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Abstract—The dynamically changing landscape of DDoS
threats increases the demand for advanced security solutions.
The rise of massive IoT botnets enables attackers to mount
high-intensity short-duration “volatile ephemeral” attack waves
in quick succession. Therefore the standard human-in-the-loop
security center paradigm is becoming obsolete.

To battle the new breed of volatile DDoS threats, the intrusion
detection system (IDS) needs to improve markedly, at least in
reaction times and in automated response (mitigation). Designing
such an IDS is a daunting task as network operators are
traditionally reluctant to act — at any speed — on potentially false
alarms. The primary challenge of a low reaction time detection
system is maintaining a consistently low false alarm rate. This
paper aims to show how a practical FPGA-based DDoS detection
and mitigation system can successfully address this.

Besides verifying the model and algorithms with real traffic ”’in
the wild”, we validate the low false alarm ratio. Accordingly, we
describe a methodology for determining the false alarm ratio for
each involved threat type, then we categorize the causes of false
detection, and provide our measurement results. As shown here,
our methods can effectively mitigate the volatile ephemeral DDoS
attacks, and accordingly are usable both in human out-of-loop
and on-the-loop next-generation security solutions.

Index Terms—FPGA, Intrusion detection and prevention,
DDoS, Network security, Data Center Networks

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks are plaguing
the Internet with their uncanny harming ability. These attacks
are cheap and simple to launch, fast to ramp up and ex-
ceedingly effective in results. There is such a rapid growth
of these attacks, that even a phenomenon called DDoS-as-
a-Service [1] exists. Unlike the earlier DoS attacks, modern
DDoS attacks are mostly driven by automated botnets. The
Reaper botnet alone has infected more than a million IoT
devices, which actually serve as an easy-to-reach resource-
pool to mount massive attacks [2]. On the contrary, a recent
attack against GitHub did not necessarily resort to botnets —
rather, it exploited the vulnerability to amplification attacks of
the infrastructure’s Memcached servers [3].

Corero identified two key trends during 2017 [4]: One is the
emergence of volatile ephemerals: i.e., brief and low volume
attacks, while the another trend is in their increased frequency.
That is, 58% of all attacks last less than 5 minutes, down from
10s of minutes and hours in the past. The attacks’ frequency
meanwhile has increased by 35% quarterly, which is more
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than 200% p.a. Thus the detection of such volatile ephemeral
attacks is challenging if the Intrusion Detection System (IDS)
has reaction times in the seconds or minutes.

Aggravating the effect of machine-driven high-
scale/frequency bursty ephemeral DDoS attacks, the human
component is also becoming a weak spot and exposure. If
each IDS decision requires human input, the (much) higher
frequency of attacks can add a huge workload to the security
operator, who is overwhelmed before the volatile ephemeral
DDoS. The GISW2017 [5], which included 19000 security
professionals worldwide, forecasts an information security
workforce gap of 1.8 million by 2022. One answer to this
problem is increasing the automation: offloading decisions to
Al To achieve fast mitigation we also have to aid or remove
— partly or fully — the human component from the decisions
related to the machine-driven attacks.

Such automation is currently prevented by a challenge:
Any false positive actions may entail a great cost — e.g.,
in service denial and loss — to the customer. According to
Cloud Security Alliance, 31.9% of security operators face
alert fatigue: ignoring critical alerts, mostly because they are
confronted already with too many false positives [6].

Fast, hardware accelerated, non-DPI IDS’s — that are also
accurate in their detection, — are becoming favorable in DCNs
for two reasons. First, the GDPR update became EU law in
May 2018 [7], thus data security is increasingly important for
the both cloud providers and their tenants. Besides, end-to-end
encryption is becoming more and more prevalent [8], making
all DPI-based anomaly detection at least cumbersome, if not
impossible [9].

