SDN Implementation of Multipath Discovery to
Improve Network Performance
in Distributed Storage Systems

Luis Guillen*, Satoru Izumi*, Toru Abe*, Takuo Suganuma*’ and Hiroaki Muraoka®
*Graduate School of Information Sciences, Tohoku University, Sendai, Japan
TCyberscience Center, Tohoku University, Sendai, Japan
{Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
Email: *{lguillen,izumi } @ci.cc.tohoku.ac.jp, T{beto,suganuma}@tohoku.ac.jp, imuraoka@riec.tohoku.ac.jp

Abstract—The use of Distributed Storage Systems (DSS) has
considerably increased in the past years, alongside the need
for effective data transfer from storage to storage. Although
current network infrastructure can reliably handle large amounts
of traffic, networking techniques have not changed for several
years, leading to an under-use of resources, i.e. most routing
solutions still use single-path routing. In this paper, we present
a pragmatic approach for multipath routing in DSS, which is
based on Software Defined Networking (SDN) that uses parallel
links at the edge-side. Path discovery is calculated by finding the
k-maximum disjoint paths in a multigraph. Preliminary results
show that, by using our multipath solution, not only the overall
throughput increases but also the efficiency of resources usage.

Index Terms—Software Defined Networking, Distributed Stor-
age Systems, Multipath Routing

I. INTRODUCTION

Distributed Storage Systems (DSS) provide reliable services
by networking together copies of data in different nodes,
called replicas [1]. Replicas are by nature unreliable since
they are unexpensive, prone-to-fail devices; therefore, DSS
need to ensure continuity by a fast recovery mechanism. These
mechanisms are varied, from costly solutions that keep exact
copies in several replicas, to more efficient solutions that
fragment data and store them separately [2]. Independent of
the mechanism used, at network level, more traffic needs to be
handled, added to the inherent complexity of ensuring data-
consistency. Currently, network infrastructure is capable of
delivering DSS resilience by providing a highly redundant
topology, as the one shown in Figure 1, which represents
a commonly used topology in data-centers. In this scenario,
end-to-end traffic is usually managed by a technique called
Equal Cost Multipath (ECMP), which balances packets among
a limited number of paths, but ECMP has two major flaw;
namely, it is not efficient in terms of resource usage, and does
not provide flexible management.

In this context, the following problems were identified:

(P1) Last-mile bottleneck: Usually core links use high—speed
connections, but at the lower tiers, i.e. aggregation and edge,
connection speed is limited and therefore creates a bottleneck
to the whole process that we call last-mile bottleneck.

978-3-901882-98-2 © 2017 IFIP

=] Q=] ee Storage

Fig. 1: Fat-tree based topology used in data centers.

(P2) End-to-end routing: Traditional networking calculates
end-to-end paths in a node-by-node basis, and takes a long
time to converge. Moreover, it is limited by legacy protocols
such as Spanning Tree Protocol (STP), which prunes redun-
dant branches. Therefore, in spite of the available redundant
links, paths along end-to-end nodes are predominantly calcu-
lated using single-path approaches.

Software Defined Networking (SDN) changes the way in
which networks are managed, since it allows enhanced net-
work programmability by decoupling the control plane from
the data (forwarding) plane [3], which makes it ideal for
administering traffic in scenarios where dynamic and efficient
calculations determine the overall performance, as it is the
case with DSS. Moreover, its centralized approach provides
an overview of the whole underlying network, allowing more
flexible and robust network control.

In this paper, we propose an SDN based control method for
path discovery in multipath DSS. At first, we conceptualize
the network problem in Section 2 and introduce the solution
to last-mile bottleneck using a pragmatic approach in Section
3. In Section 4, we implement the approach and find k-path
candidates which can later be used for more advanced func-
tions, i.e. load balancing. Finally, we evaluate the proposed
method in two topologies in Section V.

