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Abstract—To provide video streaming of user-generated con-
tents (UGCs) with high quality and at low cost by maximizing the
effect of CDN, CDN providers are required to adequately design
CDN cache servers by accurately estimating the UGC view-count
distribution. To achieve this goal in a practical time frame, we
need to construct a simple time-series model that captures the
transition of UGC popularity. Therefore, in this paper, we first
analyze the daily view count (DVC) of YouTube videos over
nine months and find that the DVC of YouTube videos obeys a
lognormal distribution. As a simple time-series model of the DVC
of each YouTube video, we propose the grouped MPP (gMPP),
extending the multiplicative process (MPP) which is widely
known as a simple time-series model generating a lognormal
distribution. We also propose reproducing the DVC distribution
of YouTube videos by using a superposed gMPP (SgMPP)
that aggregating multiple gMPPs. The SgMPP can accurately
reproduce the DVC distribution of YouTube videos with a low
computational overhead, so we can expect to use the SgMPP as
the input for computer simulations for designing various network
components that require the popularity distribution of UGC, e.g.,
cache capacities.

Index Terms—popularity distribution, reproduction, multi-
plicative process

I. INTRODUCTION

Services that stream user-generated content (UGC) have
been spreading widely on the Internet. Many UGC streaming
services use content delivery networks (CDNs), which deliver
content from cache servers deployed at the edge nodes of the
networks close to the requesting users [4][31][37]. Moreover,
as a new network architecture efficiently delivering content,
information-centric networking (ICN), which stores content
at routers and forwards packets on the basis of the content
name, has gathered a lot of attention recently [5][14][25]. The
storage capacities of cache servers and memories are finite, so
the effect of CDN and ICN strongly depends on the location
of cached content [41].

To improve the cache hit ratio and maximize the effect
of CDN and ICN, various methods for estimating the fu-
ture popularity of each content item have been investigated
[1][11][22][26][28][38][39]. For example, Gursun et al. clas-
sified the change pattern of the view count of YouTube videos
into two types, frequently accessed and rarely accessed, and
proposed estimating the future demand of each YouTube video
by estimating the change pattern of the principal components
extracted by PCA for the former type and applying the
change pattern of each cluster of videos classified by using

the hierarchical clustering method for the latter type [22].
Moreover, Szabo et al. found a correlation between the initial
popularity and long-term popularity in Digg and YouTube
content, and they proposed estimating the long-term popularity
of each content item by using its initial popularity [38].

However, unlike VoD services, in which major content hold-
ers provide content as commercial services, UGC is generated
by a variety of users, so the change pattern of the popularity
of UGC is complex and diverse [22], and the computational
overhead in estimating the future popularity of each video
is high. For example, the method of Gursun et al. used
the autoregressive moving average (ARMA) model, which
requires a large computational overhead, and the number of
days with one or more views within one year needed to
be recorded for each video [22]. The method of Szabo et
al. needed to repeatedly calculate the regression coefficient
in the linear model from the training data set [38]. Unlike
VoD services, UGC is generated by a huge number of users,
and the catalogue set, i.e., the set of content items, widely
changes over time [10]. Therefore, although it is desirable
to frequently repeat the estimation process of the future
demand of each content item, estimating the demand of a
huge number of content items within a short time interval
is difficult for existing estimation methods, which require a
large computational overhead. Although Xu et al. proposed
a lightweight approach to forecast the future video popularity
by utilizing the contextual information on social networks, the
future popularity was just roughly forecasted over a limited
number of popularity levels, e.g., low, medium, and high
popularities [42].

In this paper, we construct a simple time-series model that
captures the dynamics of the daily view count (DVC) of
YouTube videos, which is one of the most popular types of
UGC. First, we analyze the DVC of YouTube videos over nine
months and find that it obeys a lognormal distribution. This
finding agrees with the result obtained by analyzing the DVC
of YouTube videos, which was done by Borghol et al. [7].
The multiplicative process (MPP) is known as a simple time-
series model that generates a lognormal distribution [30], so
we model the dynamics of the DVC of YouTube videos by
using the MPP. The MPP is a discrete-time stochastic process
giving Xj , a random variable at time j, in Xj = FjXj−1.
Here, Fj is an independent and identical arbitrary distribution,
and we call this a multiplicative value (MPV) in this paper. The
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logarithm of Xj always obeys a normal distribution because
of the central limit theorem. In this case, day is a discrete
time step, and the MPV is the magnification of the DVC of a
YouTube video on the j-th day against its DVC on the previous
day.

