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Abstract—Traditionally, internal networks rely on border fire-
walls as the first line of defence against untrusted external
networks. However, customized security measures can begin
further away. We have already noticed proliferating deployment
of Software Defined Networking (SDN) in internal networks, and
even further within the Internet core, at Internet Exchange Points
(IXP). Software-Defined Internet Exchange Points (SDX) enable
flexible and programmable control over the delivery of wide
area network traffic. Therefore, SDX’s are an appealing place to
introduce security actions that span beyond the edge of internal
networks. By extending security actions to SDX’s, dedicated
border security appliances would no longer be as overwhelmed
and wide area network links would no longer deliver traffic only
to be dropped at the edge of the destination networks.

In this paper we present a hierarchical, logically centralized
architecture enabling SDX security policies to be expressed by
the Autonomous Systems (AS) as intents. Through SDX collabo-
ration, these security intents can be compiled and installed at the
closest available SDX relative to the offending source. Moreover,
parallel intent compilation over multiple selected SDX’s can be
simultaneously executed, thus enabling a distributed security re-
sponse activated at the Internet core. This approach that relies on
SDX’s allows faster adoption in contrast to changing all routers,
or the Internet architecture. This proposed security collaboration
could be used to address massive internet blackouts caused by
DDoS attacks with the capacity to match the distributed force of
the attacks today and future ones of even greater scale.

Index Terms—Security Collaboration, SDX, IDN, DDoS

I. INTRODUCTION

Security is becoming increasingly challenging, especially as
we witness tremendous network growth producing terabytes of
Internet-scale network traffic [1], [2]. This challenge originates
from the very nature of the Internet having no security
by design [3], [4]. This necessitates having to sift through
enormous amounts of daily traffic to separate malicious from
benign traffic [5]. In addition, security infrastructure is quite
expensive and, unlike sensitive enterprise networks, smaller
internal networks often cannot afford to have dedicated, high-
performance security devices. Within this context, network
carriers might not be motivated to invest in expensive security
infrastructure either [6], as they assume the role of “carrier-
only” and might apply only some of the minimal recom-
mendations outlined in [7], [8]. Additionally, even if security
equipment is available, the attack surface is quite large as there
are many vulnerabilities in any network design or architecture
that can be exploited [9].

A proposal towards source-based security measures was
presented in [10], however it relies on networks deploying
the D-WARD defense system per router basis. Rather than
dealing with an attack once inside or at the doorstep of the
network, it would be more effective to consider Internet-wide
security actions to limit incoming attacks or any unwanted,
suspicious traffic. This approach would greatly scale down the
attack influence footprint. Therefore, we argue that the ideal
place for Internet-wide security actions is at Internet Exchange
Points [11], specifically, Software-Defined Internet Exchange
Points (SDX). This stems from the fact that it is feasible to
change IXPs to SDX’s. Moreover, with SDX collaboration
all parties benefit; members will have even higher incentives
to join the SDX’s (to utilize the additional security platform),
whereas SDX’s will leverage from members’ participation (the
more AS’s participate, the greater the surface to limit attacks).

Since there are many possibilities in terms of use-cases for
the proposed model, we focus on the most challenging and
debilitating network attack. We hope that this proposal will
change the outlook on DDoS defense strategies and mitiga-
tions and will inspire a next-generation security architecture.
Currently, ISPs use blackholing [12] and DDoS scrubbers to
deal with DDoS attacks which results in legitimate traffic being
dropped as well. Instead, our proposal enables collaborative
security policies deployed over multiple SDX’s to address the
distributed nature of the attack, while mitigating malicious
flows only.

The motivation behind this work is to demonstrate that SDX
collaboration can orchestrate Internet-wide security actions
which then creates a three-fold benefit:

1) First, it allows AS’s to have Internet-wide security control
over traffic destined to their networks.

2) Second, by distributing the countermeasure it provides a
mechanism to match the scale of distributed attacks.

3) Third, it decreases the link utilization in the Internet
backbone and access.

