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Abstract—Software networks are on the verge of replacing
traditional communications network infrastructures on a large
scale; they are composed of software-defined networks, virtual-
ized network functions, and virtual compute resources. While
software networks thrive on scalability, high dynamics, and
flexibility, they also are inherently tied to conceptually new
challenges for network management, i. e., the tasks carried out by
network operators in order to provision, maintain, and optimize
network-based IT services. While individual management tools
are made available for each software network component by the
vendors, integrated management architectures, which enable the
common management of components across the heterogeneity of
vendors and types as well as models, need to be redesigned to
achieve the same level of maturity and usefulness compared to
their counterparts in traditional networks.

This paper focuses on management platforms for federated
software networks – operated by several independent parties –
systematically, based on their key characteristics. We identify
gaps in management platform design and propose measures to
close them.

Index Terms—network management, security management,
management architecture, SDN, NFV

I. MOTIVATION

Software networks (SNs) constitute the current state-of-the-
art in networking, which resulted from the transition from
traditional hardware-based networks (HNs) to software-based
ones [24]. Often solely used as an interchangeable term for
virtual networks, SNs encompass a by far wider meaning:
SNs describe a fundamental redesign of the mode of oper-
ation, compared to conventional approaches; they are at least
characterized by the following aspects:

C.1 SNs are established atop a shared platform, often span-
ning over multiple {physical, virtual} nodes (often SNs
themselves), almost entirely decoupled from the plat-
form’s architecture and topology.

C.2 Instead of having a configuration in situ, as many
hardware-based networking devices require, SNs can be
deployed, configured, and maintained in a remote, cen-
tralized manner.

C.3 SNs allow a seamless operation of geographically dis-
tributed networks, leveraging federated infrastructures.

C.4 The configuration of SNs can be adjusted immediately
(within seconds to minutes) instead of hours or days.

C.5 From a management point of view, IT resources are no
longer encapsulated in individual servers; servers provide
their IT resources to a common pool of shared resources.

C.6 IT resources can be assembled, deployed, and used as
required in a scalable manner.

C.7 SNs’ dimensions are often far more extensive than HNs’.
C.8 SNs are often composed of a heterogeneous set of inter-

operating technologies (e. g., SDN, NFV, virtualization),
management and orchestration (MANO) systems, and
components by different vendors.

Federated software networks (FSNs) span over several,
often geographically widely distributed data centers owned
and operated by multiple parties, which share a common or
complementary objective and IT resources stipulated by an IT
service contract. FSNs have at least these extra characteristics:

C.9 FSNs’ operation, administration, and use is based upon
trust between multiple more or less familiar parties.

C.10 Operation of applications and services on infrastructure
with multiple intersecting administrative domains.

C.11 Various management concepts for shared IT infrastruc-
tures, including organizational aspects (e. g., structure and
responsibilities), data models, tools, and interfaces.

C.12 Organization-wide management decision-making (e. g.,
w. r. t. software changes in management platforms, orga-
nization, etc.) with side-affects to federation partners.

C.13 Segments of IT resources are operated and managed by
multiple tenants.

SNs do leverage federated infrastructures, e. g., allowing
organizations to purchase and integrate virtual IT resources on
demand from different providers into their own infrastructure,
each along with a proprietary management interface.

Management is the essential task to provide services’ relia-
bility, security, and efficiency. It comprises various functional
areas (e. g., FCAPS [11]), concerning activities, tools, and
methods in favor of operating, administrating, maintaining,
and providing networked systems [9]. Security management
intends to preserve confidentiality, integrity, and availability
of information and IT resources [12]. Despite its importance,
it is often disregarded and limited to preventive measures and
alerting (cf. ISO management framework [11]). Network and
security management (NSM) pursues an integrated approach
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of both fields, given interrelations of information, causation,
and effects (e. g., a service failure due to malicious activities).

FSNs are inherently not managed from one central instance
(e. g., an ISP) due to divergent interests or needs of the
independent federation partners; networks and IT resources are
logically isolated for each tenant respectively – they must be
managed individually and in its entirety. Furthermore, a lot of
present management platforms cannot cope with FSNs. They
are typically a) very limited w. r. t. their field of application
(i. e., use cases and systems), or they provide b) multi-purpose
NSM, yet with insufficient design for FSNs and limiting FSNs’
potentials. A NSM platform, adapted to FSNs, is needed to
holistically reap their benefits and leverage versatile use cases.

This paper exposes open gaps in present management
platforms for FSNs based on their characteristics; we first
examine existing platforms w. r. t. their operability in the field
of FSNs in Section II. We then address the gap between NSM
platforms in their current state and a desired state for managing
FSNs in Section III and propose measures towards a gap
closure in Section IV. Section V summarizes key findings and
outlines our future work to overcome the gaps.

