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Abstract—Consistent operation of software-defined network
(SDN) switches during the transient periods of forwarding rule
updates is a critical issue. This paper studies the problem of
updating SDN rules, while preserving two essential security and
performance consistency properties: (1) Waypoint Enforcement
which mandates that all packets traverse a specific checkpoint
(e.g., firewall), and (2) Loop-Freedom that prevents forwarding
packets along a loop. To guarantee these properties, we schedule
rule updates in multiple rounds. To reduce the time that the
network stays in the transient period of updating the switches, we
have to solve the NP-hard problem of minimizing the number of
update rounds. To this end, we design a fast algorithm called RRS
which can be applied to very large networks. Our experiments
on a large dataset of 28K scenarios show that RRS achieves a
323x improvement in the median of execution time compared to
solving the exact Mixed Integer Program (MIP) formulation.

Index Terms—Consistent Update, Waypoint Enforcement,
Loop-freedom

I. INTRODUCTION

A. Background and Motivation

Software-Defined Networking (SDN) is a network architec-
ture which decouples the network control logic from the un-
derlying switches that forward traffic. The decoupled network
control logic is implemented in a logically centralized SDN
controller [1]. The controller installs and updates forwarding
rules on network switches instructing them how to forward
traffic in the network. To maintain an optimal forwarding
configuration, the controller updates the forwarding rules
frequently, e.g., in response to events such as flow arrivals,
congestion, device outages, or end-host migrations [2].

Updating forwarding rules in SDN switches is a challenging
task since the delay of sending new rules to switches as well
as the time required to install them in the memory of switches
are non-deterministic. Therefore, even if the controller sends
out the new rules at the same time, some switches may update
their forwarding behavior considerably sooner than others [2].
As a result of this asynchronous behavior, there is a possibility
that the network state becomes inconsistent during transient
periods of rule updates, which results in malfunctions such as
sending packets along transient loops [3], overloading some
links [4], or bypassing a firewall [5]. Thus, the order in which
switches are updated by the controller is important for avoiding
inconsistent network states.

The network properties that should not be disrupted
throughout the rule update process are called the network
consistency properties. For example, Waypoint Enforcement

(WPE) is the consistency property that requires each packet
to traverse specific waypoints, i.e., a middlebox such as a
firewall [5]. Modern enterprise networks rely on a large
number of in-network functions [6]–[8] to satisfy a variety of
requirements such as security and performance [9]. As such,
certain middleboxes should process every packet that enters
the network [10]. Specifically, WPE is a desirable consistency
property in virtualized and security critical environments.
Loop Freedom (LF) is another crucial consistency property
[11] that guarantees loops do not occur in the network,
and is considered an important performance requirement. A
rule update is consistent if it does not violate the network
consistency properties. In this work, we focus on updating
forwarding rules, while preserving WPE and LF.

Since the consistency of a rule update in a switch depends
on the forwarding state of other switches, the SDN controller
should coordinate rule updates across the switches to preserve
the consistency properties. Specifically, it should send the
updates to switches in multiple rounds in such a way that the
order of updates in a single round does not affect the network
consistency properties [12]. To reduce the time it takes to
complete the update process, i.e., the time that the network
spends in an incorrect or sub-optimal configuration [2], it
is desirable to design an update process that minimizes the
number of update rounds. It has been shown that minimizing
the number of update rounds is NP-hard [9], as such, in this
paper we focus on designing fast approximation and heuristic
algorithms for the problem of consistent SDN rule update with
minimum number of rounds.