The magnification of the DVC of each YouTube video
against its DVC on the previous day strongly depends on the
magnitude of the DVC, so we propose capturing the dynamics
of the DVC of each YouTube video by using the grouped MPP
(gMPP), which gives the MPV distribution for each DVC
group on the basis of its magnitude, and we also propose
reproducing the DVC distribution of YouTube videos by using
the superposed gMPP (SgMPP) aggregating multiple gMPPs.
The contribution of this paper is summarized as the following
two points.

• By analyzing the DVC data of YouTube videos over nine
months, we clarify that the generated video count (GVC),
defined as the video count newly uploaded on each day,
the initial view count (IVC), defined as the view count on
the uploaded date of each video, the DVC of each video,
and the DVC of all videos on one day obey a lognormal
distribution.

• We model the dynamics of the DVC of each YouTube
video by using the gMPP and reproduce the DVC
distribution of YouTube videos by using the SgMPP
aggregating multiple gMPPs. The proposed SgMPP can
accurately reproduce the DVC distribution of YouTube
videos with a low computational overhead.

We can expect to use the proposed SgMPP as the input for
computer simulations for designing various network compo-
nents, which requires the popularity distribution of UGC, e.g.,
cache capacities.

After giving an overview of related works in Section II, we
describe in detail the properties of the dataset of YouTube
DVC used in this paper in Section III. In Section IV, we
describe in detail applying the MPP to the time-series model
of the YouTube DVC with the numerical results. We give an
application example of the proposed SgMPP in Section V and
conclude this manuscript in Section VI.

II. RELATED WORKS

To clarify the tendencies of the demand dynamics and
the popularity distribution of YouTube videos, various results
obtained by analyzing the access log of YouTube videos have
been reported [6][9][10][13][17]. Arvidsson et al. revealed the
periodicity of user requests [6], and Broxton et al. analyzed
the change pattern of content popularity on social networks
[9]. Moreover, Cha et al. compared the statistical tendency
of the popularity distribution of YouTube videos with those
of VoD content items [10], Cheng et al. investigated various
properties, e.g., video length and bit rate, of YouTube videos
by crawling YouTube videos [13], and Figueiredo et al.
compared the change patterns of content popularity among
selection mechanisms, i.e., external link and search, or video
types, i.e., top-rank videos and illegal videos [17].

We can also find reports on the tendencies of the spatial
pattern of demand on YouTube videos [8][16][44]. Duarte et
al. compared the distribution of the view count of YouTube
videos among three areas, i.e., the USA, South America,

and others, by using randomly sampled YouTube videos [16].
Brodersen et al. analyzed the locality of demand and its change
pattern by investigating the viewing history of YouTube videos
over one year [8]. Zink et al. revealed geographical tendencies
of the popularity of YouTube videos, e.g., low correlation
between the global popularity and local popularity of YouTube
videos [44]. Moreover, Dernbach et al. investigated the effect
of considering the geographical locality of movie-content
popularity in selection policy of cached content by using the
MovieLens dataset giving the ratings of 4,000 movies [15].
Although we can obtain the DVC distribution of YouTube
videos by analyzing the time- and spatial-change patterns
of popularity, the obtained results are limited to a specific
period and area, and we cannot generically use the results for
various periods and areas. To estimate the DVC distribution of
YouTube videos in a generic manner, it is desirable to model
the change pattern of the DVC of YouTube videos by using a
simple time-series model.

Therefore, to clarify the factors changing the popularity of
each YouTube video, models capturing the change pattern
of the view count of YouTube videos have been proposed
[19][20][33][36][40]. Traverso et al. proposed modeling the
transition of the request count of each YouTube video by using
a short-noise model (SNM) obtained by aggregating multiple
Poisson processes that represent each of the six groups in
which YouTube videos were classified on the basis of the total
request count and life length [40]. Moreover, Garetto et al.
also proposed to capture the dynamics of content popularity
by ON-OFF traffic model [19]. However, they focused on the
time interval of requests within a short time scale. i.e., one day,
so the change pattern of the popularity of YouTube videos over
days or months was not considered.