These capabilities are realized through AS-level intents to
simplify and abstract management and configuration burdens.
Each AS (most likely an ISP) would coordinate with its users
to receive and forward the intent requests to the local SDX
where the AS participates on behalf of its users. The intent
aggregation per AS allows easier management for both the
AS’s and the local SDX’s.
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II. BACKGROUND OVERVIEW AND RELATED WORK

Internet exchange points (IXPs) [13], [14] are an integral
part of the Internet backbone where different networks in-
terconnect to exchange wide area network traffic. However,
current practises for traffic routing rely on the Border Gateway
Protocol (BGP) which imposes constrained routes based on
destination IP prefixes. Moreover, due to BGP’s limitations
and current inter-domain architecture [15], control over end-
to-end paths and fine-grained actions are not available. The
research literature has proposed many modifications to BGP
to improve its behaviour and enable security, flexibility and
traffic engineering properties. However, these modifications
demand significant changes to the existing implementation and
infrastructure that most IXPs and Autonomous Systems are
reluctant to deploy. Instead, a shift towards SDN seems both
inevitable and necessary, as it decouples the control from the
data plane to enable flexibility and programmability.

A. Related Work: A Software Defined Internet Exchange Point

SDX is the product of a traditional IXP complemented by
SDN. As such, it inherits all the SDN benefits, while allowing
backward compatibility to the default IXP behavior. Initially,
SDX was introduced in [16], followed by an elaborate research
proposal presented in [17]. The authors presented a more
scalable version in [18] dubbed “An Industrial-scale SDX”.
By compiling SDN policies per participant and by adding en-
coding mechanisms, both control-plane computation and BGP
update recompilation challenges are addressed. Additionally,
the scalability challenge is tackled through the multi-table
feature available in the later versions of OpenFlow. We proceed
by briefly describing the general SDX structure and operation.

The SDX architecture follows the IXP architecture, whereby
the traditional layer-2 fabric is replaced by a programmable
SDN fabric and an SDN controller. The BGP route server
(RS) was introduced at IXPs to centralize BGP connections
and reduce computational load in participating routers; as such
its role remains involved at the SDX as well. Participating
Autonomous Systems at the SDX are able to express custom,
fine-grained SDN policies that the controller pushes to the
programmable SDN fabric as flow entries in the forwarding
table. If traffic flow at the SDX does not match any of the
custom rules, then the default BGP routing takes precedence.
The default BGP routing behaviour is enabled by the RS
which manages BGP sessions to exchange network reacha-
bility information among the SDX participants. Each AS at
the SDX maintains a BGP session with the RS to advertise,
withdraw or update BGP information. The RS collects this
information, processes it through a best prefix route selection
algorithm and determines the best prefix routes. Depending on
the specific RS implementation, as well as specific export and
import policies that each AS has, there could be variations as
to how the RS output should be used to enable the default
BGP routing behaviour in the SDN fabric. The SDN fabric is
continuously updated to reflect any changes in best routes as
computed by the RS.

III. PROPOSAL OVERVIEW

The proposed SDX collaboration enables steering security
policies as close as possible to the offending domains. To
achieve the above, we leverage a two-tier, hierarchical view to
determine the best SDX placement for each policy.

The architecture involves a Global SDX Orchestrator (GSO)
which communicates with multiple participating local SDX’s
(lo-SDX). Relations between the entities follow a tree struc-
ture, where GSO, lo-SDX and AS correspond to the root,
parent and leaf nodes respectively, as shown in Figure 1. The
GSO is assumed to be an independent authority which could
be agreed upon by the participating SDX’s, or alternatively it
could be co-managed by the participating SDX entities.

Fig. 1: Proposal Overview

A. Requirements:

To enable the SDX collaboration we outline several chal-
lenging requirements that need to be addressed:

Scalable Performance: Hundreds of participating AS’s at
an SDX will result in hundreds of thousands of IP prefixes, as
well as a multitude of AS-specific policies. Clearly, scalability
is a major requirement to ensure efficiency and correctness.
Even though recent progress in switch design has enabled
larger rule size tables [19], at increased cost. Nevertheless, the
challenge lies with successfully allocating all the rules from
the participating AS’s at the SDX within the available fixed
rule table sizes. In [18] different techniques were combined
and proposed to achieve better scalability. While this challenge
is valid per lo-SDX, we additionally tackle the scalability
challenge with parallel intent distribution and compilation at
a set of elected lo-SDX’s as orchestrated by the GSO.

Intent Authorization: As Resource Public Key Infrastruc-
ture (RPKI) [20] serves BGP to validate route announcements,
AS intent requests need to be authenticated and authorized
prior the intent compilation process as well.