The motivation for our work was to answer, whether a high-
speed and -confidence IDS is practically feasible for mitigating
DDoS within milliseconds for end-to-end encrypted traffic? As
a proof of concept, we developed an FPGA-based IDS [10],
which can detect over 96% of DDoS attacks — the 9 most
frequent attacks reported by Akamai [11] — in ms timescales.
This proves that indeed, ms-scale mitigation is possible.

The current paper seeks the answer to the second part of
the burning question: confidence. In order to answer this, we
describe the methodology for determining the false alarm ratio,
then we categorize the causes of false detection, and provide
our measurement results.



II. RELATED WORK

There are currently a wide range of DDoS detection so-
lutions available on the market. The more comprehensive
systems include Incapsula by Imperva [12], DefensePro by
Radware [13], FortiDDoS by Fortinet [14], Arbor Networks
[15], and CloudFlare [16], among others. While these solutions
cover a large variety of attacks, their advertised detection
times remain in the range of seconds to minutes, which
is arguably insufficient against the new breed of volatile
ephemeral massive DDoS.

The reduction of false positives is a crucial issue. Sys-
tem operators and researchers keep developing various new
methods to reduce the false alarm rate. Still, the vendors
of industrial-grade detection mechanisms generally do not
publish their capabilities and validation methods. On the other
hand, the industrial players do publish methods of DDoS at-
tack generation, and some general practices of DDoS detection
[17].

There are both classical and modern methods in signal
detection theory [18] for determining the probability of false
decisions. Classical methods include the Gaussian and the
Markovian approaches, while modern methods are more con-
cerned with specific problems — such as stochastic problems
with apriori uncertainty, non-Gaussian signals, or the use of
sequential analysis.

An advanced methodology for decreasing false alarms
through fusion of DDoS detection algorithms has been demon-
strated in [19]. This work is based on the Dempster-Shafer
Rule of Combination [20]. The method aims for reasoning
with uncertainty, and involves collection of evidence, as well
as marking the certainty of that evidence.

Tran Ngoc Thinh, et. al. proposed a novel FPGA-based
DDoS filtering architecture [21] in 2015. They used the Man-
agement Information Base (MIB) to identify DDoS attacks
and the FPGA to filter the attacks with egress and ingress
filtering. They used a 10 Gbps NetFPGA board to implement
their design, and achieved a throughput of 9.869 Gbps. They
published a further paper [22] two years later, with an extended
architecture. This included soft-core processors for DDoS
detection, while keeping their novel FPGA-based filtering
architecture. They achieved 0.74% false positive detection and
0% false negative detection ratios, though they mostly used
synthesized traffic. Calculation of false alarm ratio can be
precise this way, but synthetic traffic has limited complexity.

The lack of corpus curse: In order to properly evaluate the
capabilities of an IDS, large datasets are needed in a corpus for
machine learning ingestion, in which the evidence of attacks
are labeled as ground truth. Such attack corpus datasets are
unfortunately not available yet. The publicly available datasets
are either too old (e.g., by DARPA or KDD Cup from 1999),
or dedicated to specific attacks (e.g., by CAIDA [23], ANT
[24], DDoSDB [25]) — and even the latest are long obsolete. It
remains impossible to find borderline traffic traces that contain
clearly annotated false positive or false negative patterns.

Without such a corpus, we have resorted to a more tedious
manual verification: We checked all the detected cases (over

100) in the 3-months measurement period when our system
was under validation at NIIFI, the National IT Infrastructure
Development Institute in Hungary. Our aim was to determine
the capability of our algorithms in detecting attacks with
minimum false positive (or negative) hits (or misses).