II. RELATED WORK AND PROBLEM DEFINITION
A. Related Work on SDN multipath routing

Multipath routing based on SDN solutions have already
been well studied, especially in wired networks. Izumi et al.
[6], for instance, proposed dynamic multipath routing to en-
hance performance by using parallel data transmission in case
of disasters; they calculate link availability based on bandwidth
and a risk index, however, the discovery process is still hop-
by-hop based. Subedi et al. [7] presented Adaptive Multipath
Routing (ARM), which is capable of proactively adapting to
network changes based on link capacity and latency, but their
approach heavily relies on Link Layer Discovery Protocol
(LLDP) as the discovery mechanism. Banfi et al. [8] per-
formed multipath packet forwarding for aggregated bandwidth;
the results obtained were promising, however, altought their
discovery mechanism claimed to either use LLDP or Layer-
3 Ad-hoc deployment, the latter was not fully implemented.
Finally, Dinh et al. [9] presented a multipath forwarding
architecture, which dynamically selects the best path among
k-paths for traffic engineering; however, the criteria for the
selecting the number of paths is unclear and might not satisfy
basic constraints.

B. Network Problem Definition

In this section, we formalize our target network problem.
Given a graph G = (V, E), where V is the set of vertices
and E the set of edges that connect vertices. The Shortest
Path (SP) between two nodes is the one with the least
path weight. A path is disjoint (DP) when, depending the
requirements, no common edges or vertices are shared [4].
When fully DPs are not possible, finding Maximally Disjoint
Paths (MDP) are preferred, wherein it is allowed for paths
to share common edges or vertices, as long as the number
is minimum. Additional constraints might also apply, e.g. the
sum of the weights of all the constituent edges in a path is
minimized, also known as the max-min condition. Li et al. [5]
proved that such condition is strongly NP-complete, except in
directed acyclic networks, where it is (weakly) NP-complete.
Moreover, according to Igbal and Kuipers [4], for a network
to have k-disjoint paths between two nodes, it need to fulfill
the following two conditions:

(C1) Both end nodes must have at least k-node degree (i.e. k
neighbours); and

(C2) There must also exist enough nodes and edges such that
the k-disjoint paths are possible.

III. PROPOSAL OF SDN BASED CONTROL METHOD FOR
PATH DISCOVERY

The overall scheme of the proposal is depicted in Figure
2. To solve the MDP problem and fulfill condition (C1), the
proposal is to use k parallel edges at the lowest tier (edge). In
terms of network devices, this represents parallel links between
the edge device and the next-hop. The intuition behind is that
there is still some control over this segment of the network,
hence, k links can be added to ensure at least a k-node degree

=== Core Connection
— — - Edge Connection

SDN p‘!! Controller line

Controller

D ovs estomge

Fig. 2: Proposed scheme for multipath DSS.

(C1) and at the same time increment the number of edges
in the, already highly redundant, DSS topology (C2). In case
of a two-tier topology (no aggregation) a commodity network
device can be added in-between so that both conditions are
also fulfilled.

This idea, which is central to our approach, ensures that the
discovery mechanism successfully finds the k-paths and can
also help to solve the last-mile bottleneck problem, as traffic
are distributed among several paths and consequently achieve
higher aggregated throughput.

Initially & is set as the number of links connected from the
edge to the aggregation switch. Then, weights are provided to
edges, which can be assigned based on different criteria; e.g.
available bandwidth, probability of failure, transmission delay
or a combination of them.

Once the weights are set, the MDP problem is solved
by running the selectKPaths function shown in Algorithm 1,
which is based on Suurballe algorithm [10] for a Directed
Acyclic Multigraph. Dijkstra shortest path is calculated k-
times to find k-disjoint paths, modifying the weights after each
path is discovered.

It is a simple approach that provides k candidates, whose
upper-bound runtime complexity is approximately k-times the
runtime complexity of Dijkstra’s algorithm using min heaps.

IV. IMPLEMENTATION

The proposed scheme was implemented using OpenDaylight
(ODL) and Java to program the selectkPaths function. Once
the k-paths are calculated by the application, OpenFlow Switch
matching rules are composed and installed in the correspond-
ing switches. Without any loss of generality, for simplicity
unit-weights are assigned to each edge, however, as previously
mentioned, weights can have more fine-grained values.

V. EVALUATION
A. Overview

To evaluate the behavior of the proposed approach, we
tested the implementation on two contrived topologies,
namely: full-mesh, as an example of a highly redundant
environment; and grid topology, as an example of common
topologies found in current network infrastructures, as shown
in Figure 3a and Figure 3b respectively. All OF-switches are

Algorithm 1: Path selection algorithm to find the k-
max disjoint paths from source to destination

1 function selectKPaths (s,t, k, G);
Input : s,t,k,G(V, E)
Output: Set of k—max disjoint shortest paths P

2 P+ 0
3 currentPath < {;
4 nPath <+ 1;
5 do
6 if nPath > 1 then
| adjustW eights(P[npath — 2])
end
currentPath < getDijkstraShortestPath(s,t);
10 | if currentPath ¢ () then
11 nPaths++;
12 P.add(currentPath);
13 end
14 while currentPath ¢ () and nPaths < k;
15 return P

E=IN--E |

connected to a single SDN Controller. Note that in both cases,
there are k=10 links connecting the edge with the next-hop
switches. Additionally, in Figure 3b the edge switches, painted
in dark, are commodity switches added to the main topology
to fulfill the conditions in the proposal. The results were
compared with the default single path OSPF-based provided
by the controller.

