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Abstract—Monitoring network traffic is an important building
block for various management and security systems. In typical
settings, the number of active flows in a network node is much
larger than the number of available monitoring resources and
there is no practical way to maintain per-flow state at the
node. This situation gave rise to the recent interest in streaming
algorithms where complex data structures are used to perform
monitoring tasks like identifying the top-k flows using a constant
amount of memory. However, these solutions require complicated
per-packet operations, which are not feasible in current hardware
or software network nodes.

In this paper, we take a different approach to this problem and
study the ability to perform monitoring tasks using efficient built-
in counters available in current network devices. We show that
by applying non-trivial control algorithms that change the filter
assignments of these built-in counters at a fixed time interval,
regardless of packet arrival rate, we can get accurate monitoring
information. We provide an analytical study of the top-k flows
problem and show, using extensive emulation over recent real
traffic, that our algorithm can perform at least as well as the
best-known streaming algorithms without using complex data
structure or performing expensive per-packet operations.

Index Terms—top-k Flows; Efficient Monitoring; Software-
Defined Networks.

I. INTRODUCTION

The rapid growth of Cloud Computing and the expansion of
Infrastructure as a Service (IaaS) [1] as the preferred solution
for providing low cost IT introduce many new challenges in
the field of infrastructure management. In this context, it is
important to address problems related to efficient monitoring
of network resources, since the monitored information is a
crucial building block in any TaaS management solution. The
networked cloud environment is distributed and the system
behavior depends on many parameters that belong to different
elements of the network and the cloud. Thus, the monitoring
process itself, i.e., the process of collecting the relevant
information from the different network locations, requires a
considerable amount of resources and should be optimized
with respect to the overall gained value.

A typical monitoring task, which is straightforward for
memory-intensive solutions, is the detection of the top-k flows,
i.e., identifying the k flows with the highest rate in a given
period of time. When sufficient memory is available, one can
track the frequency of each flow and easily detect the £ most
frequent flows. However, with memory constraints in mind,
it is challenging to design monitoring algorithm for the top-k
problem using constant (or even sublinear) space with respect
to the number of active flows or the overall traffic size.
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Detecting the top-k flows that go through a given network
node has been addressed before by works in the streaming
domain [3], [4] and [2]. All of these approaches require an
operation per an arriving packet. In some cases, the operation
can be as complicated as querying all counters (usually to
calculate a minimal value) and assigning a new value to a
different counter. Therefore, these algorithms are required to
perform “per packet” complicated operation on complex data
structures (such as doubly linked lists) in line rate. This makes
using the results of [3] and [4] unsuitable for deployment on
commodity network nodes.

Another drawback of the approaches in [3] and [4] is that
they perform poorly on heavy-tailed traffics. In [3] on the
arrival of a packet from a non-monitored flow, all counters are
decremented and possibly a single counter is reassigned, while
in [4] on arrival of every non-monitored packet, the minimal
counter is reassigned causing poor performance on heavy-
tailed traffic. The approach in [2] dealt with heavy-tailed traffic
by probabilistically deciding if to reassign a counter on the
arrival of a non-monitored packet, which indeed yielded better
performance than [3] and [4]. The authors of [2] also deal
with the need to use complex data structure by assuming the
existence of d-way associative cache that supports metadata
updates in the nodes hardware. The usage of such cache
required O(d) operation per arriving packet regardless if any
counter will be reassigned or even updated by this arrival and
to achieve good detection d should be at least 16. This usage of
16-way cache comes at a cost of low precision of about 0.5,
which means that the algorithm outputs 2k candidate flows
that contain 0.9% flows of the actual top-k.

It is important to note that these streaming algorithms aim at
identifying the top-k flows in terms of packet rate, regardless
of the packets’ sizes. While this might be relevant in some
settings, the more important practical problem is identifying
the top-£ flows in terms of bandwidth, i.e., in terms of bits
per second rather than packets per second. This requires, in
streaming terminology, to address the more complex weighted
version of the top-k problem.

Another undesirable character of these approaches is that
they require an additive slack of Ne, where NV is the number
of packets and fracle is correlated to the number of counters.
When the number of counter is not big enough for a given
N, this additive slack may become too big to provide any
meanigfull information about the a top-k flows.