Conflict Detection and Resolution: Before adding or
modifying an intent at a lo-SDX we need to determine if it
conflicts with any of the existing intents. To enable true intent-
driven networking (IDN) [21], automation is key, which in turn
requires conflicting intents to be properly addressed during
their lifecycle.



B. Contributions:

The paper’s contributions are as follows:
• Autonomous Systems can activate security actions at

the Internet core. A hierarchical, two-tier architecture
distributes and executes security policies in parallel at
lo-SDX’s closest to the offending domains.

• A powerful abstraction through IDN permits AS’s to
declare security-based intents through the lo-SDX they
participate in. An IDN framework automates the multi-
tier intent lifecycle.

• The considered DDoS use-case is only the first of the
opportunities offered by the proposed model; which to
the best of our knowledge is the first model exploring
the collaboration of Software-Defined IXPs.

• Consequently, decreased workload at network border de-
vices, as well as decreased Internet-wide network link
utilization is expected due to less contaminated traffic.

The rest of the paper is organized as follows. Section IV
provides a DDoS use-case to showcase the applicability of the
proposed model in terms of security applications. Section V
provides an overview of the intent abstraction model, an
integral part of the IDN framework. In section VI we present
the hierarchical two-tier, logically-centralized model. For both
tiers we describe the main components and outline the general
work-flow. Section VII covers evaluation and results of a
simulated DDoS attack experiment. Finally, conclusions and
future directions are presented in section VIII.

IV. MOTIVATION: A DDOS USE-CASE

DDoS attacks have evolved to become serious threats to
any targeted system [22], [23]. The distributed nature of the
attack renders its victims incapable to respond as resources
are overwhelmed and services are degraded to the point of
a complete operational halt. Even more, their power is set
to rise with the ubiquitous and heterogeneous proliferation of
IP-based systems, including IoT. As distribution is the key
component fueling DDoS, it is logical to consider distribution
as a measure of defense as well. In fact, if we can coordinate
distributed defense points that are strategically selected based
on proximity to the offending sources, we could potentially
disturb the scale of the attack or even mitigate it completely.
More specifically, the defense points should ideally be at the
core of the Internet to ensure the most defensive impact, which
leads us to consider Software-Defined Internet Exchange
Points. However, having SDX’s operate independently forgoes
major benefits. Instead we view each SDX as a defense point
on the backbone map and by coordinating these distributed
points we can match the DDoS nature of the attack. It is worth
noting that there are over 300 IXPs in the world with number
of members ranging from 50 to 1000 per IXP [24].

A major DDoS challenge is scalability in terms of maxi-
mum number of rules allowed, and while the industrial SDX
presented scalability optimizations, it still does not solve the
problem completely. If we assume one or few SDX members
to be under a DDoS attack, then we can easily approximate

that the SDX will receive at least a few million intents from
the members to block the offending sources; this will likely
collide with the average fabric size (half a million) and fail.

With the proposed SDX collaboration we can split the
load to multiple SDX’s selected based on source proximity
and defense distribution, thus solving the DDoS scalability
challenge. Furthermore the DDoS will suffer from this inter-
ference causing its magnitude to be greatly decreased leading
to the attack being essentially cut-off. Although DDoS attacks
have many different attack vectors, each can be addressed
as soon as a list of offending sources supplied as intents is
compiled and distributed through the collaboration model. For
instance with reflection attacks, the abused amplification server
becomes the attack source, therefore intents to block traffic
from such offending sources to the victim will be compiled and
installed. The intents would be prioritized based on sources
that originate the most traffic accordingly.

V. INTENT ABSTRACTION

Intent-driven networking (IDN) is an effort to simplify and
abstract the SDN north-bound interface (NBI) communica-
tions. Although a standard NBI definition is not available
yet, the common approach is an intent-based interface used
to declare high level policies as opposed to low-level, detailed
networking instructions [21]. In simple terms, IDN’s paradigm
is: “what to do”, rather than “how to do it”.

We perceive an intent as the desired relation between an
ingress and egress network traffic flow. According to a defined
set of intent classes, a suitable function maps the intent input to
an intent digraph which represents the desired network policy
or set of policies. We align with RFC3060 [25] which views
policies as a set of rules to administer, manage and control
access to network resources, whereby network resources in
our case correspond to IP prefixes or infrastructure ports. In
the context of our proposed model, once an AS sends an
intent to its lo-SDX, an IDN-capable framework takes over
and automates the rest of the process. To enable intents to be
expressed conveniently in human natural language we leverage
the NLTK [26] platform to tokenize, tag and parse.

