenFlow, Software-defined networks, Com-
puter network reliability, Fault tolerance, Network management

I. INTRODUCTION

For the timely service delivery, it is necessary to minimize
the service disruption time on a link or a switch failure. The
traditional routing methods based on path-vector, distance-
vector, and link-state usually take several seconds to update
the routing table and reroute the connections after the failure
detection. For the time-critical applications in the carrier-grade
networks (CGN), the desired failure recovery is required to
happen within 50 ms [1]. Over the years, Software-defined
networking (SDN) has been employed in various use cases
such as mobile networks [2], data center networks [3], wide-
area networks [4] for simplifying the network management
with a holistic view of the network, based on the control and
data plane separation [5]. Such networking paradigm presented
by SDN is expected to facilitate a rapid and efficient recovery
in the CGN [2], [6].

A recovery can be achieved using either a restoration
mechanism or a protection mechanism [7]. In the case of
restoration mechanism, the controller finds and configures the
alternate path to detour the disrupted flows after receiving
the failure notification [8]–[10]. In SDN, the controller must
instantly find and configure the alternate paths for disrupted

flows to achieve a faster recovery. However, the time spent for
the recovery procedure depends on the number of disrupted
flows to be detoured, so it is challenging to guarantee a fixed
recovery time. An attempt to rapidly recover a higher number
of flows may overburden a resource-constrained controller and
degrade its performance. Moreover, the recovery-specific flow
modification messages may overwhelm the failure-affected
switches.

In the protection mechanism, the SDN controller pre-
provisions the alternate paths so that the source switch on the
failure-affected path can reroute the disrupted flows without
any assistance from the controller. Several proposals, based
on the end-to-end path protection mechanism, have reduced
the recovery time in comparison to the restoration-based
approaches [11]–[16]. However, provisioning the alternate
path for every flow on the network requires considerable
Ternary Content-Addressable Memory (TCAM) to store the
flow tables, which could magnify with the increase in the
number of flows to protect. Preconfiguring the flow rules of
the primary and alternate path of every incoming flow causes
an additional overhead on the controller.

In an attempt to conserve TCAM while achieving the link
recovery, authors of [17] proposed to label the failure-affected
flows, so they can be identified using a common flow entry
on the alternate path. Authors of [18], [19] proposed a flow
compression scheme to dynamically merge the alternate path
flow rules of the incoming flows with the existing flows on
the alternate path based on the common header fields. Such
dynamic compression procedure with the arrival of every new
flow may increase the burden on the controller. The possible
compression depends on the common header fields between
the existing flow entry and the incoming flow, which makes
the TCAM resource allocation planning unpredictable.

Most of the current failure management proposals in SDN
can be categorized based on its recovery scope i.e. link
recovery or switch recovery. There are few proposals that
handle the joint recovery from the link and switch failure [11],
[20]. Authors of [11] proposed a path protection-based joint
recovery scheme, but it suffers from the inherent shortcom-
ings of path protection mechanisms. From the review of the
previous studies and its limitations for a rapid and lightweight
recovery, we conclude that the recovery scheme must follow
following requirements; (i) protection mechanism should be
employed, (ii) TCAM consumption should be minimum, (iii)
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recovery should be local, (iv) intervention of the controller
should be minimum.

In this paper, we extend our earlier work in [20] and
propose a fault-tolerant forwarding table design (FFTD) for
a scalable and rapid joint failure recovery on dual-failures.
Our proposed FFTD guarantees an end-to-end available path
even if a flow encounters an additional link or switch failure
on the alternate path. FFTD provides the local protection
to network components (link/switch) on the alternate path
calculated for every switch/link in the network. We modified
the flow aggregation and flow grouping strategies used in
our previous work for handling single failures to efficiently
handle the dual-failures. We evaluated the overall performance
regarding the control plane recovery overhead, recovery time,
and alternate path flow rules requirement. From the early
evaluation results, we confirm that our proposed FFTD takes 3
ms on average for detouring without the proportional increase
of TCAM requirement.