In this paper, we a take a different approach that takes
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“Basic Splitting”

0.976, 75.65%

0.976, 75.65%

0.932, 72.24%

0.911, 70.62%

0.892, 69.14%

“Hash then Split”

0.964, 74.72%

0.957, 74.18%

0.874, 67.75%

0.888, 68.83%

0.851, 65.96%

“RAP” [2]

0.841, 65.19%

0.840, 65.19%

0.833, 64.57%

0.831, 64.41%

0.827, 64.10%

“16W-RAP” [2]

0.835, 64.72%

0.832, 64.49%

0.829, 64.26%

0.824, 63.87%

0.819, 63.48%

TABLE I: Throughput of the monitoring algorithms in million packets per second and performance rate in comparison to an

OpenVSwitch performing at 1.29 MPPS.

advantage of flow table entries, already exist in network nodes.
Since clearly, we do not have enough counters to explicitly
count the packets in each active flow, we have to reconfigure
the counters filter over time. However, this is done on a fixed
time interval (say every second) and thus all of our operations
can be handled in line rate with no need for additional data
structures. Moreover, the use of the built-in counters allows
us to solve both unweighted and weighted versions of the
problem at the same complexity since these built-in counters
can count packets and bytes with no additional cost.

In order to evaluate the expected effect of the complex “per
pack” operation on the switch‘s throughput we implemented
the state of the art streaming algorithms from [2] on top of an
an OpenvSwitch and measured the expected throughput (see
Table I). With no addition monitoring algorithm the switch
could handle 1.29 MPPS (million packets per second), how-
ever when the streaming algorithms are added the throughput
went down to 0.83 MPPS. The monitoring technique presented
in this paper are implemented on hardware devices using
build in fast counters and will have a very small impact on
the throughput. However, just to be in the safe side we also
implemented these algorithms in software and measured the
impact of this implementation on the measured throughput.
The results indicate that even in software implementation
the most complex version of our techniques (called “Hash
then Split”) preforms better than the best available streaming
techniques.

In general we adopt the approach of [5], and assign to
each counter an aggregated subset of the flows rather than
a single flow. Then, at the end of each period, the values of
the counters are evaluated and new subsets are assigned to the
counters. Furthermore, we provide a mechanism to estimate
the flow’s frequency throughout several periods based on the
values at the end of each period. The two main motivations
behind this aggregated periodic approach are: minimizing
the monitoring related traffic and avoiding interferences from
low frequency flows in heavy-tailed traffic. Moreover, in this
approach, the algorithms can guarantee full precision in the
sense of returning exactly k£ flows. Such favorable property
allows users not to worry about choosing which k£ flows of
the output to treat as the top-k flows.

We present three new techniques that dramatically improve
the overall performance. First, we introduce the basic algo-
rithm which in contrast to [5] focuses on several groups of
the flow universe simultaneously. Then, we suggest splitting
the monitoring process into rounds and leverages the data
collected from past rounds in the current round. Finally, we

suggest hashing the packets before processing them to break
several unwanted properties of the traffic.

The result is a family of efficient monitoring algorithms to
the top-k problem which are deployable out of the box on
any OpenFlow enabled network node. The algorithms use a
configurable constant number of counters and guarantee that
no deviation from the allocated counters will ever occur. We
evaluate the expected performance of our algorithms on real
network traffic through an extensive simulation study using
CAIDAs traces [6], [7], [8]. The results indicate that using
only a small constant number of counters the algorithms can
identify the top-k flows (in terms of the amount of traffic)
with very good accuracy. For example, one can detect the top-
8 flows out of thousands active flow, using only 32 counters
with an average detection rate of 87%.

We also compare the performance of our algorithms to RAP,
the best streaming algorithm reported to date [2]. In doing
so, one should be very careful in defining the appropriate
way to measure counters’ usage since the authors of [2] use
16-way cache and assume metadata availability. When using
our algorithms to solve the top-k packet rate problem, they
perform almost as well as RAP (on CADIA 2015 data), and
in some setting a bit better. However, when we implemented
RAP and modified it to detect the weighted top-k flows (in
terms of bit rate), our algorithms outperform RAP by 10-15%.