Ghimire et al. modeled the popularity transition of each
YouTube video by using a Markov chain [20]. Soysa et al.
focused on the high correlation between the viewing frequency
and the sharing ratio on Facebook, and they modeled the
spread of interest on each YouTube video by using the fast
threshold spread model (FTSM) [36]. Moreover, Ratkiewicz
et al. revealed that the change ratio of the content popularity
of Wikipedia and websites showed a power law distribution
by analyzing the change pattern of external links, and they
reproduced the discontinuous change of popularity due to ex-
ternal factors by using the ranking-shift model [33]. However,
all three of these models focused on the change process of
a single piece of UGC and did not consider the popularity
distribution of the catalogue set of a large amount of UGC.

We can also find works reproducing the popularity distribu-
tion of UGC [3][7]. Adamic et al. revealed that the distribution
of the number of users who visited each website in one day
showed a power law property and theoretically showed that
the power law distribution of the user count can be reproduced
by using the MPP as the transition model of the number of
users who visited each website in one day [3]. However, they
focused on the number of users who visited each website
instead of the DVC of YouTube videos. Borghol et al. proposed
a method for reproducing the view count in one week of
YouTube videos [7]. However, they reproduced the weekly
view count by classifying YouTube videos into three phases,
i.e., peak demand day, before the peak day, and after the peak



day, and combining the distributions of view count for each of
the three phases. Therefore, the time transition of the DVC of
each video was not considered in [7]. Moreover, they assumed
a fixed number of videos, and they did not consider change of
video catalog, i.e., addition of new titles. In this paper, on the
other hand, we propose a method of accurately estimating the
DVC distribution at any time instance in future when YouTube
videos are added dynamically.

III. YOUTUBE DATA SET

A. Procedure for Measuring Daily View Count

Using the YouTube Data API [21], which provides various
statistical data on YouTube videos, we collected the DVC data
of YouTube videos for 267 days, starting from April 9, 2013 to
December 31, 2013. Hereafter, we indicate the date by using
the elapsed day count from the initial day of measurement,
i.e., April 9. For example, day 1 corresponds to April 9, and
day 267 corresponds to December 31. Once every minute,
we obtained the IDs of recently uploaded videos, i.e., videos
newly uploaded in the latest one minute, by inquiring for this
information from YouTube by using the API, and we generated
a list of video IDs as well as the upload date for each of the
1,440 minute in a day. For example, in the list of 14:28, the
IDs and the upload date of the videos uploaded within one
minute from 14:28 were added day by day. These 1,440 lists
of video IDs continued to increase day by day, and in total,
52,269 videos were added to one of the 1,440 lists.

Moreover, at every minute, we obtained the cumulative
number of viewing requests from the upload day for each
video included in the ID list of the corresponding time by
inquiring of YouTube it using the API. By repeating this pro-
cedure every day, we obtained yv(n), the cumulative request
count of each video v on each day n from the uploaded date,
at the identical time. Let xv(n) denote the DVC of video v
on day n and Uv denote the upload date of video v. We can
calculate xv(n) from yv(n) as xv(n) = yv(n)−yv(n−1) for
Uv < n ≤ 267 and xv(n) = yv(n) for n = Uv .

B. Properties of DVC Data Set of YouTube Videos

In this section, we show the results of evaluating the prop-
erties of the DVC data of 52,269 YouTube videos mentioned
in Section III-A. In addition to the DVC and IVC, as the
properties which can be obtained from the YouTube data set,
we also define the LL (life length) as the number of elapsed
days of each video from the uploaded date until the day on
which the last view was observed and the ADVC (average
DVC) as the average DVC over LL days of each video. Table
I summarizes the mean, median, standard deviation (STD),
and maximum of the five properties of the YouTube data set,
GVC, LL, IVC, DVC, and ADVC. We calculated the GVC
for all 267 days, the LL, IVC, and ADVC for all of the
52,269 videos, and the DVC for all samples greater than or
equal to unity of all 52,269 videos over all 267 days. We
confirmed that the last view was observed around the last
day, i.e., day 267 for almost all of the videos. Except for
videos removed by YouTube due to copyright issues and those
removed by the users who uploaded them, a large part of the
videos seemed to remain in the video servers of YouTube.
The LL of many YouTube videos was much larger than the

length of the measurement period, 267 days, so it is difficult
to analyze the LL of YouTube videos by using this DVC data
set. To evaluate the LL of YouTube videos, we need a DVC
data set with a much longer measurement period. We leave
the analysis of the LL of YouTube videos as future work.