A. Intent Specification Data Model

Each intent is processed (as described in section V) to form
an intent object as shown in Figure 2, whereby the data model
is JSON structured. The format of the intent object is defined
by mandatory, optional and supplementary (system) attributes.
The intent attributes have multiple roles in processes related
to intent validity, flow space authorization, conflict and intent
management. Based on specific attributes, intent classes are
defined a priori. An intent belongs to a specific intent class, if
there exists high correlation between certain intent attributes
and the said intent class. The intent classes are defined based
on the keywords (”DDoS/BL/WL/RL/VNF/modIP”) in the
JSON model. Based on these keywords the JSON model has
applicability to other security scenarios, however in this paper
the focus is solely on the DDoS use-case.



{intent_origin: {
Intent_id: {SDX_id:"", AS_id:"", (curr_nb+1):""},
SDX_request: {SDX_id:"", AS_id:""},
Request_type: ["add/update/delete/query"],
intent_class: ["DDoS/BL/WL/RL/VNF/modIP"] },

intent_attributes: {
nodes: {src_ip:"", dest_ip:""},
edge: {src_port:"", dst_port:"", ip_prot:"",
IP_TOS:"", direction:""},
intent_variables: {priority:"", timeout:""},
action: ["block/allow/rate/VNF/mod_dest_IP"],

action_attributes: {
action_threshold: {min:"", max:""},
action_VNF: {ip:"", mode:"IPS/tap/honeypot"},
action_MOD: {action_mod_dest_IP:""}} },

intent_execute: {
ports: {src_mac:"", dst_mac:"", in_port:""},
management: {metadata:"", cookie:""},
SDX_exec: {SDX_id:"", AS_id:""} } }

Fig. 2: Intent Specification JSON structured Data Model

The “Intent id” attribute contains the requesting lo-SDX,
AS and intent number (added by the system based on the
current number of intents for the specific AS, augmented by
one). The “request type” determines the type of workflow to
be followed, as described later. The “intent class” designates
the function to be used; depending on the class, additional
“action attributes” are supplied to the mapping function. The
“intent attributes” contains nested attributes to assist with flow
matching parameters, vertices, edge functions, direction, pri-
oritization, conflicts etc. Lastly the “intent execute” contains
system attributes that assist with flow and intent management.
For instance the “cookie” value is used by the controller
if an intent needs to be removed or updated; the “cookie”
value matches the intent number to associate intents to their
respective rules installed at the fabric.

B. Mapping Functions and Intent Digraph:

Each intent class has a mapping function to enable uniform
intent compilation. The function maps the intent attributes
from Figure 2 to an intent digraph to represent the policy
between the source and destination pair for that intent.

For each intent digraph, the vertices correspond to the
source and destination accordingly, whereas a function over
the edge specifies the desired flow between the pair. In case
of complex policies that correspond to multiple rules, for each
distinguished flow rule an edge is added between the vertices
with the corresponding function over it. A mapping function
could add intermediary nodes based on the intent class it
supports. Figure 3 shows a sample digraph.

According to this model we do not anticipate misclassifica-
tions, unless the intent contains multiple intent class keywords.
In such case we can determine if it should be multiple intents
and separate them accordingly, or we can provide feedback to
the requesting AS to clarify the intent request.

Fig. 3: Sample Intent Digraph

VI. DESIGN AND WORKFLOW

The proposed SDX collaboration relies on a two-tier archi-
tecture. The top tier is represented by a logically centralized
entity called the Global SDX Orchestrator (GSO), whereas the
bottom tier consists of individual, participating local SDX’s
(lo-SDX). To enforce secure communications between the
entities involved, out of band communication is established.
In addition, authentication and authorization of the participants
at each tier is enabled through TLS. The logically centralized
GSO can be physically distributed to address scalability. We
describe the general workflow as per Figure 4:

1) An Autonomous System member submits an intent to a
lo-SDX where it participates.

2) The lo-SDX starts compiling and analyzing the received
intent to determine whether its location is suitable for the
intent installation. Note: Except a DDoS intent, which is
forwarded to the GSO for proper distribution.