The rest of this paper is organized as follows. First, we de-
fine the top-k problem and introduce possible approximations
for it. Then, we introduce our basic algorithm which solves
the top-k problem locally on a network node and suggest two
improvements for it. Afterward, we evaluate the suggested
algorithms and compare them to the state of art algorithm.
Finally, we provide a short description of related work and
conclude.

II. THE TOP-k FLOWS PROBLEM

Given a network node and a set of flows, we are interested
in detecting the top-k flows, usually with respect to the total
number of bits, in a given time interval. The solution is
straightforward when there are sufficient counters, by allo-
cating a specific counter to each flow. However, the number
of available counters at the network node is much smaller
than the number active of flows [9]. Thus, the main challenge
is detecting the top-k flows while using a limited (constant)
number of counters.

In the classical frequent-element problem [10], a stream
of elements S = ¢1,q2,...,¢q; and a set of objects O =
{01,02,...,0,} are given, where any element of the stream



belongs to exactly one object, ie. 1 < Vj < ¢,1 < & <
n,q; € o; and for all z # 4, ¢q; ¢ o,.

The frequency of each object o; in the stream,denoted by
n;, is defined as the number of elements that belong to o;
in S. Without loss of generality we can assume that the o0;’s
are sorted such that n; > ny > ... > n,,. The basic notion
of the frequent-element problem is the ExactTop, its input
consists of a stream S, a set of objects O and an integer k,
and it returns k objects from O that contain the most frequent
objects in S.

When there are more than k£ objects in the stream that
have very close frequencies to the top-k frequencies, it is not
important to detect precisely the top-k objects. It is enough
to detect any k objects within a slack of the k*" frequency.
Thus, the ApproxTop approximation problem was suggested
in [10]. It has an additional input parameter £ which defines
the slack’s percentage. A solution to the ApproxT op problem
is a set of any k£ flows that their frequency is .S is at least
(1 — & )nk.

Finding the top-k flows from a network node traffic could be
formulated as a frequent-element problem where the traffic is
a stream of packets, S = p1,pa, ..., ps. Each packet p; is part
of a specific flow, flow(p;) € {f1, f2,...fn}. On contrary to
a stream of simple elements, packets have different sizes and
thus the weighted version of the frequent elements problem
should be used. Note that this makes the algorithms more
complex and the performance reported in [2] do not apply
directly to this case.

We say that an algorithm is a local top-k algorithm if
it runs on a network node with traffic S and solves the
ApproxTop(S,O, k, ) problem.

III. THE “BASIC SPLITTING” ALGORITHM

The main concept of our top-k algorithms is to use prefix
trie to decide which aggregate set of flows (denoted by flowset
in [11]) to monitor in each time step. This follows the steps
of [5], [111, [12].

In the “Basic Splitting” algorithm, we identify each flow
by a unique string over some alphabet and each flowset by
a regular expression over the same alphabet, such that all
flows contained in the flowset are the flows represented by
the strings matching the flowset’s regular expression. The
motivation behind this approach is to identify each flow by
an IP address and each flowset by a CIDR mask, such that a
flowset is the group of all flows that their corresponding IP
address is included in the flowset’s CIDR mask.

We partition the time into constant length discrete segments
called epochs. The algorithm allocates counters at the be-
ginning of each epoch to measure the aggregated size of a
given flowset. At the end of the epoch and after receiving the
measurements, the algorithm decides on a new allocation of
the counters to (possibly new) flowsets.

The algorithm works as follows. Given m counters, at each
epoch the algorithm partitions the universe of flows into a
disjoint set of flowsets F. For each flowset f € F, it assigns
a counter to measure the aggregated size of all flows contained

in f. At the end of each epoch, it examines the values of the
counters and sorts the flowsets according to their size.

According to the sorted results, the algorithm chooses the
biggest m/2 flowsets and partition each of them into two
disjoint flowsets. The motivation is to prepare a new set of
m flowsets to monitor at the next epoch. We denote the
partitioning operation by refine(f), which generates a set
of disjoint flowsets that covers the biggest m/2 flowsets of
the last epoch.

After generating the refined flowsets, the set F' is modified
to include the new flowsets and to exclude the old flowset.
After a constant number of epochs, we get to a point where
each flowset contains a single flow. At this point, the algorithm
is monitoring a set of single flows for a whole epoch, it sorts
them according to their size and outputs the highest k& flows
as the top-k flows.