III. ARCHITECTURAL OVERVIEW

We briefly describe here the design and the key features of
our FPGA-accelerated DDoS detection and mitigation system
able to cope with end-to-end encrypted traffic. A more detailed
description of the ms-scale detection algorithms is presented
in [26]. In order to accelerate the ephemeral DDoS detec-
tion and mitigation, we identified seven key features for the
FPGA-based IDS. These include (1) high confidence detection
of the Akamai Top-9 DDoS attacks, (2) automated mitiga-
tion, (3) millisecond range attack detection, (4) detection of
ephemeral/volatile/transient/stealth attacks, (5) minimal false
positive detection, (6) lossless packet processing up to 100
Gbps line-rate, and (7) fast re-development cycle for mitigation
of new attacks.

A. Overview of the monitoring-detection-mitigation pipeline

In the monitoring-detection-mitigation pipeline shown by
Figure 1, the pre-processing step is done by an FPGA-
accelerated node [27]. Although it would be possible and
beneficial in many applications, for the privacy of our network
traffic we opt not to perform deep-packet inspection (DPI), but
rather to rely solely on the information included in the Layer
2 to Layer 4 headers.
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Fig. 1. The monitoring loop for hardware-accelerated anomaly detection

The summary of the proposed architecture can be found in
[10]. The preprocessing stage in Figure 1 converts the mirrored
data stream into a suitable format for anomaly detection.
Depending on the desired application or service, this analysis
may include the estimation of flow-level statistics (e.g., per-
flow throughput) or traffic matrices (e.g., subnet level).

B. Architecture of the FPGA-accelerated IDS Node

The FPGA-accelerated IDS system is organized in three
functional units; Packet Decoder and Parser, End-point Packet
Rate Profiler, Behavioral and Heuristic DDoS Detector. Based



on the results of the inspection, ACL (Access Control List)
rules are generated and directly fed back into SDN-enabled
switches, allowing for ms timescale attack mitigations (with
further potential for ps in optimized implementations). Alter-
natively — as a more generic, although slower reaction — the
rules can trigger the SDN controller, as shown in Figure 1.

The packet decoder and parser module extracts the useful
fields from the packet headers and creates an 11-tuple for
each packet. The end-point packet rate module measures the
packet rate of each Layer-3 end-point according to Equation
(1), where f{t) is the corresponding traffic function and £ is the
packet rate limit. Every end-point is online monitored in real-
time. The network operator sets a rate limit, above which the
end-point will be considered suspicious and will be forwarded
to the DDoS Detector unit. After the signal, a DDoS Detector
unit will start its inspection window, in which its going to
sample every incoming packet for signs of DDoS attack.

A similar solution is employed by the Palo Alto DDoS
protector [28].

1 tt1
/ F(t)dt > k ()
t

tn+1 - tn

n

The purpose of the behavioral and heuristic DDoS Detector
unit is to check for traces of DDoS traffic. It runs behavioral
and heuristic algorithms to detect attacks.

C. Calibration of the Inspection Window

The DDoS inspection starts when the end-point packet rate
profiler found an end-point suspicious. The correct calibration
of the inspection window is a key issue in every measurement
application. We observed that constant inspection frequency
in a delicate real-life security application entails multiple
potentially harmful side-effects. First, the high intensity attacks
are oversampled, hence (many) more than necessary packets
are used for a high-confidence decision, i.e., higher effort and
longer detection lags. Second, the low intensity attacks are
undersampled, since at the end of a inspection period the IDS
has insufficient data to reach a high-confidence decision that
may increase the false alarm rate. Our proposed solution is to
employ sequential analysis methods with adaptive inspection
window, based on the ingress packet rate from the suspected
attack. Each inspection window is based on the partial results
of the corresponding measurement. In Section VI, we show
the improved effectiveness of this approach.

D. Threat Mitigation

According to the best practice common in security systems,
the decision confidence level can be mapped to their attack
status and the corresponding action: certain, probable, possible
(attack), and non-attack. Decisions with high confidence level,
i.e., certain (positive) attack and non-attack status, can trigger
direct actions, such as ACL filtering (e.g., blackholing) or
leaving the traffic unfiltered (pass-thru). In contrast, a traffic
with possible or probable attack status can be specifically
handled. In this latter scenario, the suspect traffic can be
diverted to a specific scrubbing network within the cloud,

to be handled by a dedicated server cluster in the scrubbing
datacenter.

