
P4NFV: An NFV Architecture
with Flexible Data Plane Reconfiguration

Mu He, Arsany Basta, Andreas Blenk, Nemanja Deric, Wolfgang Kellerer
Chair of Communication Networks, Technical University of Munich, Germany

{mu.he,arsay.basta,andreas.blenk,nemanja.deric,wolfgang.kellerer}@tum.de

Abstract—Current architecture proposals for Network Func-
tion Virtualization (NFV) do not integrate hardware-accelerated
network function implementations. Recent research studies have
shown that pure software-based implementations cannot achieve
the needed line rates for todays network services. We propose
P4NFV to fill this gap. Making use of an additional abstraction
layer, P4NFV is an architecture that can achieve software-
based network function implementations as well as handle
P4 for programming protocol-independent packet processors.
With P4NFV, network operators can still instantiate network
functions that are specified in terms of computing and storage
hardware, while making use of the performance improvements
of P4-enhanced networking hardware. Moreover, in order to
take the fast changing nature of todays network services into
account, P4NFV integrates mechanisms to reconfigure P4-based
network functions at runtime: another missing gap in literature.
Based on a proof-of-concept implementation of P4NFV for four
network functions, we show promising measurement results.
Whereas the network function implementations tailored towards
reconfigurations add only marginal overhead, even configuring
network functions at runtime does not notably affect network
service operations with higher latency or severe packet loss.

Index Terms—Network Architecture, Network Function Vir-
tualization, Programmable Data Plane, Network Function Adap-
tation.

I. INTRODUCTION

Emerging applications and changing user demands are chal-

lenging today’s communication networks such as the Internet:

applications like augmented reality require low latency, while

big data applications introduce new dimensions of network

traffic in terms of scale and dynamicity. Such demands stand

in stark contrast to the inflexible nature of the legacy in-

frastructure. Hardware-based routers and middleboxes, which

cannot be easily upgraded or reconfigured, hinder the network

operators to update their infrastructure. To address these

issues, Network Function Virtualization (NFV) has emerged

to enable more flexible communication networks [1]. NFV

deploys Network Functions (NFs) as software running on

commodity servers. It decouples function logic from hardware

realization. As a result, operators can flexibly instantiate,

configure, migrate and terminate NF according to dynamic

system conditions [2]; hence operators can efficiently adapt

the infrastructure.

A pure software solution as proposed by recent NFV

approaches may also raise concerns. First, the line rate pro-

cessing target is hard to achieve in a software-based NF,

especially for small packets (≤ 128 Bytes) [3]. Second,

many NFs, such as Deep Packet Inspection (DPI) and packet

en/decryption, are compute-intensive. The appliance of gen-

eral purpose CPUs, which are not designed specifically for

those tasks, is not cost-effective from the techno-economic

perspective [4]. Thus, as a next step to address the issues

of pure software-based implementations, the combination of

software and programmable hardware is a promising research

direction [5], [6]. In this regard, P4 has been introduced

to program software and hardware networking devices. P4

promises to combine the advantages of both building blocks:

better packet processing performance due to hardware-based

networking implementations and the flexibility of software-

based programmability of network operations.

When compared to pure software implementations (without

P4), the nature of P4 promises several advantages in the NFV

scenario. First, NFs can be implemented with less amount

of code and the NF development phase becomes more effi-

cient [7]. Second, it is possible to simultaneously manage the

NFs that operate as software and in hardware. As an example,

the same P4 code of a firewall can be loaded in the BMv2 soft-

ware [8] or in the NetFPGA chip [9]. Moreover, the runtime

reconfigurability of P4 assists the flexible deployment of NFs

in the face of network dynamics [10]. Therefore, combining

P4 with NFV is promising to create a reconfigurable data plane

with high management efficiency.

The combination of P4 and NFV, however, is still missing

in the literature: there is no work that uses P4 to implement

NFs that can operate as software or hardware and can be

reconfigured at runtime. In this regard, we propose P4NFV,

which abstracts the underlying physical infrastructure as a set

of NF nodes running P4 programs with runtime reconfigura-

tion support. As state consistency becomes an issue in case

of reconfigurations, P4NFV preserves the consistency of NFs

during reconfiguration. The contributions are as follows:

• Proposing an NFV management architecture for P4-

enhanced data planes.

• Presenting two approaches to reconfigure P4-based net-

work functionality at runtime, and analyzing the ap-

proaches’ trade-offs.

• Implementation of a P4NFV prototype and evaluation of

NFs’ performance during reconfiguration.

The remainder of this paper is structured as follows.

Section II provides the background and the related work

of data plane programmability with P4, NFV management

architecture, and function chaining-related network operations

978-3-903176-14-0 c© 2018 IFIP



like optimization. Section III introduces the design of the

P4NFV architecture. Next, Section IV outlines the details of

our prototype implementation, highlighting the two data plane

reconfiguration approaches. Section V provides the evaluation

setup and results. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This section briefly overviews data plane programmability

with P4, NFV management architectures, and data plane

reconfiguration approaches.

A. Data Plane Programmability with P4

Data plane programmability has drawn much attention in the

networking community. An merging approach to program the

data plane is to express the forwarding behavior with domain

specific languages, such as P4, and then to compile it to a

program/configuration that can be loaded in a target.

1) The P4 Language: Bosshart et al. [10] first proposed

the P4 programming language. All the basic building blocks of

packet processing, i.e., header parsing, actions based on header

matching and re-encapsulation, can be described with P4. The

header parsing is implemented as a state machine to identify

a sequence of headers and to extract them into metadata for

later processing. Following the Match+Action paradigm, the

match tables, associated with the user-defined actions, define

the pipeline of packet processing, and the tables are populated

via a control plane interface. Registers, meters and counters

can be declared in order to provide stateful implementations.