TABLE I
PROPERTIES OF YOUTUBE VIDEOS

Mean Median STD Maximum
GVC 198.7 186.0 66.3 508.0
LL 136.2 143.0 77.5 263.0

IVC 9.018×104 1.628×104 3.576×105 1.002×107

DVC 3.650×103 109.0 6.841×104 9.056×107

ADVC 6.287×103 557.2 5.909×104 5.859×106

C. Generated Video Count on Each Day

Figure 1(a) plots the GVC against each day. We observed no
weekly periodicity in GVC, and we found that the difference
of GVC among days of the week was small. However, we
observed an increase and decrease trend on the scale of several
tens of days after about day 100, and the GVCs in the initial
about 80 days tended to be larger than those in the later days.
Figure 1(b) shows the complementary cumulative distribution
(CCD) of the GVC of the YouTube data set as well as the
lognormal distribution, whose mean and STD were matched
with those of the YouTube data set, i.e., mean of 198.7 and
STD of 66.3. We confirmed that the lognormal distribution
coincided with the distribution of the GVC.

Fig. 1. Time series and CCD of video count uploaded each day

Fig. 2. (a) Average initial view count of videos uploaded on each day, (b)
CCD of initial view count of YouTube videos

D. Initial View Count

Next, we investigate the tendency of the IVC, i.e., the
number of views for each video v on the upload date. Figure
2(a) plots the average IVC of each day d. We observed that
the average of IVC was largely different among days. We also
show the CCD of IVC for all 52,269 videos and the lognormal
distribution, whose mean and STD were matched with those
of the YouTube data set, i.e., mean of 9.018 ×104 and STD of
3.576 ×105. We confirmed that the IVC of YouTube videos
can be well approximated by the lognormal distribution.



E. Daily View Count
Finally, we analyze various properties of the DVC of

YouTube videos. Let x̃v(k) denote the DVC of video v on the
k-th day from the uploaded date, and we define the normalized
daily view count (NDVC) of video v on the k-th day as x̃v(k)
divided by the maximum DVC of video v over the length
of its life. Figure 3(a) plots the NDVC against k for each
of 20 videos randomly sampled. We observed that the DVC
of many YouTube videos dramatically decreased over several
days just after their upload day and decreased moderately after
this initial period, and this tendency of change pattern was also
observed in the mean and median of NDVC of all videos. A
similar tendency was also reported in existing works analyzing
the dynamics of UGC popularity [6][9]. However, the change
pattern of NDVC was largely different among videos.

Fig. 3. (a) Dynamics of NDVC of 20 sampled videos, (b) CCD of DVC of
eight sampled days

Fig. 4. (a) CCD of DVC of all videos after 100th day, (b) CCD of DVC of
four sampled videos over all days

Next, we analyze the tendency of xv(d), the DVC of video
v on day d. Figure 3(b) shows the CCD of the DVC for eight
sampled days, i.e., the first day of each month. As mentioned
in Section III-A, the data set of the YouTube DVC included
only videos uploaded after April 9, 2013, so only videos with
a small number of elapsed days after their upload date were
included in the data set when d was small. As observed in
Figure 3(a), the number of views tended to be large just after
the upload date, so the sampled DVC in a small-d region
concentrated on those of a large value. Therefore, on days
close to the initial date of measurement, e.g., May 1 and June
1, the sampled DVC tended to concentrate on large values,
so the CCD on these days shifted in the upper-right direction.
However, for the other six sampled days, the CCDs of the
DVC were almost identical. We confirmed that the distribution
of DVC on each day became stable on days after about 100
days from the date measurement started because various videos
that had different elapsed day counts after the upload date
existed. Although the DVC of each video dramatically changed
just after their upload date as seen in Figure 3(a), the DVC
distribution of each day was stable as a result of multiplexing
multiple videos with various elapsed day counts.