IV. ACHIEVING LOow FALSE DETECTION RATE
A. Boundary Conditions of this Assessment

The results of our assessments are valid within the following
circumstances.

e Merely Layer 3-4 volumetric attacks are executed;

 Attack types that are included in the Akamai big-9 group
(roughly 95% of all DDoS attacks) [11];

o The rate of the attack is higher than the attack volume
limit set by the operator.

The Attack volume limit is a hard threshold set within the
end-point packet rate profiler module. Every end-point, which
receives traffic at a lesser rate than the limit is considered
attack-free. This limit is reasonable to be set between 400Mbps
and 10Gbps. A similar range is employed by Forti [14] and
Palo Alto [28]. This limit is derived from the size of the
protected network, while the resource availability within the
FPGA hardware determines its lower bound. Equation (2)
describes this limit, where N,,0zh0st,limi¢ 1S the maximal
number of concurrent over-the-limit end-points of the pro-
tected network, n,q4, is the number of parallel behavioral and
heuristic DDoS detector modules instantiated in the FPGA,
tresamyp 18 the time after an end-point is re-tested for attacks,
and t4.. is the time required to make decision. The 744y
is dependent on the FPGA resources, the bottleneck in this
case is the number of DSP slices. Our current hardware [29]
can contain 70 — 100 of these modules, while a similarly
priced modern Kintex UltraScale+ can contain 600 —800. By
increasing t,csqmp the lower bound can be further extended,
but the detection times may increase. The #,¢sqmp is currently
set to 0.1s. The t4.. 1s between 0.5 ms and 15 ms based on
the incoming traffic rate of the end-point.
t'r‘esamp (2)

Nmaxhost,limit < Nadv *
dec

B. Methodology of this Assessment

The first step of the design was the background research.
We collected traffic traces, both malicious and non-malicious,
in the NIIF network. With those samples and others available
online we created the specification for the IDS. We improved
the specification based on researches done by security firms,
especially Akamai. We designed methods and implemented
them into our FPGA based system. Then we verified our
system with the collected traces. We demonstrated in previous
works [10], [26] that our system works properly according
to the specification. In this paper, we propose novel methods
to validate our detection algorithms, i.e., to verify the false
detection rate of the IDS. First, we identified the possible
causes of false detection. We synthesized various traffic pattern
based on real DDoS traces, which are capable of inducing
false detection. This way the dataset, which guided us in the
creation of the detection methods is completely separated from
the dataset used to assess the false rate of the system.



V. CAUSES OF FALSE DETECTION

This section discusses the algorithms of the advanced de-
tector units by categories. We analyze how false positive and
false negative alarms can be generated and what measures
were used to eliminate the false positives and minimize the
false negatives. The Akamai big-9 can summarized into 2
groups by detection method: i) attacks that can be detected
based on protocol behavior deviations (UDP frag, DNS, NTP,
CLDAP, SSDP, SNMP, ACK), ii) attacks that can only be
identified by heuristics (UDP). The first group can be handled
with 1 or 2 algorithms per attack, on the other hand UDP is
detected by 5 algorithms in our implementation. The tighter
the definition of an attack, the easier to find a rule for its
detection. For the more vaguely-defined attacks, such as UDP
floods, heuristic methods are more appropriated. Protocol
behavioral algorithms: False negatives can be induced by
network anomalies — i.e., packets not reaching the detector —
and attack masking methods. False positives can be generated
by network anomalies. Heuristic algorithms: False negatives
can be triggered by network anomalies and elaborated Day-
0 attacks that apply methods unknown to our heuristics.
False positives can be raised due to network anomalies and
particularly unusual, albeit legitimate traffic. The causes of
the false detection are summarized in Table I.