2) The P4 Targets: P4 programs can be executed in var-

ious packet processing entities, i.e., targets, from switching

software to hardware devices. BMv2 [8] was the first software

switch prototype (the so called Simple Switch target). Another

software implementation is PISCES [7], which is derived from

Open vSwitch [11]. For hardware, SmartNIC [12] leverages

the programmability of the Network Flow Processor (NFP),

while P4FPGA [13] and P4-to-VHDL [14] enable P4 program

execution on FPGAs.

During the compilation of P4, the pipeline is translated into

a Table Dependency Graph (TDG) [10] and thereafter mapped

into the resources of the specific target. For different targets,

the resource mapping can be different: match tables can be

mapped to RAM in software switch [7], [8] and TCAM in

hardware reconfigurable chips [13], [14].

A software target is assumed to provide the greatest flex-

ibility in building up the Match+Action pipeline; however,

packets are processed one after the other, which can lead

to low resource utilization. On the contrary, for an NFP,

the corresponding P4 compiler can explore the parallelism

of stages in a pipeline. The parallelism leads to higher

utilization, and therefore line-rate packet forwarding can be

achieved [15]. Besides, specific logic transistors enable even

higher packet processing efficiency, compared with general

purpose CPUs [16].

Due to the increasing variety of P4 targets, performance

analyses are needed to identify and understand potential trade-

offs. Such understanding makes it possible to select the proper

platform for a specific use case. Current performance evalua-

tions (such as [7], [14], [17]) focus merely on static operations,

e.g., packet processing latency and throughput. It can be noted

that different targets introduce various implementation aspects,

which should be considered during implementation and de-

ployment of NFs. Hence, P4NFV introduces an abstraction

layer to take care of the various target-specific details.

B. NFV Management Architectures

A variety of NFV architectures have been proposed to tackle

various aspects of resource management in NFV [18]–[21],

with focus on, e.g., automation of NF provisioning, NF latency

reduction, dynamic resource scheduling, and dynamic service

function chaining.

Because of the complexity of software-based network

construction, vConductor [18] suggests to automate the NF

provisioning procedure, while considering various resource

scheduling and infrastructure fault isolation. To reduce latency

and increase resource usage efficiency, NetFATE [19] deploys

NFs not only in high-performance data center servers, but

also in the nodes that are close to end users. NFVnice [20]

dynamically schedules resources allocated to service chains

and thus enables fair share of CPU to NFs. With SDN support,

[21] orchestrates and chains NFs in a data center and demon-

strates the high dynamism and flexibility of function chaining

compared with legacy hardware architecture. The proposed

architectures, however, assume that NFs are implemented as

general software, which is not applicable to a data plane for P4

composed of software and hardware programmable devices.

C. Data Plane Reconfiguration Approaches

In this section, we report on work that targets at reconfigu-

rations enabled with and without P4.

1) Reconfiguration without P4: Several publications [22]–

[24] tackle the problem of how to reconfigure the data plane

with minimal disruption. The Split/Merge approach [22] con-

siders the dynamic scaling of NFs. A hypervisor abstracts the

states of NFs and manages their redistribution upon creating

or destroying NF replicas. OpenNF [23] is a control plane

architecture that can manage both NF state and networking

forwarding state. Special APIs and a combination of events

and forwarding updates can redistribute the packet processing

across a group of NFs. Zave et al. propose Dysco protocol [24]

to enable dynamic service chaining. When the sequence of

NFs changes, the protocol reconfigures the data plane packets

of the corresponding TCP session with small disruption.

2) Reconfiguration leveraging P4: The reconfiguration

capability of P4 has been leveraged to achieve data plane vir-

tualization, e.g., HyPer4 [25] and HyperV [26]. Like in other

virtualization scenarios, the target is to enable the sharing of

networking resources between multiple tenants (the ones that

receive virtual resources, i.e., a partition of the physical net-

working resources). Both approaches introduce a hypervisor

that enables multiple P4 programs to run isolated on the same

packet processing entity. Upon initialization, each processing

entity is configured with all necessary P4 programs. A table



is used to dispatch the tenant network traffics between the

P4 programs of the tenants. By updating certain table entries,

the hypervisor can even turn on/off the programs at runtime.

We leverage a similar approach to accommodate multiple P4

programs simultaneously on one network processing entity.

In contrast to the virtualization approaches, P4NFV focuses

on the capability to reconfigure the processing pipelines, i.e.,

to dynamically steer network traffics between P4 programs

running on the same networking entity.

To the best of our knowledge, there is no work that com-

bines NFV and P4 for heterogeneous resources for dynamic

use: the NFs are implemented with P4, deployed on various

targets, and reconfigured on the fly.

III. ARCHITECTURE DESIGN

In this section, we first enumerate the challenges of an

NFV architecture which leverages data plane reconfigurabil-

ity. Thereafter, we propose P4NFV, which can manage NFs

implemented with P4. Finally, we show that P4NFV complies

with the guideline NFV architecture proposed by the ETSI

organization [27]. For P4NFV, we assume a scenario where a

network provider deploys NFs or whole function chains over

time to process network traffic of different network services.

A. Design Goals

To support network dynamics, an NFV management archi-

tecture should consider the following three aspects.

1) Abstraction: In order to balance the trade-off among

performance, investment and revenue, infrastructure providers

should be able to deploy heterogeneous resources, i.e., com-

modity server and hardware equipment, for NF provisioning.