II. BACKGROUND WORK

A. Controller Independent Proactive Network Design for Sin-
gle Link/Switch Recovery

In the previous work [20], we presented a controller in-
dependent proactive (CIP) network design with flow group-
ing and flow aggregation methods to achieve a rapid and
lightweight failure recovery from a single switch or link
failure. The Fast Failover (FF) group feature of the OpenFlow
has been used for grouping the flows. It detects the port failure
and locally detour the disrupted flows on the preconfigured al-
ternate path. The flows having the common action output port
are redirected to the FF group entry in the group table, which
further executes the primary action bucket being responsible
for forwarding the packet onto the output port as shown in Fig.
1. An FF group entry consists of a group ID, counters, and set
of action buckets. If the output port status in the first action
bucket goes down, it would be no longer available, and then
the FF group executes the next available action bucket. Such
local detouring of the grouped flows eliminates the need of
controller intervention for per-flow detouring, and thus enables
faster recovery.

Fig. 1: Structure of FF group.

A flow on its primary path originates from the source edge-
switch and reaches to the destination edge-switch. Before
reaching to the destination, it may traverse zero or more core-
switches or links and an edge-link connected to the destination
edge-switch. For the flow aggregation, the CIP scheme labels
the flows with failed component ID so that all the detoured
flows can be identified using a single flow entry in the switches

of alternate path. The flows that have encountered the upstream
core-link/switch failure are tagged with the upstream switch
ID, while the flows that have encountered the upstream edge-
link failure are tagged with the upstream edge ID. Therefore,
instead of configuring the alternate path on per-flow basis,
a single flow entry matching Virtual Local Area Network
(VLAN) label and input port in each switch of the alternate
path performs forwarding. Therefore, the flow aggregation
strategy reduces the TCAM consumption of the switches, and
also eliminates the burden on the controller to configure the
alternate path for every incoming flow.

For the aggregation of flows on its core component, the
flows were tagged with the core-switch ID and then redi-
rected to the group entry that forwards packets to the 2-hop
neighboring switch of the detour switch. However, in the case
of multiple destination switches, the controller needs to store
information about all the group entries in the network and
retrieve it while pointing the primary path flow rule to its
respective group entry. Additionally, it also needs to store the
information about group entries responsible for handling edge-
link failure. This approach of flow aggregation could increase
the storage as well as computational cost at the controller.
The CIP achieves recovery from a single switch or link failure.
Therefore, if the flows encounter an additional link or a switch
failure on the alternate path, then the provisioned alternate path
configuration cannot maintain the flow connectivity. However,
it is crucial to provide the resilience against multiple link
or node failures because almost 41% of the failures in data
centers involves multi-link failures [21]. The most common
approach for handling multiple failures is multipath protection,
where the disrupted traffic is switched from primary path to
the disjoint alternate path.

B. Multipath Protection for Multiple Recovery

Yang et al. proposed a multipath protection scheme for
handling multiple failures in OpenFlow-based networks [22].
After failure on the primary path with the highest priority (0),
the controller deletes the flow entries of the primary path from
the source switch to enable disrupted flows to select the flow
entries of the alternate path with lower priority (1). To protect
flows against m failures, it configures m disjoint alternate
path with distinct priorities. Fig. 2 illustrates the functionality
of multipath protection mechanism for handling dual-failures
[22], where the controller preconfigures the alternate path 1
to protect flows on primary path and an additional alternate
path 2 to protect flows on alternate path 1. On failure on the
primary path, the switch affected by the failure transmits a port
down notification to the controller. In response to the failure
notification, the controller deletes n flows rules of primary
path from the source switch that enables the incoming flows
to detour to alternate path 1.