TABLE I
POSSIBLE CAUSES OF FALSE DETECTION

False + False -

Protocol behavior || Packet loss, Sampling Attack masking
Packet loss, Sampling
Masking, Day-0 attacks

Packet loss, Sampling

Anomalous traffic
Packet loss, Sampling

Heuristic

A. Handling the Adverse Effect of the Inspection Window

The detector unit inspects the data flow for a few ms only,
so we cannot assume that the current number of incoming
packets are the expected value of the packets.

For example, consider a normal data transfer between two
hosts that includes some fragmented packets, with a (possibly
high) amount of last-fragment packets not arriving within
the inspection period, while all of the first fragments were
successfully received.

We applied statistical parametrization to calculate such occur-
rences. To model this we used a Poisson distribution, because
in modeling networks with large population of independent
users contributing to the aggregate, user sessions can be
assumed to follow a Poisson arrival process [30].

B. Coping with Packet Loss (from network anomalies or the
nature of inspection)

Some scenarios for asymmetric packet loss can cause both
false negative and positive alarms. While our DDoS detector is
capable of lossless packet processing, we cannot assume that
the rest of the network path is lossless as well. Each detection
algorithm was calibrated to effectively handle packet loss. Let
us make two assumptions for the sake of simplicity.

First, the probability of packet types within the inspection
window is the theoretical probability p = ¢ = 0.5, — i.e., the
first and last fragment have equal probability. In subsection
V.A, we analyzed the effect and probability of unexpected
number of packets.

Second, the packet loss can be modeled with binomial
distribution — see Equation (3). This is a good model, if the
loss is caused by the inspection window.

N/4
> (N) gV 3)
k=0 k

In Section VI, we show that the first false positives are
generated when the natural 1:1 ratio (of p:q) becomes 3:1
so we take that as a base for our calculation. Each measured
attack can be modeled with 1:1 natural ratio, e.g., there is a last
fragment for every first fragment in IPv4 fragmentation and
there is a DNS response first fragment for each DNS request.
The 3:1 ratio is based on a heuristic approach. If we set the rate
to as high as 7:1 then a regular traffic can mask the attack. If
we set it too low (e.g., 2:1) then the probability of false alarms
corresponding to packet loss can be quite significant. Figure 2
depicts the false positive probability ratio. For packet loss rates
typical for regular operation, the false positive probability is
extremely low. But for undersampling cases, the false positive
probability can be quite significant. Our solution for this
problem is a sequential analysis-based detection method, in
which the sampling window is automatically extended if the
number of incoming packets is low.

10°
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P(False positive)
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Number of arriving packets (E = 1000)

Fig. 2. The probability of false positive versus the number of non-lost packets
(lin-log scale)

C. Non-Malicious Anomalous Application Traffic

Some highly unlikely anomalous traffic can also trigger the
heuristics algorithms. Our heuristics include the comparison of
the payload hashes of the packets arriving to the target. This
can be done since the current IDS implementation receives
96B truncated packets, which contain enough data to create
hashes. If the majority of the packets’ payload hashes are
extremely similar to each other, we assume that it is a DDoS
attack. Most direct DDoS attacks use cloned packets to achieve
maximal efficiency on the given hardware. These anomalies
can happen in case of “Heartbeat”, ”Sync” and “Keep-alive”
applications. Such applications use 1-1000 packets per sec.,
which is too small to trigger the IDS. It is quite possible
nonetheless for such applications to persistently trigger the
IDS; hence they should be manually added to the whitelist.



D. Handling Attack Masking

According to our measurements in the NIIF network, merely
a small number of attackers are using such methods to
mask their tracks. We captured an UDP fragmentation attack,
which was masked with “last fragment” IP packets. The last
fragments were on different IPv4 identifications, making the
packet reassembly impossible. Primitive or naive detection
methods can be easily fooled in this case. NTP attacks can be
masked with spoofed NTP requests, whereby the src. /P =
Target , dst.IP = Address ofanother datacentertenant.
As this masking always leaves a trace, the designer can refine
the detection algorithms to the point where such masking can
be detected. The UDP fragmentation masking can be identified
with a stateful pseudo-reassembler.