To ease the operation of the heterogeneous resources, ab-

straction should hide target-specific implementation details,

APIs, and performance trade-offs among heterogeneous data

plane platforms. Abstracting the infrastructure simplifies the

procedure of managing both software and hardware resources.

Realizing abstraction via an additional layer can make it

possible that infrastructure providers offer various NFs, from

lite ones, such as packet forwarder, to advanced ones that are

more compute-intensive, such as packet en/decryption.

2) Flexibility: The architecture should be able to cope dy-

namics such as changing network traffic conditions or changes

in terms of NF’s requirements like for emerging service cases.

For instance, during the operation of an NF, the requirements

from the NF in terms of Quality of Service (QoS) and/or

reliability and resilience may alter. The above dynamics should

be handled through proper NF management schemes, includ-

ing feature upgrade, instance migration, parameter adaptation,

etc. In other words, it should be possible to instantiate, (re-

)configure, (re-)located and upgraded each deployed NF in a

flexible manner, with minimum interruption of operation [1].

3) Consistency: Beside abstraction and flexibility, a holistic

architecture design should also integrate consistency. Con-

sistency aims at two aspects: (1) consistency during opera-

tion without any adaption and (2) consistency when actually

adapting existing NF deployments. First, during operation,

Commodity Server

Programmable Hardware Switch

Physical Layer

Abstraction Layer

NF Node (Abstracted)

Resource 
Optimizer
Resource 
Optimizer

NF Central
Manager

NF Central
Manager

Processing, memory, I/O capacity

Function
Compiler
Function
Compiler

NF Request
Handler

NF Request
Handler

Admin CLI &
GUI Dashboard
Admin CLI &

GUI Dashboard

Management and Orchestration Entity 
(MOE)

Policy
Interpreter

Policy
Interpreter

NF
Configurator

NF
Configurator

Tab./Reg.
Configurator

Tab./Reg.
Configurator

Resource
Monitor
Resource
Monitor

Ctrl./Mgmt. Interface

NF/Policy Request

P4 Capability

Flow/Reg./Cnt.
Databases

Flow/Reg./Cnt.
Databases

Operator

Conf. and Mon. 
Entity (CME)

Fig. 1. Illustration of P4NFV architecture design. The physical layer consists
of different P4-enabled entities which are abstracted in the abstraction layer
for the ease of management.

performance consistency ensures that all abstracted resources

provide the capacities as they claim without any unpredictable

performance behavior. This might be particularly challenging

when facing heterogeneous P4-enabled platforms with perfor-

mance tradeoffs. Second, when adapting the NF deployments,

e.g., when migrating an NF from a hardware to a software

target, the performance guarantees should maintain. Moreover,

logical consistency should always be preserved, even in case

of reconfigurations; e.g., a stateful NF such as a L4 firewalls

should not let malicious traffic during reconfigurations.

B. P4NFV Architecture

This section introduces the P4NFV architecture. It

overviews its components and clarifies how P4NFV realizes

the design goals as mentioned in the last section. Fig. 1

illustrates the architecture of P4NFV. It is logically composed

of five components: the Physical Layer, the Abstraction Layer,

the Control and Management Interface (CMI), the Configu-

ration and Monitor Entity (CME), and the Management and

Orchestration Entity (MOE).

1) Physical Layer: The physical layer consists of vari-

ous types of packet processing entities (targets) that can be

programmed with P4. As shown in Fig. 1, green squares

represent commodity servers that can host software targets,



and orange squares represent programmable hardware targets.

Note that the physical layer can be extended to incorporate

other entities which are not programmable. For instance,

commodity routers with configurable forwarding information

bases can also be controlled in the architecture. Such hybrid

infrastructure can benefit from both NF deployment flexibility

[4] and CAPEX/OPEX cost saving [19].

2) Abstraction Layer (NF Nodes): This layer abstracts the

physical resources. All the abstracted processing entities can

implement the Match+Action pipelines as demanded by P4.

Specifically, each entity is abstracted as an NF node, which is

equipped with processing, memory and I/O resources and is

able to host multiple NFs. Through the abstraction, various tar-

gets are modeled with their own performance characteristics,

e.g., whether they can process packets in parallel or note. The

performance models assist the network operator to decide the

best target for a particular NF requirement. To preserve data

plane consistency, the resources are monitored by the upper

components to alleviate, e.g., overload situations, which may

cause data plane performance degradation.

3) Control and Mangement Interface (CMI): This in-

terface is the logical communication channel between CME
(introduced later) and the underlying NF nodes. For different

targets, the actual implementation of CMI can be different;

however, the distinction is complete transparent to the above

components in P4NFV. All the operations, e.g., push compiled

P4 programs to NF nodes, populate match tables, fetch counter

values and read/write registers, pass through this interface.

4) Configuration and Monitor Entity (CME): The com-

ponents of the Configuration and Monitor Entity (CME) are

the Configurators, the Resource Monitor and the Databases.

Based on the configurations received from MOE, the Config-
urators take the responsibility of implementation of the NFs

in the respective physical NF nodes.

The Resource Monitor collects the statistics from the Ab-
straction Layer periodically and notifies MOE in an event-

based fashion, i.e., whenever any performance indicator, e.g.,

the load balancing factor and physical link utilization, violates

a predefined threshold. Besides, the Resource Monitor also

collects the values of registers and counters and keeps such

state information in the Databases. With the help of registers,

flow information can be stored, such as header fingerprint,

average arrival rate, and forwarding state. The Database ap-

proach has a clear advantage: it can help to maintain the global

consistency of various NF instances during reconfiguration.