3) If the lo-SDX is not deemed an adequate location; the
intent is forwarded to the GSO. The GSO selects the
executing lo-SDX and sends the intent accordingly. In
case of multiple intents received, the GSO enables paral-
lel distribution to multiple lo-SDX’s.

4) Finally, the elected lo-SDX installs the received intent
and updates the GSO.

Fig. 4: General Workflow between lo-SDX and GSO

To ensure proper workflow, multiple components coordinate
to enable the analysis at both the local and global stage.
The components collect and process data related to lo-SDX
structure, Autonomous Systems and advertised IP prefixes,
along with other necessary BGP attributes; and related updates.
We proceed by describing the system structure at both tiers.

A. Local SDX

The local SDX structure is defined by an SDN fabric,
SDN controller, Route Server (RS) and BGP-speaking border
gateways representing each Autonomous System. The lo-SDX
has several SDN applications running on top of the SDN
controller as shown in Figure 5. These applications have
different modules that interact according to the workflow
presented in Figure 6. Their behaviour depends on the type
of input, ranging from intent “request type” (add, delete,
modify, query), RS updates (resulting from BGP advertise-
ments, withdrawals, updates) or SDX structural updates (AS,
infrastructure changes). We briefly describe the applications
and their internal modules:



Fig. 5: Components of the lo-SDX architecture

1) Input:

• Authentication and Authorization Module: First and fore-
most each AS follows an authentication and authorization
process at its lo-SDX. Depending on the level of authority,
members can have different roles and privileges at the SDX,
accompanied with different access and views of resources.

• Parse Module: The Parse module contains three submod-
ules that serve to process the intent, validate the intent flow
space and determine the intent class.
1.2.1 NLTK pre-processing: First, we use NLTK to pro-
cess the intent through tokenizing and tagging. During this
process we determine if the intent is actually comprised of a
set of different intents. For each we create an intent object
per the structure described in Section V. For an intent to
be deemed eligible it must abide by the defined format. If
mandatory attributes are unspecified the intent may proceed
with some default values where applicable, or further input
will be required from the AS member. Based on the NLTK
tag assigned, we further parse and assign the adequate input
values from the provided intent to its JSON intent object, if
and only if the flow space verification yields approval.
1.2.2 Flow Space Validation:
For an intent to be authorized we follow a two-step verifi-
cation process. First, the AS member requesting the intent
must have authorization over the intent attributes. Second,
either the source or destination attributes must be a subset
of the AS-advertised prefixes. If we denote sets A and B as
intent source and destination, E as the set of AS-advertised
prefixes; then the intent flow space is valid if at least one
of the conditions is met: A ⊆ E or B ⊆ E. This ensures
an AS can only influence traffic destined to or originating
from its own networks.
1.2.3 Detect Intent Class: For each intent object we deter-
mine the intent class according to attributes from the intent
object. The intent class determines the mapping function.

• Local, lo-Global and Final Intent Stores:
The intent objects are stored in databases. A “Local Intent
Store” stores intents received locally from a participating AS
at a lo-SDX. In contrast, intents sent from the GSO to a lo-

SDX are stored in a “lo-Global Intent Store”. This separation
is necessary for other modules and intent management. We
note that the intent objects that arrive from the GSO have
already been processed by the Parse module in their original
lo-SDX, therefore they can be directly stored in the “lo-
Global Intent Store”. A “Final Intent Store” database is kept
to maintain records for each intent, whether it is installed
locally or globally.

2) Intent Compilation:
• Local Intent Placement Graph Module:

This module determines if the intent should be installed
locally or be submitted to the GSO. It builds a Patricia IP
Trie from all the advertised prefixes at the lo-SDX. Each
node represents a pair of an advertised prefix and its BGP
“AS Path” attribute. The trie is updated if BGP or other
relevant updates occur, through the RS which maintains up
to date best prefix routes for each AS member.
Input for a graph search is the intent source IP address; if
a matching prefix is found then the intent can be installed
locally since the source traverses the SDX. If a matching
prefix is not found, the intent is sent to the GSO.

• Intent Mapping Module: Described in subsection V-B.
Only intents to be compiled locally proceed further.