For the multipath protection, the dependence on the con-
troller for detouring the higher number of disrupted flows
may increase the recovery time. It may also overburden the
controller with the procedure for per-flow detouring. More-
over, the configuration of the alternate path for every flow



Fig. 2: Multipath protection mechanism.

on the primary path increases the TCAM requirement for
storing flow rules. After switching to the alternate path, the
forwarding entries for the disrupted flows become obsolete and
need to be deleted to free the switch resources. Considering the
challenges in the existing work and limitation of our previous
work to handle just a single link/switch failure, we propose an
FFTD for scalable and rapid recovery from the dual-failures
at the data plane.

III. FAULT-TOLERANT FORWARDING TABLE DESIGN FOR
HANDLING DUAL-FAILURES IN SDN

In this section, we describe how dual-failures can be locally
handled; how FFTD configures the switches for the failover
operation with an example.

A. Configuration of Fault-tolerant Forwarding Tables

To facilitate the local recovery against dual-failure, FFTD
configures the forwarding rules in the alternate path switches
such that it can locally reroute the flows around the second
failed component on the alternate path. FFTD employs flow
grouping and flow aggregation methods with the FF group
table provided in the OpenFlow specification, and VLAN tag-
ging mechanism, respectively. In the proposed FFTD, instead
of tagging the flows with the failed component ID as done in
our previous work [20], the flows on its upstream edge-link
are tagged with the edge-switch ID, while, the flows on its
upstream core-link are tagged with ID of the 2-hop neigh-
boring switch of the detour switch. On the alternate path, the
disrupted flows are forwarded using single flow entry matching
the ID of immediate 2-hop or 1-hop neighboring switch. This
approach of flow aggregation reduce the complexity of flow
aggregation in dual-failure handling.

The FFTD preconfigures an alternate path between 1-hop
neighbors for every switch. The source switch of the alternate
path, which acts a detouring switch on failure, is configured
with an FF entry with three action buckets, where the first
bucket forwards the packets on the primary path while the
second and third buckets forward the packets on the alternate
paths. For the simplicity of understanding, we denote the
alternate path between 1-hop neighbor as AP1 and the alternate
paths configured for protecting the network components on the
AP1 as AP2. The group ID is set to the destination switch ID
in AP1.

Intermediate switches on the AP1, except the switch at-
tached to the destination switch, are configured with a flow

entry and FF group entry, where the packets are matched using
the ID of the destination switch and forwarded to FF group
entry whose first action bucket forwards the packet on AP1
and the second action bucket, on a failure of any component
on AP1, forwards the packet on AP2. In the switch attached to
the destination switch, the second action bucket of FF group
entry is configured to forward the packets to the next-hop of
the destination switch, which is a part of the primary path,
to mitigate the failure of the destination switch. Intermediate
switches on the AP2 are configured with a flow entry, which
matches the packets using the ID of the destination switch and
forwards it on the AP2 till the flow merges with the AP1.

The edge-switch recovery is not possible; but, the edge-
link recovery is possible. Therefore, the failure of edge-link
should not be treated as the edge-switch failure. For the edge-
link protection, all the intermediate switches on the AP1 are
configured with a flow entry and FF group entry, where the
packets are matched using the ID of the failed edge-switch
and forwarded to FF group entry whose first action bucket
forwards the packet on AP1 and the second action bucket,
on failure of any component on AP1, forwards the packet on
AP2. Intermediate switches on the AP2 are configured with
a flow entry, which matches the packets using the ID of the
edge-switch and forwards it on the AP2 till the flow merges
with the AP1.

For an incoming flow, switches on the primary path, except
the switches attached to edge-link, are configured to tag the
packets with the ID of its two-hop neighbor and then use
the same ID to forward the packets to the preconfigured FF
group entry. The downstream switch attached to edge-link is
configured with a flow entry to tag the packets with edge-
switch ID and then use the same ID to forward it to the
preconfigured FF group entry. In the switch attached to the
destination host is configured to pop the VLAN header and
forward packet to the destination host.