B. Experimental Environment

The testbed of both topologies was deployed in a simulated
environment using mininet v2.2.2; ODL Lithium SR2 as the
SDN controller; and iperf as the throughput measurement
tool. The experiments were conducted using a virtual machine
running 64-bit Ubuntu 16. 04LTS, with 4 Gb of RAM, hosting
ODL and Mininet. In both topologies the procedure was as
follows: Initially, L2Switch and STP provided by ODL select
the best path from H1 to H2. Then, once the paths were
setup, 10 simultaneous iperf request were sent from HI to
10 different ports in H2 for 100 seconds, using the default
values. Finally, the selectKPaths function is applied, and re-
run the iperf request with the same parameters as in the single
path test.

The throughput obtained was recorded in both TCP and
UDP for each path, and finally, the used routes were traced in
both cases and in both topologies.

C. Simulation Results

Figure 4 shows the aggregated throughput obtained in the
full-mesh and grid topology in the TCP and UDP tests. As can
be observed, in both cases, throughput using our multipath ap-
proach outperforms the default single-path approach provided
by the controller. In the case of the full-mesh topology, the
aggregated throughput during the TCP test reached around 960
Mbps compared to the single-path that only reached around 96

1Gbps
= = = 100Mbps

ovs
—: D (x10) (x10) D —:
H1 H2

(a) Topology 1 (full-mesh Topology)

—_— E 100M

H1 x10

-8

H2
(b) Topology 2 (grid Topology)
Fig. 3: Experimental Network Topologies

1000 T T

800

600

Throughput [Mbps]

Topologyl Topology?2

Multipath (TCP) C—
Single Path (TCP) EEEd

Multipath (UDP)
Single Path (UDP) 2221

Fig. 4: Aggregated Throughput.

Mbps, since only 1 of the 10 available links were used. Similar
results were obtained in case of the grid topology. Conversely,
in case of the UDP test, aggregated throughput in the iperf log,
a higher raw throughput is seen for the case of single path.
A possible explanation for this phenomenon is that iperf only
reported the intended traffic sent from the origin, ignoring the
packet-loss rate.

Table I presents the effective amount of data transferred after
100 seconds of the iperf test. Our multipath approach was able
to transfer on average 987 and 925 Mbytes in Topology 1 and
2 respectively, whereas in the case of single-path it could only
transferred around 110 Mbytes on average in both topologies.
In terms of the overall jitter (the delay packets experience due
to congestion), in our multipath approach, it was only around
0.25ms, while in the case of single-path, on average 7.5ms—

TABLE I: Average amount of Data Sent and jitter

Topology Data Sent[Megabytes] Jitter [ms]
Multipath | Single-path | Multipath | Single-path
1 986.7 113 0.226 7.426
2 924.6 114 0.278 6.330

TABLE II: Average Number (#) of Datagrams Sent

Topology #of Datagrams Sent Loss Percentage [%]
Multipath | Single-path | Multipath | Single-path
1 704,039 825,752 0.058 90.0
2 659,560 810,507 0.054 90.0

which is considerably higher. This is, of course, a result of
packet collisions in the shared links.

Table II, presents datagram information of both topologies.
It is worth noting that the number of lost datagrams is
significantly higher in the case of the single-path, even though
the number datagrams is greater. This leads to an average of
90% of packets lost, compared to 0.06% in our approach.

Finally, in terms of effective resources usage, the number
of paths used in both topologies was computed. In the case
of Topology 1 (full-mesh) the percentage of links used in
single-path reached a maximum of 16%, whereas with our
approach we reached around 90% utilization. In Topology
2 (grid) the single-path solution only used around 20% of
the edges whereas with the proposed approach 100% of the
links were used. Of course, not all the links were used to the
same extend; for example, Figure 5 shows a graphic interface,
wherein links in Topology 2 are colored based on the degree
of utilization; as observed, independent of the the links at the
source and destination nodes, the majority of the traffic was
equally distributed.