5) NF Management and Orchestration Entity (MOE):
As the central component of P4NFV’s architecture, it consists

of the NF Request Handler, the Resource Optimizer, the

Policy Interpreter, the NF Central Manager, and the Function
Compiler. The network operator interacts with MOE through

the Admin CLI & GUI Dashboard module offering different

management operation possibilities: e.g., configuring global

policies or checking the resource usage of nodes.

MOE automates the whole process of initiating, coordi-

nating and managing NFs. The NF Request Handler listens

to new NF requests, as well as policy updates of existing

Virtual
Network

Virtual
Storage

Virtual
Computing

Computing
Hardware

Storage
Hardware

Network
Hardware

Virtualization Layer

NFVI

VNF 1 VNF 2 VNF 3

EMS 1 EMS 2 EMS 3

OSS/BSS

VNF
Manager(s)

Virtualized 
Infrastructure
Manager(s)

Orchestrator

Service, VNF and 
Infrastructure Description

NFV Mangament and 
Orchestration

Fig. 2. ETSI NFV reference architecture framework [27]. P4NFV realizes the
ETSI architecture, where in addition, physical resources are also P4-enabled.

NFs. Together with the NF Request Handler and the Policy
Interpreter, the Resource Optimizer implements the requests

with optimized configurations, including the P4 programs.

The configurations are directed to the NF Central Manager,

and then passed to CME, which in turn implements them in

the NF nodes. In the meantime, the NF Central Manager
listens to the data plane status via CME and re-optimizes the

NF deployment and configuration. The re-optimization can be

triggered either by the operator manually, or by the NF Central
Manager itself. The Function Compiler is a set of compilers

(e.g., p4c for BMv2 and SDNet for NetFPGA) and is able to

compile P4 program for different targets.

C. Mapping to the ETSI Architecture Framework

In this section, we briefly discuss whether P4NFV is compli-

ant with the proposed ETSI NFV architecture. ETSI (European

Telecommunication Standards Institute) proposed a guideline

NFV reference architecture framework in [27] (shown in

Fig. 2). The framework defines the functional blocks and the

reference points needed to support the infrastructure services

in the operator’s network. Within NFV, the infrastructure

services are referred to as the network services, which are

provided by the NFs. To show the compliance, we map the

components of P4NFV to blocks in the framework.

In the reference architecture, the Virtualized Infrastructure

Manager (VIM) controls the virtualization process and exposes

the NFVI to the other modules. In P4NFV, the Resouce
Monitor and the Resource Optimizer take over this part, and

the abstraction layer corresponds to the NFVI.

The intermediate level in the reference architecture consists

of various VNFs and Element Management Systems (EMSs).

Each VNF is an implementation of a network application

running atop the NFVI resources. The VNFs’ instantiation

and termination are controlled by the VNF Manager(s), which

is represented by the NF Central Manager and Function
Compiler. During a VNF’s lifetime, its management, such as

fault recovery, performance monitoring and accounting [27],



MemoryMemory ALUALUMemory ALUL2 
Switching
Memory ALUL2L2ryryL2 
SwitchingS i hiSwitching

L2 
Switching

L3 
Routing

L3 
Routing

MemoryMemory ALUALUMemory ALUL2 
Switching
Memory ALUL2L2ryryL2 
SwitchingS i hiSwitching

L2 
Switching

L3 
Routing

L3 
Routing

Flag=1Flag=1 Flag=0Flag=0

MemoryMemory ALUALUMemory ALUL2 
Switching
Memory ALUL2L2ryryL2 
SwitchingSwitching

L2 
Switching

L3 
Routing

L3 
Routing

MemoryMemory ALUALUMemory ALUL2 
Switching
Memory ALUL2L2ryryL2 
SwitchingSwitching

L2 
Switching

Reconfigure

Reconfigure

Packet 
Processing Path

Packet 
Processing Path

Pipeline Manipulation (PM)

Program Reload (PR)

Fig. 3. Illustration of the two proposed data plane reconfiguration approaches.
The green arrows represent the path of packet processing. After reconfigura-
tion, only L2 switching NF remains in the NF node.

are handled by its corresponding EMS, which corresponds

to the NF Configurator, Table/Register Configuration and

Resource Monitor in P4NFV.

The NFV Orchestrator at the top level realizes NF requests

by coordinating other modules in the reference architecture. It

is represented as the combination of the NF Request Handler,

Policy Interpreter and Resource Optimizer.

IV. P4NFV PROTOTYPE IMPLEMENTATION TARGETING

RECONFIGURATION

Two challenges appear during the prototype implementa-

tion: (1) how to reconfigure the data plane during runtime,

and (2) how to reduce the impact of reconfigurations on packet

processing. We propose two solutions called Pipeline Ma-
nipulation (PM) and Program Reload (PR).

A. P4NFV Runtime Reconfiguration Mechanisms

Fig. 3 demonstrates the two reconfiguration approaches.
1) Pipeline Manipulation (PM): In a nutshell, after the P4

program is loaded in the target, we leverage binary register

values to manipulate the packet processing Match+Action

pipeline at runtime. The pipeline is described by the TDG,

which shows the dependency between different tables.