Next, we plot the CCD of the DVC of all videos for all
days after day 100 in Figure 4(a). We also show the lognormal

distributions whose average and STD were matched to those of
the YouTube data set. The two distributions almost coincided,
so we confirmed that the DVC distribution of many videos
over many days can be also approximated by the lognormal
distribution. Borghol et al. confirmed that the distribution
of the view count of YouTube videos obeyed a lognormal
distribution [7], and our finding agreed with this report. Figure
4(b) plots the CCD of the DVC of four videos randomly
sampled as well as the lognormal distributions whose average
and STD were matched with the average and STD of each of
these four videos. We confirmed that the DVC of each video
over multiple days also obeyed a lognormal distribution.

IV. MODELING POPULARITY DYNAMICS OF YOUTUBE
VIDEOS WITH MULTIPLICATIVE PROCESS

As observed in Figure 4(b), the DVC of each YouTube video
obeyed a lognormal distribution. The multiplicative process
(MPP) is widely known as a simple random process that
generates this distribution [30], so we first consider applying
the MPP to the time transition model of the DVC of each
YouTube video in this section.

A. Multiplicative Process

When random variable Xj takes X0 at the initial state and
Xj at discrete time j, the MPP is defined as

Xj = FjXj−1, (1)

where the random variable Fj , which we call multiplicative
value (MPV), independently obeys an identical arbitrary distri-
bution. In other words, the MPV Fj , i.e., the magnification of
Xj against the previous value Xj−1, is given by the identical
distribution independently of j. By recursively applying this
formula, ln Xj is given by

ln Xj = ln X0 +

j∑
k=1

ln Fk. (2)

Therefore, when Fj independently obeys an identical distribu-
tion, ln Xj always obeys a lognormal distribution according to
the central limit theorem, so Xj generated by the MPP obeys
a lognormal distribution.

Next, let us consider aggregating multiple MPPs. The distri-
bution generated by multiple MPPs depends on the distribution
of the life length of each MPP [30]. For example, it was re-
ported that aggregating multiple MPPs generates a distribution
with the body of a lognormal distribution and the tail of a
Pareto distribution when the life length of each MPP obeys a
geometric distribution [34]. In this paper, we call the random
process generated by aggregating multiple MPPs superposed
MPP (SMPP).

B. Applying MPV Distribution for each DVC Group

As mentioned in Section III-E, the DVC of many YouTube
videos tends to be large and rapidly decrease on days close
to the upload date, whereas it tends to be small and gradually
decrease after days elapse. Therefore, we can expect that the
change ratio of the DVC on the next day strongly depends
on the magnitude of the DVC. To confirm this, we classified
the MPV samples into four groups by setting three boundaries



on the DVC value so that almost the same number of MPV
samples was classified into each DVC group1.

Table II summarizes the mean, median, and STD of the
MPV samples classified as well as the lower and upper
boundaries of each of the four DVC groups. We assigned the
DVC group ID in ascending order of the magnitude of DVC.
As seen in Figure 4(a), many DVC samples concentrated on
the small-value range, so the interval between the lower and
upper boundaries was smaller in the DVC group of smaller
magnitude. Moreover, all of the means, medians, and STDs
of the MPV were smaller in the DVC group with a larger
magnitude. As seen in Figure 3(a), the DVC of many YouTube
videos was large and rapidly decreased on days close to the
upload date, whereas it gradually decreased on average with
fluctuation within a small range. Therefore, in videos with a
large DVC, the DVC on the next day is more likely to decrease
greatly, and the MPV tends to be small.