B. Operations

The snapshot in Fig. 3(a) shows the failover operation for
core-switch SWB in the primary path and link LA−F in
the AP1, where the SWB denotes the switch B and LA−F

denotes the link between switch A and F . The packets of
incoming n flows at SWA are tagged with the ID “3”, which
is the ID of 2-hop neighboring switch SWC , and forwarded to
the FF group whose primary bucket, alternate bucket 1, and
alternate bucket 2 forwards the packet to SWB of primary
path, SWF of AP1, and SWE of AP2, respectively. To
handle the failure of SWB or LA−B (core components), AP1
(SWA → SWF → SWC) is configured, which reroutes the
flows around the SWB . Similarly to handle the failures of
LA−F or SWF on AP1, AP2 (SWA → SWE → SWC)
is configured. For the protection against the failure of 2-hop
neighbor SWC or LF−C , AP2 (SWF → SWG → SWD) is
configured.

• On a failure of SWB and LA−B , SWA detects the failure
of ports corresponding to LA−B and LA−F .



(a) Core switch/link protection.

(b) Edge link protection.

Fig. 3: Failover operation of FFTD.

• SWA change the status of the primary bucket and al-
ternate bucket 1 to unavailable and executes the alternate
bucket 2, which forwards the n disrupted flows with label
“3” to SWE .

• A single VLAN label and input port matching flow entry
in SWE matches and forwards the n disrupted flows to
the SWC .

The snapshot in Fig. 3(b) shows the failover operation for
the flows having LA−B as edge-link in the primary path and
switch SWF in the AP1. The packets of incoming n flows at
SWA are tagged with the ID “2”, which is the ID of edge-
switch SWB for n incoming flow and then forwarded to the FF
group whose primary bucket, alternate bucket 1, and alternate
bucket 2 forwards the packet to SWB of primary path, SWF

of AP1, and SWE of AP2, respectively. To handle the failure

of the LA−B , AP1 (SWA → SWF → SWC → SWB) is
configured, which reroutes the flows around LA−B . Similarly
to handle the failures of LA−F or SWF on AP1, AP2
(SWA → SWE → SWC → SWB) is configured. For
the protection against the failure of LF−C , a dedicated AP2
(SWF → SWG → SWD → SWC → SWB) is configured.

• On a failure of edge-link LA−B and SWF , SWA detects
the failure of ports corresponding to LA−B and LA−F .

• SWA change the status of the primary bucket and al-
ternate bucket 1 to unavailable and executes the alternate
bucket 2, which forwards the n disrupted flows with label
“2” to SWE .

• A single VLAN label and input port matching flow entry
in each of SWE and SWC matches and forwards the n
disrupted flows to the SWB .



IV. PERFORMANCE EVALUATION

For performance evaluation, we emulate the AT&T topology
with 25 switches and 52 links in Mininet, which creates a vir-
tual network with OpenFlow-enabled switches [23]. For SDN
controller, we install the CPqD version of NOX controller
on a Linux server with an Intel(R) CPU 2.60GHz 12 core
processor and 64 GB RAM along with the Mininet [24]. In
our emulation environment, there exists a dedicated network
connection between the controller and each of the network
switches, which is termed as the out-of-band connection. We
use iPerf to generate UDP traffic flows with the data rate of
100 Mbps and packets size of 50 Bytes in the network [25].

For performance evaluation of the proposed FFTD in terms
of data plane failure recovery, we install the flows traveling
from San Francisco (SFO) to Washington (IAD) via Kansas
(MCI), St. Louis (STL), Nashville (BNA) and Atlanta (ATL)
as shown in Fig. 4. For the simplicity of representation, cities
are labeled with its airport code. To test the recovery from
dual-failures of core components, we initially failed the core-
switch MCI of the primary path and then the link between
SFO and Dallas (DFW) of the AP1. Similarly to evaluate
dual-failures recovery at edge-link, we first failed the link
between ATL and IAD and then the switch at Rayleigh
(RLGH). We compared the performance of the proposed FFTD
with multipath recovery, where two alternate paths are pre-
configured for protection against dual-failures. To protect the
primary path between SFO and IAD with highest priority (0),
the implemented multipath protection approach preconfigures
the first alternate path as 〈SFO-DFW-New Orleans (MSY)-
Orlando (MCO)-Rayleigh (RLGH)-IAD〉 with lower priority
(1) and the second alternate path as 〈SFO-Denver (DEN)-
Chicago (ORD)-Cleveland (CLE)-Philadelphia (PHL)-IAD〉
with lowest priority (2).