Fig. 4 shows the pipeline of a switch capable of performing

L2 and L3 forwarding. MAC/IP forwarding and ACL are

considered as different NFs, each guarded with a binary

register value to indicate its existence. Upon initialization, all

functions are enabled. After we change the register value of

MAC forwarding from 1 to 0, the packets will bypass it and

jump to the IP forwarding NFs. Similarly, we can disable IP

forwarding plus ACL and only keep MAC forwarding.
2) Program Reload (PR): It provides more flexibility to

reconfigure the functionality of the NFs, in comparison with

PM. Every time a node needs to be reconfigured, the target will

be loaded with a new compiled P4 program (including parser,

processing actions and deparser), followed by populating the

new match table entries. Note that because of the implementa-

tion limits, some targets, especially hardware ones, may need

to stop packet processing completely when a new configuration

is being loaded, which causes service interruption.

MAC
Match: dst MAC

Action: set OUTPORT

IPv4
Match: dst IPv4

Action: set OUTPORT

Bypass

IPv6
Match: dst IPv6

Action: set OUTPORT

ACL

Match:

src/dst MAC/IP, IP Proto

Action: drop

Fig. 4. Packet processing pipeline of a switch.

3) Trade-offs between PM and PR: For PM, all NF nodes

run the same P4 program which includes all NF implementa-

tions. The MOE only needs to update the registers. However,

PM demands additional Match+Action resources, which limits

the total number of NFs that can be implemented at the same

time. Furthermore, since registers can only be applied inside

the pipeline, it is not capable of reconfiguring parser and de-

parser. When it comes to PR, different versions of P4 programs

are pushed to different NF nodes, which could decrease reli-

ability and increase management cost. Furthermore, PR may

lead to service interruption for some targets. The advantages of

PR are (1) that it demands less Match+Action resources, and

(2) that it can reduce packet processing latency with proper

pipeline compilation (i.e., merging different tables).

B. State Management

During data plane reconfiguration, the states (e.g., register

values) that reside in the NFs need to be consistently updated,

otherwise the newly arrived packets will experience improper

processing. Consider the migration of an IDS (Intrusion Detec-

tion System), where packet drops happen during the migration.

The new IDS instance may process an incomplete fingerprint

of a malicious flow as packets haven been dropped; hence, the

IDS may fail to report the attack [28].

There are two alternatives to preserve the states during

reconfiguration. First, the states are transferred directly in

the data plane together with the live traffic [29]. In this

case, NF nodes generate data plane packets with payloads

of state information. Second, a central entity collects the

states from the data plane and redistributes them. P4NFV

applies the second option. The Resource Monitor uses CMI
to collect the states and stores them in the database. Notably,

the introduction of MOE and CME induces latency overhead

for state updates. In order to reduce such latency, P4NFV

periodically fetches the states associated with the NF and only

redistributes the states that are involved in the reconfiguration.

Fig. 5 illustrates the NF migration with PR. Four types of

messages are involved, which are predefined for the BMv2

target [8]. The load new config file indicates that a new data

plane will be configured on the target. A series of table adds

populate the table entries. State migration consists of a series

of register read/writes which copy the register values directly

from the source to target NF node. Finally, the swap configs
signals the moment when the new data plane would take effect



Node (Source) Mgmt Entity Node (Target)

States
Mig.

States
Mig.

load new config file

table add
...

load new config file

table add
...

register read
...

register write
...

swap configsswap configs

Fig. 5. The message exchange and states of NF (on/off) during migration
with PR from an initial to a target NF node.

on the target. The procedure of PM is similar to that of PR,

but a bit simpler: a series of table adds configure the table

entries, and then write register messages turn on and off the

NF at the respective NF nodes. Because of packet buffering in

BMv2, we do not lose any packet when we switch to a new

configuration or change register values in a pipeline.

V. PERFORMANCE EVALUATION

This section first elaborates on P4NFV in a realistic sce-

nario. Afterwards, we take intensive measurements to report

on the general performance of our P4NFV implementation in

terms of CPU usage and latency. Then we evaluate our two

reconfiguration approaches PM and PR.

A. Example Realization of P4NFV for Network Edges

Recently, strict latency requirement and high network traffic

overhead in the core drive the infrastructure providers to

virtualize and locate NF nodes at the edge of the network

infrastructure [19]. Such virtualization reduces the investment

and expedites the infrastructure deployment process [19], [30].

Moreover, locating NFs in the proximity of the end-users also

contributes to smaller end-to-end latency, which is critical for

emerging applications like autonomous driving.

However, the NF nodes deployed at the edge are still limited

with resources and thus prone to overload in the face of highly

dynamic traffic from end-users. There are two opportunities of

improvement introduced by P4NFV: first, P4 itself promises

a better and more efficient hardware utilization [16]; second,

P4NFV introduces data plane reconfiguration mechanisms that

relocate the NF instances if possible.

We implemented four types of NFs for the prototype

demonstration: a Packet Forwarder, a NAT, a Firewall and

a Load Balancer. The Packet Forwarder forwards the packets

based on destination MAC or IP addresses. It also modifies

the source and destination MAC addresses for each packet. Its

forwarding rules, stored as table entries, are populated with the

CMI upon the startup of the network and remain static. The

NAT is capable of translating private and public IP addresses.

The end-users and the core data centers typically have private

network addresses, whereas the network entities in between

use public network addresses [19]. The Firewall detects and

blocks malicious flows that originate from the end-users. It

works in the stateful manner: other than blocking flows based

NAT
Firewall
Load Balancer

Core

Aggregation

Access

NF Node

End-Host/Server
S1 S2

S3 S4

S5

H4

H1 H2

Packet Forwarder

H3

Fig. 6. Topology setup of the use case study with five NF nodes and four
types of NFs.

on static rules, it calculates fingerprints of flows and blocks

the ones if the fingerprints violate the predefined policy. In

our case, the fingerprint of a flow is its packet inter-arrival

rate. The Firewall drops packets of flows whose fingerprints

are higher than a threshold.