The MPV distribution was different among the DVC groups,
so we considered applying the MPV according to the MPV
distribution of the DVC group in which the current state Xj is
included in the MPP. In this paper, we call this extended MPP
grouped MPP (gMPP). Figure 5 plots the CCD of the MPV
obtained from the YouTube data set in each of the four DVC
groups. We also show a lognormal distribution (Lognormal I)
with the means and STDs matching those in the smallest 99%
of the MPV samples, a Pareto distribution (Pareto II) with the
means and STDs matching those in the largest 1% of the MPV
samples, and a lognormal distribution (Lognormal III) with the
means and STDs matching those in the largest 0.005% of the
MPV samples. We confirmed that the MPV distribution of
each of the four DVC groups can be accurately approximated
by using the combinations of the lognormal distributions and
Pareto distribution in two or three zones.

It is also desirable to approximate the MPV distribution of
each DVC group by using a single distribution to minimize
the computational overhead. Because almost all of the MPV
samples of the YouTube data set existed in the zone that can
be approximated by Lognormal I, in the gMPP, we apply the
MPV distribution of each of the G DVC groups approximated
by Lognormal I. We propose reproducing the DVC distribution
of YouTube videos for each day by using the superposed
gMPP (SgMPP) aggregating multiple gMPPs. In Algorithm
II, we summarize the procedure executed at the k-th time step
of the SgMPP. When we define bg as the lower boundary of
the DVC of DVC group g and let g(x) denote the DVC group
to which DVC x is classified, bg(x) ≤ x < bg(x)+1 is satisfied
for each g of 1 ≤ g ≤ G. We denote the lognormal distribution
(Lognormal I) with the mean and STD of the MPV samples
of the smallest 99% as Ωg .

C. Numerical Results

We denote the SgMPP with G DVC groups as SgMPP-G,
and we evaluate the accuracy of SgMPP-G in reproducing the
DVC distribution of YouTube videos with the mean squared
error (MSE) [27]. Let xs denote the boundary values of DVC
when dividing the range between its minimum (1.0) and the

1When dividing the MPV samples into various number of groups, e.g., 2,
8, 16, and 32, we also confirmed the same tendencies mentioned in the later
part of this section.

Algorithm 1 Procedure executed at k-th time step of SgMPP
1: For each gMPP i of 1 ≤ i ≤ Nk, update Xi,k by

Xi,k = ri,kXi,k−1, where MPV ri,k is randomly selected
according to Ωg(Xi,k−1)

2: Randomly select nk, the number of newly added gMPPs,
according to Θ and update Nk+1 = Nk + nk

3: For each gMPP i of newly added nk gMPPs, randomly
set the initial value of Xi,k according to Υ

TABLE II
BOUNDARIES, MEAN, MEDIAN, AND STD OF EACH DVC GROUP

Group Lower Upper Mean Median STD
G1 1 15 1.962 1.000 200.3
G2 16 108 1.140 1.000 37.42
G3 109 703 1.033 0.993 7.780
G4 704 ∞ 0.953 0.955 0.955

maximum (9.056×107) into 100 intervals with identical length
on the logarithm scale, i.e., xs = exp(log(xmax/100) · s),
s = 1, 2, · · ·, 100. Using ẑ(xs) and z(xs), the value of
CCD generated by the SgMPP-G, and the DVC distribution
of YouTube videos at x = xs, we define the MSE as

MSE =

∑100
s=1

{
ẑ(xs)− z(xs)

}2

100
. (3)

Figure 6(a) plots the MSE of the SgMPP-G at the time
steps corresponding to the four sampled dates, May 1, June
1, August 1, and October 1, against G when using Ωg as
the MPV distribution of each DVC group g. We set the
boundaries of G DVC groups so that an identical number
of MPV samples were classified into each DVC group, and
we show the average results of ten repetitions with different
random seeds. Moreover, we show the same results when
using the actual MPV distribution of each DVC group g in
the YouTube data set in Figure 6(b).

In the wide range of G, the SgMPP-G using Lognormal
I as the MPV distribution of each DVC group achieved
a similar accuracy in reproducing the DVC distribution of
YouTube videos with the case using the actual MPV dis-

Fig. 5. Fitting of CCD curves of DVC in each of four DVC groups



tribution. By using Lognormal I as the MPV distribution,
we can dramatically reduce the computational time required
in executing the SgMPP-G process, so using the Lognormal
I distribution is desirable. In the small-G region, the MSE
decreased as G increased for all the four sampled days, and
the accuracy of reproducing the DVC distribution of YouTube
videos improved, whereas the MSE was almost constant when
increasing G in the region of G greater than about 50. We
need to calculate the Lognormal I distribution of MPV for
each DVD group, so a smaller G is desirable to reduce
the computational time in constructing the SgMPP-G model.
Therefore, it is desirable to set G in the range between about
40 and 70.