II. NSM IN EXISTING PLATFORMS

FSNs can be composed in various ways. Often, they are
enabling subsystems for additional applications, e. g., in cloud-
computing. This analysis considers a cross section of the most
extensive existing approaches, grouped by their corresponding
paradigms and shows present drawbacks in NSM platforms.

A. Cloud Computing

OpenStack (OS) and OpenNebula (ONE) are both similar
platforms for (F)SNs. They aggregate geographically dis-
tributed IT resources (C.3) into a shared pool (C.5), a re-
mote, centralized (C.2), and instant (C.4) configuration nested
(C.1) SNs. They integrate various paradigms (e. g., virtual
network functions and arbitrary SDN controllers), providing
heterogeneous (C.8) systems. OS does consider the need of
resource and identity [4] federations, especially in a consumer-
to-provider relation [5], yet, regarding the latter one, without a
detailed description. ONE has similar functions based on the
master/slave model [23]. A federation with other platforms
from other vendors is not supported. Both lack typical NSM
functions, especially for {performance, security} management.

B. Federated Cloud Platforms

The BEACON framework [16] is one of the few cross-
system platforms for cloud federations, fitting different feder-
ation models [17]. It also integrates NSM tasks with focus on
intrusion detection, vulnerability scanning or DDoS and pro-
poses a set of security aspects for {application, infrastructure}
security. A key feature of BEACON is the configuration of
overlay networks, i. e., the placement of virtual resources and
services over geographically distributed sites. The implemen-
tation, however, is limited to ONE, OS and OpenDaylight for
network management (cropping heterogeneity (C.8)). FSNs’
characteristics C.9, C.11, C.12 are not considered.

C. Software-Defined Networking

OpenDaylight (ODL) and the Open Network Operating
System (ONOS) claim to allow monitoring and controlling
of network devices [21] [14]. The key benefit of ODL is its
extensibility and adaptability via the YANG data modeling
language [8], allowing to handle FSNs’ heterogeneity (C.8).
It is designed for a separation of platform and network
functionality (C.1), and a remote, centralized (C.2), immediate
(C.4) configuration, yet, with a too limited scope on particu-
larly OpenFlow-capable components. ODL can be operated
in a federated cluster [20], providing huge (C.7) as well
as geographically scattered SNs (C.3), however disregarding
federated NSM. NSM functions are partially implemented
(e. g., [25] [19]), considering multiple tenants [22] (C.13). An
AAA service furthermore allows the usage of LDAP services
for user management, but is limited in its implementation [18].
Like ODL, ONOS serves as a platform for Apache Karaf ap-
plications. Holistic NSM functions are not available; however,
an application for SNMP-based alarm aggregation as well as a
traffic analysis and monitoring application can be added [13].
A federation of multiple (ONOS) clusters is considered to be
an orchestration level task and not provided by ONOS [10].
ODL and ONOS implement NSM functions in parts, yet lack
a holistic integration.

D. Service Orchestration and Management

Software containers rendered a lightweight alternative to
hardware virtualization, forming SNs themselves with several
yet established management platforms, like Kubernetes (K8s)
as one of the most sophisticated platforms. K8s provides an
API for network and system configuration of containers and
service composition via “Pods”, and basic role-, label-, or
parameter-based policy descriptions to define network access
restrictions [27]. It does not provide FSNs nor management
across multiple organizations; however, K8s provides the
federation of clusters of nodes. A limited concept similar
to administration domains is realized via namespaces [29],
allowing the separation of multiple teams. Add-ons like Nuage
Network VCS allow security monitoring [28]. Similar systems
like Docker Swarm, Apache Mesos, Marathon, and Nomad
lack a holistic NSM with required functions. None of the ana-
lyzed systems does, however, provide appropriate functionality
for network and service federation, nor federated management.

E. General-purpose Management and Automation Platforms

One of the most extensive management platforms with focus
on network monitoring is OpenNMS. Yet, it cannot handle the
characteristics of FSNs in crucial aspects: {Network, device}
discovery must be implemented manually or periodically via
ICMP [1], leading to inconsistent views of the network status.
It generally lacks protocol implementations, interfaces, and
connectors to be integrable in software networks, which,
however, could be expanded via modules. OpenNMS allows
the definition of critical paths, which may be used for the
mapping of platforms to overlying FSNs. Although OpenNMS
provides user management abilities, multi-tenancy is not given:



Platform Fault Configuration Accounting Performance Security
OpenStack 3 3 3 3 7

OpenNebula 7 3 3 3 7
BEACON l 3 3 3 l

OpenDaylight & ONOS 7 l 7 7 7
Kubernetes 7 3 l 7 7
OpenNMS 3 l l 7 l

ONAP 3 3 3 3 3

Table I: FCAPS in existing platforms. (3: fit; l: partial fit; 7: unfit)