B. Evaluation Setup and Procedure

We adopt a three-tier topology as presented in [31], which is

depicted in Fig. 6. We differentiate three networking domains:

access, aggregation, and core. The dark red color represents

the core domain, the lighter color the aggregation domain, and

the light red color the access domain. Circles labeled from S1-

S5 denote the physical nodes hosting the P4-based network

functions. Square nodes represent end-hosts and servers in the

access and the core domain. The two nodes S1 and S2 in the

access region are gateways that connect the end-user nodes

H1-H3. Each gateway node is linked to the two aggregation

nodes S3 and S4. The aggregation node S5 accumulates traffic

from end-users and forwards it to the core node, where H4

represents the server that the end-users want to connect to.

For our proof-of-concept implementation, we apply the Simple

Switch target [8] to host the NFs and build up the topology

with Mininet. For the implementation of CMI, we apply BMv2

CLI that comes with the Simple Switch target. We use the

D-ITG [32] traffic generator to create network traffic. The

evaluations are executed in an environment with Ubuntu 16.04,

an Intel Xeon E3-1275v5 CPU of 3.6GHz, and 32 GB of

RAM. For each evaluation scenario, we repeat 30 runs to gain

statistical confidence.

C. General Performance Evaluation

In the first setting without reconfiguration, UDP packets are

sent from H1 to H4. We analyze the impact of different packet

rates per second (pps) and payload sizes (Bytes). For our

investigations of implementation details, we use one Packer

Forwarder NF, which locates on node S1.

1) Packet Rate vs. CPU Usage: Fig. 7a shows boxplots

of the software switch’s CPU utilization in percentage over

increasing packet rates. The different shapes in the boxplots

indicate the corresponding mean values. The CPU utilization

increases with the packet rate and the maximum mean value is

around 19%. Whereas the CPU utilization increases with the

packet rate, the different payload sizes (50, 500, and 1000)



only pose a marginal impact on the CPU utilization. The

observation of rate-dependent CPU utilizations motivate for

the use of the reconfiguration mechanisms of P4NFV.

2) Pipeline vs. CPU Usage: The implementation of PM can

be realized with multiple tables. We now investigate whether

the the number of tables can impact the performance of

NFs. We use the Packet Forwarder located on node S3. We

have two alternatives for the implementation. All actions are

either implemented in three tables (one table per step: decide

output port, update source MAC, update destination MAC)

or in one aggregated table. To elaborate on the overhead of

additional tables (can be the case for the PM), we analyze also

an implementation with two more dummy tables mimicking

the behavior of an ACL filtering function. Fig. 7b shows the

CPU utilization. For the same packet rate, more tables in the

pipeline add a CPU utilization overhead, which is notable in

case of packet rates from 1300 to 2100.

3) Pipeline vs. Latency: As for the latency, Fig. 7c reports

nearly 20% higher average processing latency when we have

five tables instead of one. The results confirm that an NF

implementation with more tables induces higher resource

utilization and processing latency. The latency and the previous

CPU usage results demonstrate the potential overhead of PM,

whereas with PR, multiple tables of different NFs can be

compressed in favor of lower resource utilization and latency.

We also observe an interesting phenomenon that the latency

decreases when the packet rate is higher. This happens because

of the thread-based implementation of the Simple Switch

target. In case of higher packet rates, the threads fall less

asleep, and it takes less time until the threads wake up to

process the packets, which contributes to shorter latency.

D. Stateless NF Migration

We choose the NAT as a representative for reconfiguration of

a stateless NF. We send UDP traffic from H1 to H4, following

the path S1-S3-S5. For each run, we first instantiate the NAT

on S1 after 5 seconds and then migrate the NAT to S3 after

another 5 seconds. For PM, we enable/disable the NAT tables

through updating the binary value in the register, whereas

for PR, we load different P4 programs with/without the NAT

implementation, followed by populating the tables accordingly.

We analyze two packet rates 1000 pps and 3000 pps for three

payload sizes 50, 500, and 1000 Bytes. The plots show the

mean values and the 95% confidence intervals of 30 runs.

1) Impact on Functionality: We first examine the NF’s

functionality during migration. All UDP packets successfully

reach the destination. After dumping all the packets and check-

ing their source IP addresses, we confirm that the IP addresses

are modified correctly in all scenarios, meaning that no service

disruption happens during NF migration. The BMv2 switch

can start working with the new intended packet processing

pipeline immediately after the new configuration, e.g., the

register values or P4 code, is set via the CMI. However,

this observation applies mainly to P4 software targets; for

hardware targets, additional mechanisms such as buffering

may be required to ensure minimal service disruption, i.e.,

latency increase and potential packet drops.

2) Impact on Latency: We measure the packet transmission

latency from the source to the destination, which reflects the

processing time of the NFs along the forwarding path. The

results are reported in Fig. 8. In general, the difference between

different UDP payload sizes is not significant. For the packet

rate of 1k, the difference between PM and PR is marginal.

When the packet rate increases to 3k, peaks show up in the

curves when reconfigurations happen. This overhead (more

obvious for PR) comes from longer queuing delays in the NF.

E. Stateful NF Migration

The stateful firewall NF drops UDP flows that originate

from a source IP having a sending rate higher than a threshold.

The sending rates are stored in the registers, indexed by hash

values that are calculated from packet header 3-tuples (src.

IP, dst. IP, and IP protocol number). They indicate whether a

flow has to be blocked or not. The stateless load balancer NFs

are placed in S1 and S2. They randomly forward packets to

balance the load on both links. When performing migration,

the MOE needs to configure the initial and target NF node in

order to preserve the state consistency, e.g., keep dropping the

packets of the blocked flows. MOE reads the register entries

from source NF node S1 and then writes to the target S5.