VI. RESULTS

Here we validate our IDS with traffic that was specifically
created to generate false alarms. Our goal was to create
plausible scenarios for each false alarm category. Unlike in
our previous “in-the-wild” papers, here we had to synthetically
generate the majority of the traffic used for validation.

A. Handling the Adverse Effect of the Sampling Window

In this case, we performed a worst case analysis using one-
sided variance, i.e., the response is the expected value and
the number of requests varies. The test file contains 1000
pieces of 0.5s bursts (e.g., NTP requests), with 0 —100% - A
packet number on (e.g., NTP-) request packets. Interarrival
times of request packets within the bursts are generated by an
exponential distribution, hence the timewise spacing of packets
follow a Poisson distribution within the burst. The detector was
modified to generate “not attack” messages, if the burst was
not considered as attack. The IDS messages were logged to
a text file and manually analyzed. For each step a relative
probability is calculated based on the Poisson distribution.
Figure 3 shows our results versus the calculated probability.
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Fig. 3. The measured probability (red, ’step-like’) of false positive detection
and its theoretical probability (green, 'falling’). The red line is the product
the number of false detection aggregated in 10% steps, e.g., number of false
positive : number of tests with 10%-20% packet loss

B. Handling Packet Loss (Network Anomalies or Sampling)

Here we simulate our adaptive sampling time method ver-
sus the constant sampling frequency. The two methods are
virtually similar at higher packet rates, but different at lower

packet rates. Figure 4 shows that our method reduces the loss
probability by orders of magnitudes (1072 vs. 10~ around
the lower bounds), for only a small relative-increase in the
detection time (see Figure 4). This trade-off can be beneficial
in applications, where the cost of false detection is high.

We trade a single digit of detection time for two orders of
magnitude in false positive probability, by adaptively extend-
ing the inspection window. The false detection probability here
spans from (1074° to 10~%).
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Fig. 4. Left: The false positive probability of the basic rule (red) versus our
method (green, ’close-to-zero’). Right: The increase in detection lags, basic
rule (red), our method (green)

C. Non-Malicious Anomalous Application Traffic

We captured our “wild” DDoS traffic in the NIIF datacenter
using sample rate based rules, as explained in [10], [26]. As
this system generated many false positive alarms, we used our
synthetic false positive traffic to test the IDS. We replayed
five long samples, which could be verified manually as false
positives. None of the replayed traffic was registered as attack
by our IDS, which is a convincing result.

D. Handling Attack Masking

For this purpose we used real attack traces captured in NIIF
and added masking packets to generate false negatives. The
attacks were masked with the methods presented in Subsection
VE. We used four different attacks (i.e., NTP, DNS, UDP
frag, RIP) and measured the detection times. The measurement
methods are explained in [26]. As Figure 5 shows, detecting
the masking over such attacks does not significantly impact
the millisecond-range detection times experienced for attacks
without masking (see Figure 6).

E. Results overview

In this section, we summarize the results, calculate the total
false ratios, and we are going to estimate, how many decisions
can be automated. The term over-the-limit host (OTH) will be
used to describe a host, which has incoming traffic higher
than the limit set in end-point packet rate profiler module
(Subsection III.C). The average number of OTH is calculated
based on (4), where k is the total number OTH and 1, nigne
is the time when the host receives traffic over-the-limit. The
OTH is a very important metric for our system, because only
OTH traffic can cause false positive detection. The value of
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Fig. 6. The ms-range detection times of regular attacks captured in NIIF

the limit is irrelevant in this calculation (400Mbps - 1Gbps
was used in NIIF). The total number of DCN hosts are much
higher (10%,10%) than the average number of OTH.

k
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The false detection ratios are calculated with total prob-
ability theorem. The Piotqifa15¢ has to be weighted with
the following unique characteristics of our IDS: each host’s
traffic, which is labeled by the end-point packet rate profiler,
is sampled over and over again. In an hour, this kind of traffic
is sampled 36000 times, at 0.1 ms re-sampling rate. This is
a necessary mechanism to detect attacks swiftly against high
traffic hosts.