Fig. 6: lo-SDX Workflow



• Conflict Detection Module: Each intent prior installation is
verified against the existing intents by completing a simple
conflict check using the two graphs described next. This
approach is a naı̈ve way of performing a conflict check.
Further processing is required to enable proper conflict
detection and classification; as well as conflict resolution.
2.3.1 IP Pair Intent Matching Graph Module:
This module serves as an initial pre-conflict analysis. It
maintains a Patricia IP Trie where each node consists of
a source IP prefix and a list of destination IP prefixes.
Additionally, there is a dedicated “wildcard” node (for cases
where source is specified as “any”). For each installed intent
at the lo-SDX, the source and destination vertices are added
to the trie within a single node. The trie is updated if intents
are deleted or updated.
For each intent we perform a Trie search with the intent
source IP address (prefix subset, superset and exact match
are considered); the “wildcard” node is also checked. If any
matches are found, then we compare the list of destination
IP prefixes with the new intent destination IP prefix. If there
is no overlap between the destinations then the intent is
submitted to an OpenFlow Generator module which invokes
controller APIs to install rules in the SDN fabric. If there is
an overlap, then the intent proceeds with the graph below.
The complete process is outlined in Algorithm 1.
2.3.2 Bipartite Intent Matching Multigraph Module:
If a match was found in the previous graph, then we search
for the specific pair in a “Bipartite Intent Matching Graph”.
This graph has two sets, sources belong to set U , and
destinations belong to set V . An edge between a vertex
in U and a vertex in V denotes an installed intent for that
pair, defined by the function over the edge. We analyze the
match using the vertex indegree, outdegree and the function
over the edge to determine whether the new intent conflicts
with the existing intent match.

3) Local Update:

• Route Server Module:
This module follows the typical well-established RS model.
It maintains a BGP session with each border gateway, and
stores a copy for each participant. It selects and advertises
best routes to all the participants, unless export or import
policies are in place. The RS enables default forwarding
behaviour allowing backward compatibility to a regular IXP.

• Local Update Handler Module:
The Handler updates the “AS Store” database whenever
BGP advertisements, withdrawals or updates occur. The “AS
Store” database has a table per AS, containing “SDX id”,
“AS id”, advertised IP prefixes, “AS Path” and border
gateway related information (IP address, Ethernet address,
physical and virtual ports).
Changes in the “AS Store” database trigger updates to
the “Local Intent Placement Graph” and the “Global Up-
date Handler” (described in subsection VI-B). Additionally,
changes in the “AS Store” database may require intent re-
validation. For instance, if a prefix is withdrawn, we search

Algorithm 1: Local Intent Graph Compilation
CompileLocalIntent

inputs : G = (V,E); #Intent digraph;
G lo ip = (IP, [ASPath]) #Intent Placement Graph;
G ip pair = (SrcIP, [DestIP ]) #IP Pair Graph;
G B = (U, V,E) #Bipartite Multigraph

outputss: OF #List of flow entries
Global #Intent for GSO submission
Outcome #Awaiting AS admin decision

OF,Global, Outcome← ∅;
Intent, local, Bipart,Match, dest← ∅;
assert authorization
foreach intent src node s ∈ V do

if s ∈ G lo ip then
local← getIntentAttributes(s, d, [edge f ])
if s ∈ G lp pair then

dest← G lp pair([DestIP])
foreach i ∈ netaddr.IPSet(d) do

if i ∈ IPNetwork(dest) then
Match[“intent id”] =
getIntentOrigin(intent id)

Match[“conflict ip”] = i
Bipart.append(Match)

else
OF.append(local)

else
Intent← getIntentAttributes(s, d, [edge f ])
Global.append(Intent)

Outcome← Bipartite(Bipart) #Bipartite checks indegree,
outdegree and edge function for each Match in Bipart

return OF,Global, Outcome;

the “IP Pair Intent Matching Graph” to determine whether
there was an active intent for the withdrawn prefix. Lo-
SDX RS updates generally affect local intents only, therefore
we re-validate affected intents locally and re-establish them
as deemed necessary. Last, if the lo-SDX is no longer
applicable for the intent in question, the GSO is invoked.