The main drawback of the “Basic Splitting” algorithm
is that it assumes the stability of top-k flows through any
subinterval. This assumption motivates the periodic refinement
the algorithm performs. While in many cases the top-k flows
are active throughout the whole monitoring interval, it is
not always the case. Furthermore, the algorithm suffers from
lack of “recovery mechanism”, which allows reconsidering
previously discarded flowsets. This can make it miss some
of the top-k flows, even if they are very significant but were
not active at the beginning of the monitoring interval.

Another drawback of the algorithm is that it does not
estimate the number of active flows in each flowset it monitors
and does not consider it in its refinement decisions. This is
crucial since the number of non-significant flows can be as
high as O(n) while the number of significant flows is usually
in the hundreds. This drawback might lead to missing top-k
flows since an aggregated set of non-significant flows might
mask the significant ones, in terms of aggregated size.

IV. THE “MULTI ROUND” ALGORITHM

To overcome the lack of “recovery mechanism” and the
fact that the top-k flows stability assumption does not always
hold, we suggest the “Multi Round” monitoring algorithm.
This algorithm uses the same concept of the “Basic Splitting”
algorithm but in an iterative fashion. It splits the entire
monitoring period into several monitoring rounds and uses a
shorter epoch that allows performing a full “Basic Splitting”
in each round.

After the first round, the algorithm generates a list of suspect
top-m flows (of this round) and their corresponding values.
Since we suspect stability of top-k flows, we allocate for each
of the top-§ flows an exclusive counter in the next round.
Thus, in the next round these flows are measured explicitly
by % exact counters, while the rest of the counters are used
to detect the larger candidate 75+ flows among the rest.

From these m flows, exact and candidate, the algorithm
should decide on the top-k flows, by sorting the flows ac-
cording to their values. However, there is an inherent problem
with this approach, the counters of the exact % flows are

2
updated throughout the whole current round, while the rest of
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Fig. 1: The algorithm’s estimation process at non-first round
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the counters (those used to detect the round’s candidates) are
updated only in the final epoch of the current round.

Thus, there is a need to estimate the values of the candidate
% flows through the whole round. This estimation is based
on the proportion of the sizes of sibling flows. The motivation
behind this form of estimation is to counteract the sibling’s
size throughout the whole round and accumulate the flow’s
size throughout all epochs.

This process is best described using auxiliary variables.
We denote by estimatey; ;, the auxiliary variable of the
counter measuring f; at the end of epoch i. Also, countery, ;
is the value of the counter measuring f; at end of
epoch i, and parent(f;) is the flowset that its refinement
yielded f;. sibling(f;) is the other flowset resulted from
refine(parent(f;)).

The update of these auxiliary variables for epoch i
is done according to estimatey,; = countery,; +
(estimateparent(f;),i—1 — & * COUNLET sipling(f,),i)- The algo-
rithm achieves that by updating the counter’s value after the
end of the epoch, without maintaining additional hardware
counters.

Figure 1 describes an example for this estimation process for
the subtree of the flowset 39.128.128.128/30. The aggregated
size per epoch of all flows in this subtree is 10, and the sizes
of the single flows fs, f4, f5, f¢ are 6,1, 2,1 accordingly. Sub-
figure 1b shows the computation of the variable estimatey, 1
and Subfigure Ic shows the same process for estimatey, o,
which is the size of f3 throughout these three epochs.

V. THE “HASH THEN SPLIT” ALGORITHM

The “Basic Splitting” algorithm takes decisions at the end
of each epoch. A problematic aspect of this approach that
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Fig. 2: The true heaviest flow (top-1) fo> is masked by several
mid-weight flows g2, g3, 94, 5.

several mid-weighted flows aggregated into a single flowset,
might mask a true top-k flow.

Figure 2 illustrates such masking situation. In this example,
two counters are used to detect the top-1 flows (heaviest
flow). The arrows between two flowsets indicate a relation
of a refine operation. We also assume a constant sizes of
(117 ]-7 1, 1,5, 47 47 4) for (f27 f37 f47 f5a 92,93, 94, 95) respec-
tively. The correct output for this setup should be fs, but as
one can see in this example, the algorithm outputs g instead.