TABLE 11
THE PROBABILITIES OF FALSE DETECTION. THE NUMBER IS CALCULATED
WITH THE DATA DESCRIBED IN TABLE III ! FALSE + PROBABILITY OF 1
HOUR OVER THE RATE LIMIT TRAFFIC 2 IF THE ATTACK IS NOT DETECTED
IN THE FIRST SECOND: CLASSIFIED AS FALSE NEGATIVE

Probability False + 1 False - 2
Packet loss 7.32-10~%  3.39.10"°0
Inspection 1.1-10=% 5.10~33
Attack masking NA 0
Anomalous traffic <107° NA

Table II shows the false detection probabilities. The question
arises, how these probabilities can be translated into real-life

TABLE III
THE PROBABILITY DATA SOURCES OF EACH CATEGORY. * THE
PROBABILITY OF PACKET LOSS EVENTS WERE CALCULATED WITH THE
MARKOVIAN MODEL, THE LOAD FACTOR WAS CHOSEN TO BE 0.9, WHICH
IS LARGER THAN MOST REAL NETWORKS’ LOAD

Pevent Prelative
Packet loss ~ Mathematical model * Simulation
Fig. 4
Inspection Mathematical model Expected Result
Fig. 3 Fig. 3
Attack NIIF Measurement Exp. Result
masking Section II Fig. 6
Anomalous NIIF Measurement NIIF Measurement
traffic Section IT Section II
TABLE IV
NUMBER OF EXPECTED YEARLY FALSE DETECTIONS FOR DIFFERENT
DCNs.

Average number of OTHs
12 120 1200

F+ F- F+ F- F+ F-
Packet loss 10738 10—4% 1037 10—44 10-36 1043
Inspection  10~20 1027 10~ 10726 10—1'8 10-25
Anom. traffic 1 NA 10 NA 100 NA

data-center operation. Unfortunately, no uniform answer can
be given to this question, because the characteristics of each
data center is different. Table IV provides a yearly estimation
on what can be expected in DCNs with different sizes. The
average number of OTHs used for this calculation are set this
way to put our results into different context. On average, the
KIFU-NIIF network has 5-10 OTHs, at 1Gbps rate limit.

Our results show that we can automate many functions
that was previously done by security experts, but the human
component cannot be completely removed yet, mostly due to
Day-0 attacks.

VII. CONCLUSION

The new breed of machine-driven high-scale/frequency
bursty ephemeral DDoS attacks launched via multi-million
node botnets mandate a new generation of IDS tools, vastly
improved in reaction times and in the confidence of mitigation.
Designing such an IDS is a risky endeavour as the security
operators are adamant to act — at any speed — on what may later
prove as false alarms with costly consequences. A paramount
challenge of a fast (ms) reaction system was in maintaining
a consistently low false alarm rate. We have shown that our
detection and mitigation system can address this challenge at
100Gbps.

Besides verifying the model and algorithms with real traffic
”in the wild”, we have validated theoretically and practically
the low false alarm ratio. Our further key contributions were
the ’false’-proof and the (ms) detection methods amenable to
FPGA acceleration. Such methods can timely mitigate the new
ephemeral attacks and are effective both in human out-of-loop
and on-the-loop security solutions.

Takeaway: Is a high-speed (ms mitigation lag) and high-
confidence 1IDS practically feasible for e2e encrypted cloud
traffic? Our answer is yes, despite the challenges to design
and implement it in a real 100Gbps system.
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