D. Discussion

The main advantage of using an SDN approach is that
controllers usually include control-plane functionalities such
as: topology discovery, route selection and path failover mech-
anisms [11] that can be used as a starting point. However, these
functionalities are not designed to handle multipath solutions
or highly redundant topologies, hence, redundant and parallel
links are pruned by STP.

It is worth noting that using the available infrastructure
efficiently would greatly contribute data transfer in DSS,
however, the proposed approach might not be very useful for
short transmissions, where a single path suffices to cover the
requirements, as would be the case if the topology does not
satisfy constraints C1 and C2.

The idea of using several parallel links or even adding
intermediate switches is not conventional, but given the ob-
tained results is a viable alternative to traditional single-path
approaches or other networking techniques.

VI. CONCLUSION

In this paper, we presented a high-level description of an
SDN-based network management solution for data transmis-

‘ ‘ }: :{ | | Highly used]
ovs2 Jrka quis | Mildly used /
Moderately used _
& 45—
ovs7 ovse ovs
33} & &
ol o tad |
0@0 ovsi1 ovs1z ol

ovs1 VSIS 40010

Fig. 5: Link usage in topology 2.

sion in DSS, which uses k parallel links at the edge side,
to allow multipath routing. Initially we calculate the k-max
disjoint paths, and based on that initial assignment the traffic
is distributed among those paths. Preliminary results applied
to common network topologies shown that the proposal out-
performs the single-path approach implemented by default in
SDN controllers, improving the overall throughput as well as
resource utilization.

As future work, we plan to improve the proposal by
implementing adaptive load balancing among the initially
discovered k-paths.

REFERENCES

[1] Y. Liu, N. Rameshan,E. Monte,V. Vlassov, and L. Navarro, “ProRenaTa:
Proactive and Reactive Tuning to Scale a Distributed Storage System,”
In 15th IEEE/ACM ISCCGC, pp. 453-464, 2015.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K. Ram-
chandran, “Network Coding for Distributed Storage Systems,” in IEEE
Transactions on Information Theory, 56, pp. 45394551, 2010.

[3] W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, “A Survey
on Software-Defined Networking,” in IEEE Communications Surveys
Tutorials, 17(1), pp. 27-51, 2015.

[4] F. Igbal, and F.A. Kuipers, “Disjoint Paths in Networks.” in Wiley
Encyclopedia of Electrical and Electronics Engineering. Wiley & Sons,
Inc., 1999.

[5] C.L. Li, S. T. McCormick, and D. Simchi-Levi, “The complexity of
finding two disjoint paths with min-max objective function,” in Discrete
Applied Mathematics, 26(1), pp. 105-115, 1990.

[6] S. Izumi, M. Hata , H. Takahira, M. Soylu, A. Edo,T. Abe and T.
Suganuma. “A Proposal of SDN Based Disaster-Aware Smart Routing
for Highly-available Information Storage Systems and Its Evaluation,”
International Journal of Software Science and Computational Intelli-
gence, 9(1), pp.68-82, 2017.

[71 T. N. Subedi, K. K. Nguyen and M. Cheriet. “OpenFlow-based in-
network layer-2 adaptive multipath aggregation in data centers,” Com-
puter Communications, 61(1), pp.58-69, 2015.

[8] D. Banfi, O. Mehani, G. Jourjon, L. Schwaighofer, and R. Holz,
“Endpoint-transparent Multipath Transport with Software-defined Net-
works,” in Proc. of LCN2016, pp.307-315, 2016.

[9] K. T. Dinh, S. Kukliriski, W. Kujawa, M. Ulaski. “MSDN-TE: Multipath
Based Traffic Engineering for SDN,” in Proc. 8th Asian Conference,
ACIIDS 2016, pp. 630-639, 2016.

[10] J. W. Suurballe, and R. E. Tarjan. “A quick method for finding shortest
pairs of disjoint paths,” in Networks, 14(2),pp. 325-336, 1984.

[11] RFC7426 S. Denazis, E. Haleplidis, J.S. Salim, O. Koufopavlou, D.
Meyer, and K. Pentikousis. “Software-Defined Networking (SDN): Lay-
ers and Architecture Terminology.” in: IETF RFC 7426 (Informational
Document), 2015.