Subfigure 2a depicts the first epoch of the monitoring, where
the two counters measure the flowsets ry and r1. At the end
of this epoch, the usage values of ry and r; are 14 and 17
respectively. Thus, at the end of this epoch, the algorithm will
assign the counters to measure go and g; in the next epoch.

After this decision had been taken, it is impossible for the
algorithm to detect the actual top-1 flow. This is true since the
algorithm does not have any recovery mechanism. IL.e., once it
decides not to explore down a branch containing a true top-k
flow, it stops assigning counters to that branch and the flow
will never be considered again.

Subfigures 2b and 2c depict the behavior of the algorithm
after the crucial wrong decision. They show how it measures
go and g; in the second epoch and g, and g3 in the last
epoch. This leads to outputting go with usage value of 5 as
the heaviest flow, even though f; having usage value of 11.

The probability of such a masking to occur is highest during
the very first decisions the algorithm takes. This is true, since
the aggregated flowsets gets smaller by half with each new
epoch, making it less likely for heavy-weighted flows to be
masked by fewer mid-weighted flows.

To overcome the lack of recovery mechanism, which is most
evident when such masking occurs, we consider hashing the
flows passing through the network node. The hashing process
takes place by applying a bijection function h : 2% — 2%,
where the flows are defined as strings from a.

The idea behind this is to distribute flows of all weights
through all of the branches. This prevents the case of heavy
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Fig. 3: The true heaviest flow (top-1) f2 is masked by several
mid-weight flows g2, g3, 94, 5.

aggregated flowsets that do not contain any heavy single flow.
Since the output of the algorithm should be the id of the flow
as decoded in the packets and the hashed id, the hash must be
invertible and thus a bijection.

An important aspect that must be addressed is the ability
to implement such a hash function using current switches in
line rate. In order to do so, we limit our implementation to
bit-swap hash functions, where several bits in the prefix and
suffix of the IP address of the flow are swapped. It is possible
to implement such bit-swap functions using an Experimenter
Action in OpenFlow, and the packet handling requires one
additional table entry (see [13] for more details).

To view the strengths of this approach we revisit the exam-
ple from Figure 2 and consider the behavior of the algorithm
while applying the hash function h = {fs — g2, f3
9as fa — fas f5s = f5,92 = 95,93 — 93,94 — [3,95 — [a}.

Subfigure 3a depicts the first epoch of the monitoring, where
the two counters measure the flowsets ry and r;. At the end of
this epoch, the sizes of ry and r; are 10 and 21 respectively.
Thus, at the end of this epoch, the algorithm will assign the
counters to measure go and g; in the next epoch.

In contrary to the previous scenario, now the heaviest flow
f2 is measured in the second epoch, as the flow h1 (g2). In the
second epoch, the sizes of gy and g; are 15 and 6 respectively.
Thus, in the last epoch the algorithm monitors fa as h~*(g2)
and g3 as h~!(g3). In the last epoch, the algorithm (instead
of outputting g, as the heaviest flows) outputs fo = h='(go)
which is indeed the heaviest flow.

A two-round algorithm that hashes the flow based on a given
hash function is described in Algorithm “Hash then Split”. The
algorithm differs from the “Multi Round” Algorithm by the
fact that in the second around it uses a given hash function to
distribute the flows and prevent masking.

It is worth to note that the  function
get_round_hash_function  actually  determines  how
the flows are hashed. In the first round, this function assigns
both h and h~! the identity function and no hashing occurs

at the first round. This means, that the first round detects the
heaviest 5 flows and assigns them exact counters.

The exclusion of the heaviest flows and the use of hash
functions allow the less heavy flows of the true top-k to stand
out. Therefore, after the second round, the algorithm holds
candidate heaviest %5 flows from the first round and candidate

next heav1est ﬂows from the second round.

Algorithm “Hash then
ExactTop(S, O, k) using m counters.

Split”: solving

Input : A stream of packets S, A set of flows O and positive
integers k, m.