B. Global SDX Orchestrator

The GSO enables intent orchestration to one or multiple
selected lo-SDX’s. Each lo-SDX then finalizes the intent
compilation and installation processes. Figure 7 shows the
main GSO components alongside the general GSO workflow
for intent placement discovery. The components have multiple
roles; for instance, the Input component serves to receive
and store intents, which upon authorization are processed by
the Placement Analysis component. An algorithm determines
placement and distributes the intents to the selected lo-SDX’s
accordingly. All modules are continuously updated through
the Global Update component to reflect any topology-related
or BGP-related updates.
1) Input:
• Authentication and Authorization Module: Each lo-SDX

authenticates and communicates via a secure out-of-band
channel with the GSO. Local SDX’s send processed JSON
intent objects to the GSO for placement analysis.

• Global Intent Store:
A “Global Intent Store” database contains separate tables per
SDX to store received and forwarded intents by the GSO



Fig. 7: GSO Main Components and General Workflow

to the lo-SDX’s for compilation. Each table stores entries
related to the intent attributes. In case of an intent update,
query or delete request from the originating lo-SDX, the
GSO can determine which lo-SDX compiled the intent.

2) Placement Analysis: This component contains a forest
graph which consists of two separate tree graphs as shown in
Figure 7. To determine which lo-SDX will install the intent,
first we search the “Global Variable Stride IP Multibit Trie”.
If an IP prefix match is found for the supplied intent source,
we examine the BGP “AS Path” attribute for the prefix match
found. Each “AS id” from the “AS Path” is then used to search
the second graph, the “Global Variable Stride AS Multibit
Trie”. Once an exact match is found in this second trie, we
have determined the SDX that will execute the intent.

• Global Variable Stride IP Multibit Trie Module:
The GSO maintains a “Global variable stride IP multibit”
trie which is populated with advertised prefixes and their
best routes (“AS Path”) from participating lo-SDX’s. Each
node at the trie contains an IP prefix and a list of “AS ids”
to denote the BGP “AS Path” attribute.
A trie search is perfomed using an intent source IP address;
if a prefix match is not found, the intent is sent back
to the requesting lo-SDX. If a best matching prefix or
multiple matching prefixes are found in the trie, Algorithm
2 comparatively examines each match (using IP prefix, “AS
path” and SDX data). For each matching prefix, if there are
multiple “AS Path” attributes, each “AS Path” is examined.
The algorithm starts with the right-most “AS id” in the “AS
Path” attribute (since it represents the originating AS for the
prefix in question). For each “AS id” that is not found in the
“AS Trie” graph described below, we proceed and examine
the next in line “AS id” to the left in the “AS Path” attribute.
The outcome of the algorithm determines a final lo-SDX
placement for intent compilation. For the DDoS intent class
the outcome enables load distribution among multiple lo-
SDX’s in parallel.

• Global Variable Stride AS Multibit Trie Module:
To determine if an AS participates at any lo-SDX we use
an “AS Trie”, where each node is a pair of (AS, SDX).
Since AS numbers range from 16 to 32 bits, we consider a
variable stride multibit trie to search for an exact AS match.
The trie is populated with all the participating AS’s at each
participating lo-SDX.

3) Global Update:
• Global Update Handler Module:

Each lo-SDX communicates RS-related updates to this
module. The updates are processed and stored in a “Global
SDX Store” database with separate tables per SDX, each
containing data related to “SDX id”, “AS id”, “IP prefixes”,
“AS Path” etc. Both Global tries are updated by change
triggers in the “Global SDX Store” database.

Algorithm 2: Global Analysis Intent Placement
AnalysisPlacementGraph

inputs : Intent #Intents received;
G ip = (IP, [ASPath]) #Global IP Graph;
G as = (AS, SDX) #Global AS Graph;

outputs: sdx exec; #Dict of elected lo-SDX’s
nomatch #Dict of mismatch intents

match, nomatch, sdx exec← ∅
assert authorization
foreach intent src node n ∈ Intent do

if n ∈ G ip then
#check if IP prefix match
f ← G ip([n])
#f gets pair of “SrcIP, ASPath”
match.append(f)
foreach match[“ASPath”] do

foreach AS id ∈ match[“ASPath”][:: −1] do
if AS id ∈ G as then

SDX ← G as([AS id])
sdx exec.append([ “AS”: AS id, “SDX”:
SDX , “IP”: n ])

else
nomatch.append(n)

return sdx exec, nomatch;

VII. EVALUATION AND RESULTS

To evaluate the proposal we conduct an experiment in
the SAVI testbed as shown in Figure 9a. The topology is
created using VXLAN connections between nodes, where
each node is a separate VM in the SAVI testbed [27], a
total of approximately 80 VMs. White nodes represent the
SDX’s, green nodes (firewall and victim) represent an internal
network. SDN controllers and GSO are represented by blue
and grey nodes respectively. Each link between a red node
(DoS attacker) and an SDX represents aggregated attack traffic
only per AS. In this scenario SDXA and SDXB use SDX2 as
an upstream connection, SDXC, SDXD and SDXE use SDX1
as their upstream, similarly SDX3 serves to SDXF. We note
that none of these links in reality are point-to-point, instead
topologies are abstracted for simplicity.