In order to emulate traffic that will be forwarded as well as

blocked by the firewall, we create two UDP data sources. The

host H1 sends UPD traffic to H4 with a high packet rate — the

traffic should be blocked by the firewall. For the concurrent

non-blocking traffic, H2 sends 1000 UDP packets per second

to H4 with 50 Byte payload. For each run, we initiate the

firewall on S1 and then start the traffic generation. The UDP

packets from H1 should be blocked, whereas the ones from H2

should always reach the destination. Thereafter, the firewall is

migrated at time 5s from S1 to S5. We record the forwarding

latencies of all packets that belong to the concurrent flows.

1) Impact on Functionality: We confirm that no firewall

service disruption happens during migration for any scenario,

as no packets of the blocked flow reaches the destination

server. The state that indicates the blocking of H1’s flow is

copied from S1 to S5 before the firewall is actually migrated.

Thus P4NFV is able to preserve the state information of the

firewall during its migration.

2) Impact on Latency: We do not observe any packet loss

of the concurrent traffic. However, as illustrated in Fig. 9, the

migration indeed poses an impact on the forwarding latency.

In general, PR introduces slightly higher latency (0.6ms)

than PM (0.5ms), and PR’s performance degradation lasts

0.3s longer than PR. Because of more packets buffering, the

maximal delay during firewall migration of 3k pps can be two

times of 1k pps. Such delay can be alleviated by applying P4

targets that support parallel packet processing.

F. Comparison With a Legacy NFV Solution

Following the legacy NFV solution, we implement pure

software-based NFs running inside VMs. We deploy the VMs



100 500 900 1300 1700 2100

Packet Rate [pps]

0

10

20

C
P
U

U
sa

g
e
[%

]

50 Bytes

500 Bytes

1000 Bytes

(a) CPU Usage Comparison - Traffic

100 500 900 1300 1700 2100

Packet Rate [pps]

0

10

20

C
P
U

U
sa

g
e
[%

]

1 table

3 tables

5 tables

(b) CPU Usage Comparison - Tables

100 500 900 1300 1700 2100

Packet Rate [pps]

0.00

0.25

0.50

0.75

1.00

A
v
g
.
L
a
t.

[m
s]

1 table

3 tables

5 tables

(c) Latency Comparison - Tables

Fig. 7. (a) shows the relation between the CPU usage of different payload sizes and packet rates. (b) shows the relation between the CPU usage of different
packet rates and the number of table matches in the pipeline (payload size 50 Bytes). (c) shows the relation between the average latency of different packet
rates and the number of table matches in the pipeline (payload size 50 Bytes).

5 10

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(a) PM - 1k pps

5 10

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(b) PR - 1k pps

5 10

Timestamp [sec]

0.25

0.30

0.35

0.40

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(c) PM - 3k pps

5 10

Timestamp [sec]

0.25

0.30

0.35

0.40

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(d) PR - 3k pps

Fig. 8. Impact of NAT (stateless NF) migration on the packet forwarding latency, comparing two reconfiguration approaches and different packet rate. The
NAT is instantiated at time 5s, and then migrated at time 10s.

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(a) PM - 1k pps

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(b) PR - 1k pps

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(c) PM - 3k pps

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(d) PR - 3k pps

Fig. 9. Impact of firewall (stateful NF) migration on the concurrent traffic, comparing two reconfiguration approaches and different packet rate. The migration
is triggered at time 5s.

in an OpenStack cloud and evaluate the performance during

VM migrations. We instantiate three VMs which act as the

traffic source/sink and the packet processing entity respec-

tively. We implement the NAT and the stateful firewall in

Python with the Scapy library [33]. The NF migration makes

use of the VM live-migration option of OpenStack [34].

For the NAT scenario, a flow with 500 pps is generated

for 15s (7500 to be transmitted in total). On average 108.43

packets are lost during the migration of the NAT, which

corresponds to a service disruption of 0.217s. For the firewall

scenario, two flows with 500 pps are generated for 15s.

Because the state is stored in the firewall VM, there is no

need to coordinate the state migration. Also for the VM-based

NF setting, no packets of the blocked flow reach the sink.

However, the non-blocked flow experiences a similar packet

loss as in the NAT scenario: on average 120.53 packets are

lost, which corresponds to a service disruption of 0.241s.

In contrast to the legacy solution, P4NFV can migrate both

NFs without any service interruption. For the performance, we

observe only a short latency increase during migration.

VI. CONCLUSION

Leveraging the data plane programmability of P4, we pro-

pose an NFV architecture that is able to use hybrid infras-

tructure resources and reconfigure the network functionali-

ties in the field. The architecture preserves the consistency

of stateful NFs during reconfigurations. Two approaches to

achieve runtime reconfiguration are proposed with the consid-

eration of network state management. Based on a prototype

implementation, we evaluate various performance indicators

of the architecture. Static performance evaluations motivate

the necessity of NF relocation in face of dynamic traffic,

as well as the careful design of the pipeline structure. As a

highlight, we provide comprehensive evaluations of the data

plane performance during runtime reconfiguration. In compar-

ison with a conventional VM solution, P4NFV ensures the

liveness of functions and acceptable performance degradation

when functions are migrated. As our reconfigurations intro-

duce packet loss, we believe that reconfiguration mechanisms

avoiding losses are interesting future work.