Output: top-k flows from O in S

1 F = generateslowsets(0);

2 number_rounds = 2;

3 exact_flows = ¢;

4 foreach round in {1..number_rounds} do

5 exact_counters =

assign_exact_counters(F, 3, exact_flows);

6 needed_epochs = calculate_needed_epochs(m, round);

7 packets = get_round_packets(round);

8 foreach counter in exact_counters do

9 counter_packets={p € packets : flow(p) €
counter. flow};

10 counter.value= size(p);

pEcounter_packets

11 end

12 h, h™! = get_round_hash_function(round);

13 foreach epoch in {1..needed_epochs} do

14 aggregate_counters =
assign_aggregate_counters(F, %, epoch, round);

15 epoch_start, epoch_end =
calculate_epoch_times(epoch, round);

16 packets =

get_epoch_packets(epoch_start, epoch_end,
round, exact_flows);

17 foreach counter in aggregate_counters do

18 counter_packets={p € packets : h( flow(p)) €
counter. flow};

19 counter.value= size(p);

pEcounter_packets

20 end

21 foreach counter in aggregate_counters do

22 counter.value+ = parent_counter.value —
(epoch — 1) * sibiling_counter.value

23 end

2 {hfl} 2 | = sort(F,aggregate_counters);

25 F= UZ:{‘ refine(hf;);

26 end

7 {fit2 ={n" (hfZ) i=1>

28 exact_flows =

m
sort(exact_flows, exact_counters, { fi},21,

aggregate_counters)[l : ];
29 end
30 return exzact_flows[1 : k]
VI. RESULTS

A. Setup

We used Mininet [14], [15] to emulate a software-defined
network environment and Open vSwitch [16], [17] as the
OpenFlow enabled switch. Ryu SDN framework [18] was



used to build the monitoring application in Python. The
setup of the experiments used to evaluate the performance
of the algorithms on local node problems was a single switch
connected to two hosts via different ports, and the routing
entries were set to simply forward traffic from one port to the
other.

Tcpreplay' was used to replay CAIDA traffic trace [6],
[8] into the network. Considering the prefixing nature of the
algorithm, in order to keep the original characteristics of the
real traffic and the privacy of the users, one should be careful
to use real traffic traces that went through “prefix-preserving
anonymization” such as the CAIDA traces.

For the evaluation we used two CAIDA traces, from 2014
and 20162, considering 1-minute interval. The CAIDA’14 trace
has the property that the top-15 flows are the same 15 flow
throughout every 12-second interval in this minute. On the
other hand, the CAIDA’16 trace has a very significant heavy
flow over the whole minute, while the next heaviest flows vary
depending on which subinterval is considered. In this sense,
the CAIDA’16 trace is an adversarial input due to lack of
consistent heavy flows throughout the monitoring intervals.

B. Evaluation of local top-k algorithms

First, we evaluated the performance of the algorithm “Basic
Splitting” on both traces. For that, we conducted a series
of experiments to solve ApprozTop(S,k,e), with different
values of k and m using traffic from both datasets and a
constant € = 0.05.

To quantify the performance of the algorithms we define
the approximate top-k set (ATk), to be the set of flows with
frequency higher than (1 — £)ny, where ny, is the frequency
of the k'" heaviest flow. Then the Detection Rate (DR) is the
percentage of approximate top-k flows the algorithm managed
to detect, i.e., DR = w. We note that since all
algorithms output exactly k£ flows, the detection rate is at most
1.

Figure 4 depicts the effect of £ and m on the detection rate
of the algorithm “Basic Splitting” using the CAIDA’14 traces.
It is evident that for small values of k the algorithm performs
well, achieving a detection rate of at least 0.9. As expected,
for a given number of counters, increasing k decreases the
detection rate. Furthermore, one can see that as the value of
m increases the detection rate for a given k also increases,
which is expected since the algorithm is using more counters
to detect the same heaviest top-k flows.

As expected, when considering experiments with the adver-
sarial traces of CAIDA’16, the performance degrades as seen
in Figure 5. For example, the perfect detection rate for k = 8
decreases to just above 86%. Furthermore, the algorithm now
needs 128 counters instead of 32 to achieve a detection rate
about 85% for k = 12.

Next, we evaluated the effects of several short monitoring
rounds instead of a single longer monitoring round, and the

Pcap editing and utilities. available at:
http://tcpreplay.appneta.com

2Data from 2015 was used in the comparison to RAP.
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Fig. 5: Effects of k and m on the detection rate of Algorithm
“Basic Splitting” - CAIDA’14 and CAIDA’16 traces

effects of hashing the flows. For that, we conducted the same
series of experiments each with the appropriate algorithm
compared the achieved detection rates. Note that since the
Open vSwitch [17] we used in the evaluation does not support
(yet) Experimenter Actions we perform the hash directly on
the traces.