It allows a superficial concealing of managed objects according
to their categories, yet, users may still access their data [7].
Open Network Automation Platform (ONAP) [2], a more
recent approach, facilitates the design, creation, orchestration,
monitoring, and life cycle management on the basis of a
policy-driven approach [15]. Besides an execution framework,
it provides a design-time framework, allowing operators the
design of services (a combination of IT resources) and poli-
cies. ONAP is inherently planned to provide all management
functions (FCAPS) described by the ISO [2]. Since ONAP is
designed as automation platform for software-based networks,
its design largely considers characteristics of SNs (C.1–C.8).
ONAP allows the communication to network control platforms
like SDN controllers and VM and service deployment plat-
forms like OpenStack, other 3rd party controllers, and services
like identity and access management (IAM) information [3].
Though, the documentation does not describe the integration
of information and functions from network and system man-
agement tools in general. In addition, ONAP is not designed
to provide a shared platform for multiple tenants in a federated
software-based network, managed by multiple autonomous
organizations: The relationship between multiple cooperating
organizations is not sufficiently considered (C.9), although
ONAP inherently integrates access control mechanisms [6] to
protect informations and functionality. A more fine-grained
and flexible approach is needed (e. g., determination of shared
and isolated resources like services and information). Fur-
thermore, it does not provide adequate answers to multiple,
intersecting domains in FSNs (C.10), to versatile management
concepts from diverse federation partners (C.11), and to effects
of local (organization-wide) decision for federation partners
(C.12). Also, important information w. r. t. multi-tenancy as-
pects is missing – e. g., how ONAP may provide a tenant’s
view across multiple platforms or handles and processes events
and policies securely in networks managed by multiple tenants.

III. THE GAP IN NSM PLATFORMS FOR FEDERATED
SOFTWARE NETWORKS

An overview of FCAPS capabilities of management plat-
forms in FSNs is shown in Table I. ONAP explicitly considers
all functional areas. Other approaches vary in their functional
range but usually lack at least one. In detail, several open gaps
are especially noticeable:

G.1 A ubiquitous lack of cross-platform NSM capabilities
or common usable ways of cross-platform integration
(e. g., expandable connectors to other systems).

G.2 Incompatibility of existing infrastructure and tools like
from IAM (e. g., LDAP-based), configuration manage-
ment (e. g., a CMDB), or variable monitoring as well as
network operation systems.

G.3 Non-integrability of existing information, e. g., about
users, federated organizations, responsibilities, monitor-
ing events, etc. due to inflexible data formats.

G.4 Disregard of NSM chances, enabled by software net-
works – e. g., a preventive control and a priori alignment
of conditions from configuration changes with policies.

G.5 Disregard of components from underlying HNs as cru-
cial part of the infrastructure.

G.6 A lack of integrated NSM functions in FSNs. Func-
tions, for instance, lack holistic component and service
discovery for an overall management view completely or
by using obsolete interfaces/protocols (e. g., SNMP).

G.7 A lack of adequate data models, processes, and functions
for multi-tenancy abilities.

G.8 A lack of integration of NSM functions (cf. Table I).
G.9 A lack of an adequate platform-integrated ability to

describe the desired state (e. g., by policies) of FSNs,
in order to automatically detect incidents and problems.

G.10 A lack of consolidation of a) FSNs’ desired state,
b) their actual state (monitoring information), and c)
countermeasures to recover the FSNs’ desired state.

G.11 A lack of mechanisms to isolate federated organi-
zations in an environment (i. e., to guarantee a secure
operation of the shared infrastructure and information).

G.12 A mis-design of domain-models; especially a holis-
tic consideration of integrating existing dependencies
between resources and organizational information in a
federated environment.

G.13 The inability to integrate different management con-
cepts from diverse federation partners, and the inadapt-
ability of theorganizational structure (e. g., groups, rights,
and implicated responsibilities).

G.14 Disregard of a decentralized decision-making and their
affects to the network.

An alignment of the shortcomings listed above with respect
to concerned characteristics of MANO platforms for FSNs
is summarized in Table II. The major gap is particularly
distinctive to the realization of a federated, integrated network
management in already existing as well as subsequently ex-
panded heterogeneous infrastructures. Both cases do represent
viable scenarios and must be fostered in order to benefit from
FSNs in practice. Consider, e. g., the following scenarios:

(1) A cooperation of several research groups, establishing a
shared virtual network built atop, yet segregated from, existing
infrastructure. (2) An organization planning to seamlessly ex-
pand its infrastructure with resources from an external service
provider for a confined period of time.