ACKNOWLEDGMENT

This work has been funded by ERC FlexNets Project

(grant No 647158), the German BMBF SENDATE-PLANETS

Project (ID C2015/3-1), and the DFG ModaNet Project (grant

No KE 1863/8-1). The authors alone are responsible for the

content of the paper.



REFERENCES

[1] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Kluegel, and
A. Martinez-Alba, “How to measure network flexibility? a proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
2018.

[2] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley,
and L. Mathy, “Flow processing and the rise of commodity network
hardware,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 2, pp. 20–26, 2009.

[3] Z. Niu, H. Xu, L. Liu, Y. Tian, P. Wang, and Z. Li, “Unveiling
performance of NFV software dataplanes,” in Proceedings of the 2nd
Workshop on Cloud-Assisted Networking. ACM, 2017, pp. 13–18.

[4] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform handling and
abstraction of NFV hardware accelerators,” IEEE Network, vol. 29, no. 3,
pp. 22–29, 2015.

[5] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore, “Reconfigurable
network systems and software-defined networking,” Proceedings of the
IEEE, vol. 103, no. 7, pp. 1102–1124, 2015.

[6] H. Moens and F. De Turck, “Customizable function chains: Managing
service chain variability in hybrid NFV networks,” IEEE Transactions
on Network and Service Management, vol. 13, no. 4, pp. 711–724, 2016.

[7] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “PISCES: A programmable, protocol-independent software
switch,” in Proceedings of ACM SIGCOMM. ACM, 2016, pp. 525–538.

[8] “P4 behavioral-model,” https://github.com/p4lang/behavioral-model/, ac-
cessed: 2018-02-20.

[9] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in Proceedings of IEEE Interna-
tional Conference on Microelectronic Systems Education. IEEE, 2007,
pp. 160–161.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, and P. Shelar, “The Design and Im-
plementation of Open vSwitch,” in Proceedings of NSDI, vol. 15, 2015,
pp. 117–130.

[12] “Netronome SmartNIC,” https://www.netronome.com/blog/p4-
programmability-for-the-netronome-agilio-smartnic/, accessed: 2018-
02-20.

[13] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon, “P4FPGA: a rapid prototyping framework for P4,” in
Proceedings of ACM SOSR. ACM, 2017, pp. 122–135.

[14] P. Benácek, V. Pu, and H. Kubátová, “P4-to-VHDL: Automatic gener-
ation of 100 gbps packet parsers,” in Proceedings of the IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines. IEEE, 2016, pp. 148–155.

[15] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proceedings of ACM
SIGCOMM. ACM, 2016, pp. 44–57.

[16] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches.” in Proceedings of NSDI, 2015,
pp. 103–115.

[17] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A P4 language
benchmark suite,” in Proceedings of ACM SOSR. ACM, 2017, pp.
95–101.

[18] W. Shen, M. Yoshida, K. Minato, and W. Imajuku, “vconductor: An
enabler for achieving virtual network integration as a service,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 116–124, 2015.

[19] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta,
and V. Riccobene, “An open framework to enable NetFATE (Network
Functions at the edge),” in Proceedings of IEEE NetSoft. IEEE, 2015,
pp. 1–6.

[20] S. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic backpres-
sure and scheduling for NFV service chains,” in Proceedings of ACM
SIGCOMM. ACM, 2017, pp. 71–84.

[21] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Dynamic
chaining of virtual network functions in cloud-based edge networks,”
in Proceedings of IEEE NetSoft. IEEE, 2015, pp. 1–5.

[22] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes.” in Proceedings of NSDI, vol. 13, 2013, pp. 227–240.

[23] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4. ACM, 2014, pp. 163–174.

[24] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford, “Dy-
namic service chaining with dysco,” in Proceedings of ACM SIGCOMM.
ACM, 2017, pp. 57–70.

[25] D. Hancock and J. Van Der Merwe, “Hyper4: Using P4 to virtualize the
programmable data plane,” in Proceedings of ACM CoNEXT. ACM,
2016, pp. 35–49.

[26] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “HyperV: A
high performance hypervisor for virtualization of the programmable
data plane,” in Proceedings of International Conference on Computer
Communication and Networks. IEEE, 2017, pp. 1–9.

[27] ETSI, “Network Functions Virtualisation (NFV);
Architectural Framework v1.1.1 ETSI GS NFV
002,” 2013, http://www.etsi.org/deliver/etsi gs/NFV-
MAN/001 099/002/01.01.01 60/gs NFV-002v010101p.pdf [Accessed:
01.04.2018].

[28] W. Wang, Y. Liu, Y. Li, H. Song, Y. Wang, and J. Yuan, “Consistent state
updates for virtualized network function migration,” IEEE Transactions
on Services Computing, 2017.

[29] S. Luo, H. Yu, and L. Vanbever, “Swing state: Consistent updates for
stateful and programmable data planes,” in Proceedings of ACM SOSR.
ACM, 2017, pp. 115–121.

[30] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford,
“CLOVE: How I learned to stop worrying about the core and love the
edge,” in Proceedings of ACM HotNets. ACM, 2016, pp. 155–161.

[31] M. Gao, B. Addis, M. Bouet, and S. Secci, “Optimal orchestration of
virtual network functions,” Computer Networks, 2018.

[32] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-
itg distributed internet traffic generator,” in Proceedings of International
Conference on the Quantitative Evaluation of Systemss. IEEE, 2004,
pp. 316–317.

[33] “Scapy Library,” https://github.com/secdev/scapy, accessed: 2018-06-10.
[34] “OpenStack Instance Live Migration,”

https://docs.openstack.org/nova/pike/admin/configuring-
migrations.html, accessed: 2018-06-10.