Figure 6 depicts the gains in the detection rate for these two
approaches compared to the original approach. The horizontal
axis marks a set of experiments where the value is the
detection rate of the “Basic Splitting” algorithm, while the
vertical axis marks the gains the other approaches yielded
for this set of experiments. These results show that both
approaches provide gains over the “Basic Splitting” algorithm
in different cases. Thus, the combined approach of several
rounds and hashing the flows starting from the second round
was presented at algorithm “Hash then Split”.

Figures 7 and 8 show the effect of k£ and m on the detection
rate of the algorithm “Hash then Split” for CAIDA’14 and
both traces, respectively. One can see that the same trends we
noted regarding the performance of algorithm ‘“Basic Splitting”
also hold for this case. Furthermore, these figures also show
the superiority of the algorithm “Hash then Split” over the
algorithm “Basic Splitting” in all settings.
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Fig. 6: Gains in the Detection Rate of the MultiRound and
hashing approach against the BasicSplitting k£ = 10, m = 32.
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Fig. 7: Effects of £ and m on the detection rate of Algorithm
“Hash then Split” - CAIDA’14 traces.

C. Comparison to state of art streaming algorithms

The RAP family of algorithms introduced recently in [2] are
the best performing top-k streaming algorithms. As mentioned
in the Introduction, these algorithms require per packet oper-
ations and complex data structures, and even when adapted to
perform (i.e., dW-RAP) in line-rate they exhibit low precision
rate (of about 50%). Moreover, these algorithms are designed
to address the packet rate version of the problem.

Still, it is important to compare the expected performance
of our algorithm that use only available counters and works
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Fig. 8: Effects of k and m on the detection rate of Algorithm
“Hash then Split” - CAIDA’14 and CAIDA’16 traces
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Fig. 9: Comparison of Detection Rate for finding top-32 flows
vs. number of counters - CAIDA’15 traces

well also on the traffic rate version. In [2] the evaluation
was done on several traces, where CAIDAI15 [7] being the
dominant real-world trace. The reported experiments included
a convergence period and the results depend on the number
of packets in the experiment. Since our algorithms are not
confined by the number of packets but by time considerations
(since this is the way monitoring is done in the industry) we
had to slightly modify our algorithms to allow a comparison.
We changed the algorithms epochs and rounds to be based
on the number of packets passed rather than on time units.
Figure 9 compares the detection rate of RAP and the “Hash
then Split” algorithms in this modified setting for the same
CAIDALIS [7] traces when the goal is the packet based top-
k flows. Note that dW-RAP uses a metadata field (flow ID)
and we use very basic counters thus in order to compare
we assume that pointers to metadata have the same size as
counters. One can see that for this objective and the same
amount of memory there is no big difference, “Hash then
Split” performs a bit better for a small number of counters
and a bit worse for large numbers.

However, when we implemented RAP for the more relevant
traffic metric the picture is a bit different. As already men-
tioned in the paper, it is not straightforward to support packet
size and total bit count of flows while keeping the deterministic
and probabilistic bounds of RAP, so we had to modify the
criterion for flow eviction to be a probabilistic function of
the amount of bytes in the traffic instead of the number of
packets. As depicted in Figure 10, “Hash then Split” performs
significantly better than the weighted version of RAP (denoted
BW-RAP) in all settings when the number of counters is less
than 512. If more than 512 counters are available then both
algorithms achieve almost the same high detection rate.

VII. RELATED WORK

Formally, the top-k problem aims at finding the top-k
elements that have the highest frequency from a stream of
elements. The space requirements for an exact solution to this
problem is impractical [10] and thus many relaxations of the
original problem were proposed.

The FindCandidateTop(S,k,l) problem was proposed
in [10] defining the [ elements among which the top-k ele-
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Fig. 10: Comparison of “Hash then Split” and BW-RAP
algorithms - CAIDA’14 and CAIDA’16 traces

ments are concealed, with no guarantees on the rank of the
remaining [ —k elements. While the more practical approxima-
tion FindApproxTop(S, k,e), also proposed in [10] requires
a list of k elements, where every element in the list has a
frequency within (1 — ) of the k' element frequency.