Finally, we evaluate the accuracy of the SgMPP in repro-
ducing the DVC distribution of YouTube videos when setting
G = 64. Figure 7 plots the CCD of the DVC of YouTube
data set on the four sampled dates, May 1, June 1, August 1,
and October 1, as well as the CCD of Xj generated by the
SgMPP-64 at the corresponding time steps. We also repeated
the SgMPP-64 for ten times with different random seeds. For
all the four sampled days, especially on August 1 and October
1 after reaching the steady state, we confirmed that we can
accurately reproduce the DVC distribution of YouTube videos
by using the SgMPP-64.

Fig. 6. Mean squared error between distribution generated by SgMPP-G and
that of YouTube DVC

Fig. 7. Comparison of CCD of YouTube DVC on four sampled days and
CCD of values generated by SgMPP-64 at corresponding steps

V. APPLICATION OF PROPOSED METHOD

Here, we briefly describe an application example of the
proposed method of reproducing the DVC distribution of
UGCs. As a cache replacement policy for selecting content

items to be removed when the storage capacity of caches
is fully utilized, least recently used (LRU), which removes
content with the longest elapsed time from the last access,
and least frequently used (LFU), which removes content with
the smallest access ratio, are most widely used [32]. Although
LRU and LFU are simple policies and do not require the
demand estimation of each content item, it is known that they
can achieve a cache hit ratio almost equal to that obtained by
optimally placing content on the basis of the access demand
because popular content items remain in caches as a result of
replacing content with LRU and LFU [35].

To optimally design the capacity of caches to satisfy the
target cache hit ratio in LRU and LFU, we still need to
estimate the cache hit ratio achieved for a given cache size.
For example, by using the Che′s equation, we can easily derive
the cache hit ratio only if the demand distribution of content
items can be estimated [12]. However, the demand distribution
of UGC depends on the catalogue set, so it is desirable to
easily estimate the demand distribution of UGC by computer
simulation when various conditions, e.g., the total user count
and video count generated on each day, change. To achieve
this goal in a practical time frame, we need to construct a
simple time-series model that captures the transition of UGC
popularity.

Moreover, dynamically constructing CDNs using virtual
machines on cloud datacenters has gathered wide attention
recently [23][29]. In virtual CDNs, content location can be
dynamically configured based on the estimation of demand
distribution [24]. The proposed SgMPP can accurately repro-
duce the DVC distribution of UGCs at any time point in future
from the given lognormal distributions of the GVC, the IVC,
and the MPV of each DVC group, and we can generate these
input distributions from a small dataset obtained by monitoring
the demand of UGCs in a sampled area within a limited time
period. By applying the proposed SgMPP with the sampled
input distributions, we can estimate the DVC distribution of
UGCs in various areas at various time instances, so we can
effectively design the capacity of cache servers for UGCs in
existing CDNs and the content location on virtual CDNs.

VI. CONCLUSION

In this paper, we proposed a simple time-series model,
SgMPP (superposed grouped MPP), based on the multiplica-
tive process (MPP) that represents the dynamics of the daily
view count (DVC) of YouTube videos to accurately reproduce
the DVC distribution of YouTube videos, and we numerically
showed that the proposed SgMPP can accurately reproduce
the DVC distribution of YouTube videos. The calculation
time required to reproduce the DVC distribution with SgMPP
was small, so we can expect to apply the SgMPP to various
designs and controls that require the demand distribution of
UGC, e.g., the capacity design of cache servers for large-scale
UGC services. In the future, we will theoretically reveal the
principles that aggregating multiple gMPPs with infinite life
length produces the lognormal distribution. Moreover, we will
analyze the case when the life length of YouTube videos can
be modeled by finite distribution through measuring the DVC
data of YouTube over a year, and we will also investigate
a time-series model for reproducing the DVC distribution of
YouTube videos in consideration of locality.
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