Each lo-SDX is implemented using Quagga [28], Ryu
(SDN Controller), OVS (Open vSwitch) and the components



Fig. 8: Experiment topology (for brevity SDXA and SDXF are shown
expanded; the other SDX’s have same structure and own GSO connection)

described earlier. The tries used by the GSO and lo-SDX are
populated with data from the SDX topology. Additionally, we
complement the tries with parsed raw data collected by the
RRCs (RIS (Routing Information Service) Route Collectors)
available online from RIPE [29].

During the DDoS attack each attacker node generates attack
traffic (λ). Each aggregated upstream attack traffic Ai, (i =
1..6) is equal to the sum of

∑m
j=1 λi.j , where m is the number

of AS’s per SDX that carry attack traffic. The sum
∑6

i=1Ai

represents the total attack traffic. To simulate the attack we
generate DDoS UDP floods from each attacker node.

We define three separate trials of the experiment, namely
traditional firewall defense-based model, single lo-SDX block-
ing approach (closest relative to the intent user), and blocking
at collaborating SDX’s closest to attack sources (our ap-
proach). During each trial we measure the network transmit
throughput in time at the Firewall and each SDX node. The
throughput consists of the attack traffic only, and an occasional
ARP request of negligible size that does not skew the results.

The results of the experiment are given in Fig-
ures 9a, 9b, 10a and 10b. In Figure 9a we show the DDoS
attack without any defense method involved. As more attacker
nodes start UDP floods, the attack functions grow; around
t=100 all attacking nodes are participating, and the maximum
attack volume is reached. The Firewall and SDX1 have same
traffic level since they both receive all of the traffic from the
source SDX’s as denoted in the top line of Figure 9a.

In Figure 9b around t = 200s, rules to block the offending
sources are added to the Firewall, after which the attack traffic
is no longer transmitted from the Firewall to the victim node
(V). This is evident by the drop in the top line in Figure 9b.

In Figure 10a, a monitoring system initiates the action
by sending a list of the offending sources to SDX1 (the
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Fig. 9: DDoS Attack vs Firewall defense-based approach
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Fig. 10: Single IXP block vs Multiple SDX collaboration block approach

SDX where the victim network participates). Upon intent
compilation, the blocking rules are installed at the switch,
corresponding to the drop of the top line for the Firewall
(since it no longer transmits attack traffic) and consequently
for SDX1 as well. The other nodes still transmit attack traffic.

Finally, Figure 10b shows the collaborative approach stop-
ping the attack traffic at each first SDX point of entry. The
monitoring system sends a DDoS intent to SDX1, which
then sends the intent to the GSO (becomes active at around
t = 175s in Figure 10b). The GSO invokes the algorithm
to determine the location placement for each blocking intent.
The GSO then distributes the intents to the elected lo-SDX’s.
Each lo-SDX invokes the algorithm to compile and install the
received intents, while ensuring no conflicts exist. In summary,
the intents are distributed and compiled in parallel at the
elected lo-SDX’s. This corresponds to the fast decaying trans-
mitting throughput functions for all the nodes in Figure 10b.
As these functions get turned off, the flow arriving at the
Firewall drops adequately, ultimately stopping completely.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a proposal for a future security architec-
ture that can commence as more IXPs embrace SDN. The
SDX collaboration enables an effective approach to DDoS
mitigation while addressing scalability challenges. In addition
multiple future opportunities related to traffic engineering,
end-to-end QoS and security services can be enabled.

The implementation of the proposed architecture on the
SAVI testbed [27] is part of on-going work. Additionally,
the Conflict Detection and Resolution modules will be further
expanded to improve and reach a full automation cycle. For
the purpose of achieving the diverse set of opportunities
enabled by the collaborative approach potential areas of ML
application will also be reviewed.
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