To evaluate the performance of algorithms solving these
approximations, two parameters were proposed [19] (in ad-
dition to the space requirement): recall, the number of correct
elements found as a percentage of the number of actual correct
elements; and the precision, the number of correct elements
found as a percentage of the entire output.

Metwally et al. proposed the Space-Saving algorithm in [4].
It builds on the ideas of Frequent [3] while improving the time
complexity of looking up a value of a counter from O(m) to
O(1). The main difference from Frequent is that when a non-
monitored item arrives, the algorithms assign it the minimal
counter while preserving its value. They proved that regardless
of the data distribution, Space-Saving needs min(|A|, %)
counters to correctly solve FindApproxzTop(S,k,e). Where
A is the elements universe, N is the size of the stream and F},
is the frequency of the k'" element. When considering high
volume network traffic, the value of |A| is at least 232 while
Fﬂk can be very high depending on the traffic’s characteristics,
thus the number of counters can be unrealistically high.

Ben-Basat et al. [2] introduced the Randomized Admission
Policy (RAP) algorithm which randomly decides if to reassign
a counter to measure non-monitored items. The probability of
reassigning a counter is in inverse relation to the counter’s
value. The motivation behind this reassignment policy is that
infrequent non-monitored items will need to arrive several
consecutive times to replace a monitored item. The authors
acknowledge the difficulty of implementing RAP in hardware
and presented a hardware-friendly variant, d-Way Randomized
Admission Policy (dW-RAP), which performs poorer than RAP.
This variant assumes the existence of d-way associative cache
in the node’s hardware, where its entries can be partitioned to
store metadata (ID) and value.

Several other recent works have also focused on efficient
resource constrained flow monitoring, realizing that measure-
ment is crucial for network management and control and even
more so in the SDN domain [5], [20], [12]. Moraney and Raz

introduced in [5] an efficient scheme to detect flow anomalies,
based on a variation of the MRT algorithm presented in [12].
The scheme used a constant number of counters, in periodic
assessment and reassignment fashion, to detect anomalous
flows regardless of the number of active flows.

In [5] an efficient anomaly detection mechanism was in-
troduced. The mechanism is based on detecting “over usage”
in regards to flows, i.e., flows that surpass a given threshold.
While such mechanism is efficient in detecting flows that have
a certain individual property, it is not usable in detecting flows
that uphold a global property such as top-k flow. Furthermore,
the authors assumed a given application-specific threshold that
defines when the local property holds. However, setting such
thresholds is a non-trivial hard task since they need to capture
the various aspects of the anomaly and the traffic.

The authors of [20] concentrated on the tradeoff between
the amount of available resource and the accuracy of the
measurement. Note, that like many of the works in this area,
they do not present an analytical framework to study this
tradeoff and rather concentrated on important system related
issues. The same authors proposed more recently in [12] a
network wise dynamic monitoring system where the SDN
controller dynamically configures monitoring rules in the
different network elements. Such a centralized management
entity can thus make use of global information in order to
utilize the distributed monitoring resources (typically TCAM
rules) in an efficient way, that is, getting as much precision as
possible for the given monitoring resources.

VIII. CONCLUSIONS

In this paper, we develop a family of practical, efficient
memory-constrained algorithms for detecting the top-k flows
in terms of total traffic rate. These algorithms use built-in
counters available in any switching node and are deployable
out of the box on any OpenFlow enabled node. We evaluated
the expected performance of these algorithms using real-
life packet traces, and the evaluation shows that our new
algorithms achieve high detection rates while maintaining full
precision regardless of the packet rate. We also show that for
the top-k packet rate problem these algorithms perform as
well as the best streaming algorithms that use complex data
structures and much more elaborated computations. Moreover,
for the more relevant weighted top-k problem our algorithms
outperform state-of-the-art streaming algorithm when evalu-
ated over recent real traffic.

One future direction is to use this infrastructure as a
building-block for detecting network-wise top-k flows. We
believe that combining the local performance described in this
paper with a smart global policy about the number of counters
to be used in each node, will lead to a deployable memory-
efficient monitoring system for efficient detection of network-
wise top-k flows.
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