Fig. 4: AT&T network topology.

A. OpenFlow Control Traffic in the Network

We measure the variation in OpenFlow control traffic from
the failure notifications to the recovery-specific messages
generated by the controller for increasing number of flows
to be recovered with two network failures use cases: (a)
edge-link failure and (b) core-switch failure. The purpose
of this experiment is to analyze and compare the control
traffic overhead at the controller among the target schemes.

As mentioned in the previous paragraph, we repeated the same
failure sequence to analyze the OpenFlow traffic generated for
dual-failures recovery of the core-switch and edge-link.

(a) OpenFlow traffic for edge-link re-
covery.

(b) OpenFlow traffic for core-switch
recovery.

Fig. 5: OpenFlow control traffic in the network.

For both of the graphs in Fig. 5, the OpenFlow recovery
traffic increases as the number of flows to be recovered
increases for the multipath protection scheme due to its per-
flow detouring granularity. On the contrary, in the proposed
FFTD, the post-failure traffic remains constant irrespective of
the number of flows to be recovered. The proposed FFTD
benefits from the forwarding table design enabled with the
flow grouping and aggregation. From the results obtained,
we identify the proposed recovery schemes are scalable and
efficient in handling a large number of flows.

B. Switchover Time

This experiment compares the switchover time on the net-
work failure events for increasing number of flows to recover,
which is same for the edge-link and core-switch failure. To
evaluate the impact of flows to be recovered on the failure
recovery time as shown in Fig. 6, we repeated the same failure
sequence to analyze the switchover time for achieving dual-
failures recovery. The overall failure recovery time is measured
as the time difference from the time the network component
failed to the time the last disrupted flow was detoured.

From the results shown in Fig. 6, it is confirmed that the
recovery time for multipath protection scheme depends on the
number of disrupted flows, as the per-flow detouring requires
granular operation of the controller. On the contrary, due to the
preconfigured flow grouping method employed in the proposed
FFTD, the recovery time is mostly constant irrespective of the
increasing number of flows to be recovered, on the strengths of
no controller intervention. The proposed FFTD scheme meet
the carrier-grade requirement to recover from the failure within
50 ms interval.

C. Alternate Path Forwarding Rules

In Fig. 7, the x-axis represents the flows on the primary
path and y-axis represents the total number of forwarding rules
(group entries and flow entries) required to protect flows pass-
ing through switch at MCI and edge-link 〈BNA-IAD〉 from
dual-failures. Multipath protection scheme configures two al-
ternate paths for every flow on the primary path. Therefore, the
number of flow rules required to configure the alternate paths



Fig. 6: Switchover time. Fig. 7: Alternate path flow
rules requirement.

increased with the higher number of flows to be protected.
However, with the flow aggregation method employed in the
FFTD, the alternate path forwarding rules requirement remains
constant irrespective of the increasing number of flows to be
recovered. The obtained results identified proposed FFTD can
reduce the alternate path rules in the flow table by more than
99% and results in smaller flow table size and switch memory
saving.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the FFTD to achieve a rapid re-
covery from dual-failures without overwhelming the controller
with control traffic. Our proposal considerably reduces the
switchover time using the flow grouping method and lowers
the memory requirement for alternate path setup using the flow
aggregation method. Based on the performance evaluation, the
proposed FFTD achieved 99% reduction in the flow storage
for alternate path setup using the flow aggregation method. We
showed that the controller dependence to perform the recovery
results in delayed recovery and higher traffic at the controller
in a very short interval. In addition, we could identify that
FFTD achieved switchover in around 3 ms and fulfilled the
Carrier-grade recovery requirement of 50 ms failover delay.
As a further work, we are working on handling the traffic
congestion that may occur after the localized recovery.
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