IV. PLATFORM ARCHITECTURE DESIGNS TOWARDS
CLOSING THE IDENTIFIED GAPS

An overview of design elements, which contribute to a gap
closure and may consequently leverage the use of FSNs in



Suitability in SNs Suitability in Federated SNs
Platform C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8 C.9 C.10 C.11 C.12 C.13

OpenStack 3 3 3 l
G.4 3 l

G.6 3 7
G.1,G.2,G.3 7 l 7 7 3

OpenNebula 3 3 3 l
G.4 3 l

G.6
7

centralized
7

G.1,G.2,G.3 7 l 7 7 3

BEACON 3 3 3 l
G.4 3 l

G.6 3 l

OS + ONE + ODL
7 l 7 7 3

OpenDaylight
& ONOS

l
G.1,G.5

l
G.6 3 3 3 7

G.4 3 3
expandable

7 7 7 7 7
G.6,G.7

Kubernetes 3 3 3 l
G.4 3 3 3 7

G.1,G.2,G.3 7 l 7 7 3

OpenNMS 3 7
G.6 3 7

G.6 7 7
G.6

7
G.6

l
G.1,G.6 7 7 7 7 l

ONAP 3 3 3 3 3 3 3 l
G.2

l

access controls
7 7 7 l

Table II: Overview of NSM compliance with characteristics in FSNs. (3: fit; l: partial fit; 7: unfit)

productive environments, is shown in Table III. In total, we
identified 17 design elements from three different groups: Data
modeling, architecture design, and functional scope:

Data modeling includes measure M.1. An adapted internal
information meta-model is needed (e. g., based on [26]) to pro-
vide an adequate abstraction of FSNs’ extremely nonuniform,
heterogeneous environment (e. g., mapping identical functions
from different systems, IT resources, users, responsibilities,
groups, etc.). A well designed meta-model addresses practi-
cally all gaps.

Architecture design encompasses measures M.2–M.5, M.9–
M.11 and M.14–M.16. The main focus of this category
is on the NSM platform’s ability to be adaptable to the
managed environment – we think that this is one of the most
important requirements for management platforms in FSNs.
This includes the ability to allow quick adaptations to MANO
APIs, a logical centralized processing (yet architectural decen-
tralization to meet performance requirements), the ability to
act as a proxy between users and MANO platforms, allowing
preventive measures (e. g., by checking user input for policy
violations). The whole platform must, in fact, be configurable,
w. r. t., its functional range, responsibilities, policies, NSM
functions, privacy concerns, type of collaboration between
management domains, and an intra-management-domain or-
ganization. Hence, different management concepts from all
federation partners can be considered in a shared platform.

The remaining measures can be assigned to measures in
order to improve NSM platforms’ functional range. Mon-
itoring must be expandable by a correlation functionality
across information from all NSM functions (e. g., performance
issues considering security problems). However, management
platforms, must also be capable to configure (control) FSNs.
Furthermore, a precise, up-to-date documentation of the envi-
ronment is important in order to have an overview of instances,
dependencies, problems etc.

V. CONCLUSION AND OUTLOOK

In this paper we first stated the differences between FSNs,
SNs and traditional HNs by specifying the key characteristics
of the former two. Focussing on FSNs, we summarized the re-
quired functionality for network and security management. By

Measure ID Description Gaps
M.1 Comprehensive meta-model for management

functions and information
G.1–
G.14

M.2 Formalization of MANO API descriptors G.1 G.2
G.4 G.5

M.3 Distributed architecture of the platform G.4
M.4 Centralized evaluation and handling G.4
M.5 NSM platform as proxy between users and

MANO systems
G.4

M.6 Capability of platforms to reconfigure FSNs G.4
M.7 Event correlation across all NSM functions G.6 G.8
M.8 Transfer of findings across all NSM functions G.8
M.9 Expandability of the NSM platform’s functions

and procedures
G.6

M.10 Configurability of responsibilities G.7
M.11 Adaptivity of policies’ scope G.9
M.12 Adequate abstraction of policies G.9
M.13 Completeness of NSM processes G.10
M.14 Configurable privacy per partners G.11
M.15 Collaboration between Management Domains G.12
M.16 Adaptable intra-domain Organization G.13
M.17 Network Documentation and Dependencies G.14

Table III: Measures to close identified gaps in NSM platforms in FSNs
(Grouping: Data model , architecture design , functional scope ).

analyzing the management capabilities of existing platforms
from various areas in the field of (F)SNs, we identified gaps
between the management functionality required to meet the
characteristics of software networks and present functionality
in current implementations.

While each management tool has its individual strengths and
shortcomings, we proposed a common set of measures to close
remaining gaps. Our proposal shows that especially gap G.4,
the alignment of configuration changes with policies, requires
a series of individual actions; in contrast, improvements to a
meta-model (M.1) yield quick wins in several areas.

Our own future research focuses on information modelling
(M.1), and integrated management architectures to provide
integrability of FSNs in existing infrastructures (M.5, M.8,
M.9, M.14 – M.17), with the goal of creating a software
framework as basis for fit management platforms in FSNs.
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