B. Related Work

A comprehensive survey on consistent network update al-
gorithms is provided in [13]. Although there exist suitable
solutions for the problem in traditional networks [14]–[16],
SDN requires different solutions due to different network
constraints and capabilities. We briefly review the works on
consistent SDN rule update that are more relevant to our work.
Update Mechanisms and Objectives. A number of papers
consider the basic consistency properties of congestion free-
dom [4], [17]–[20] and guaranteed packet delivery [11], [21].
These works, however, do not consider preserving higher-level
policies that network operators usually demand. Such policies
define a set of constraints on the paths a packet can traverse
during the update process. To address this shortcoming, in
a seminal work, Reitblatt et al. [3] proposed the per-packet
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consistency (PPC) property to ensure that every packet is
handled either by the old policy or the new one, but never
a combination of the two. Then, they designed a 2-phase
commit algorithm, which works based on packet tagging, to
enforce PPC. However, the 2-phase commit algorithm doubles
the usage of expensive and power hungry TCAM memory
in switches, to the point of making it impractical [22]. As
a result, Mahajan et al. [12] proposed to schedule the rule
updates in multiple rounds. Minimizing the required number
of rounds is specifically desirable, because it reduces the time
that the network remains in a transient state [2]. However,
even for the most elementary consistency property, i.e., loop-
freedom (LF), not only the problem of minimizing the number
of rounds is NP-hard but also it is NP-hard to approximate
the number of rounds with an approximation ratio better than
4/3 [21]. Currently, these exist no approximation algorithm
for this problem in the literature [13]. Instead of minimizing
the number of rounds, Amiri et al. [23] proposed a greedy
scheduler which maximizes the number of updated switches
in each round. Nevertheless, this new problem is NP-hard and
can increase the number of rounds by a factor of Ω(|V |) [24].
Policy Preserving Properties. PPC is an unnecessarily
strong requirement in practice. As such, several subsequent
works considered different properties. For example, McClurg
et al. [25] studied the class of properties that can be defined
as a linear temporal logic formula. However, they did not con-
sider the problem of minimizing the number of update rounds.
Vissicchio and Cittadini [26] proposed the FLIP algorithm for
policy preservation, which guarantees that each flow traverses
a set of pre-defined paths in the network. However, FLIP uses
packet tagging to improve its performance and consequently
increases the memory consumption of the switches. Ludwig
et al. [5] suggested the waypoint enforcement (WPE) property
as a replacement for PPC. Then, they proved the NP-hardness
of minimizing the number of scheduling rounds while satisfy-
ing the LF and WPE properties and extended WPE to enforce
multiple waypoints in the network [9]. Their approach for
minimizing the number of rounds relies on solving a mixed-
integer program (MIP) which is generally computationally
intractable and thus not scalable in practical applications.

C. Our Work

In response to the shortcomings of existing works on
preserving policies in SDNs, i.e., solving MIP formulations
directly [5], [9], increasing TCAM memory usage [26], and
ignoring the number of rounds as the objective [23], [25],
we propose an algorithms, called Reduced-Round Scheduler
(RRS), for computing efficient update schedules that satisfy LF
and WPE. Our contributions can be summarized as follows:

• We design our heuristic based on a critical observation
that the consistent rule update problem is reversible.
We prove the reversibility of the problem by showing
that any solution of the backward problem (i.e., the
problem of consistently updating the network from the
final configuration that the controller desires to deploy, to

the current configuration that the controller has decided
to change) is also a solution for the forward problem.

• We evaluate the performance of the proposed algorithm
on an extensive dataset that contains 28K update scenar-
ios with a varying number of switches.

The rest of the paper is organized as follows. Section II
defines the problem. The RRS algorithm is presented in
Section III. Evaluation results are presented in Section IV.
Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Network Model

We consider an SDN network with a centralized controller
and a set of SDN-enabled switches that are connected to
the controller. We focus on the unsplittable flow model that
restricts a flow to carry its traffic over a single path. Al-
though this model makes the problem more difficult to solve,
complications such as packet re-ordering, which, for instance,
negatively affects TCP performance are avoided. Consider the
network depicted in Fig. 1 and assume that the controller needs
to update the old path of flow f (represented by solid lines),
i.e., (1 → 2 → 3 → 4 → 5 → 6) to a new path (represented by
dashed lines), i.e., (1 → 7 → 5 → 4 → 3 → 6). Because updating
switches that are not common between the old and new paths
of f is trivial [9], we define an induced graph G(V,E) over the
set of common switches, where V denotes the set of common
switches between both paths, i.e., V = {1, 3, 4, 5, 6}. For
every switch pairs u, v ∈ V , the link (u, v) belongs to E, if
1) there is a direct link between u and v in the original SDN
network, or 2) there is a path in the original SDN network
between u and v, such that none of the intermediate switches
are common between the old and new paths. For example,
paths 1 → 7 → 5 and 1 → 2 → 3 in Fig. 1 are represented,
respectively, as links (1, 5), (1, 3) in Fig. 2, which are included
in E. Denote the old and new paths in G by πold and πnew,
respectively, and let s and d denote the source and destination
switches. In Fig. 2, πold is (1 → 3 → 4 → 5 → 6) and πnew is
(1→ 5→ 4→ 3→ 6). In the rest of paper, we focus only on the
induced graph G.

B. Consistency Model

We consider Relaxed Loop-Freedom (RLF), which is a
fundamental performance-related consistency property. RLF
prevents loops in the routing path of flows. However, since
transient loops which are unreachable from the source switch
have a negligible impact on the network performance [24],
RLF allows such loops to happen. Compared to eliminating
all loops regardless of their reachability, RLF can accelerate
the update process by a factor of Ω(|V |) [24]. For example
in Fig. 2, suppose that only switch 1 is updated and thus
the current forwarding path is (1 → 5 → 6). Updating switch
4 creates the loop (3 → 4 → 3), however, RLF allows this
loop because it is not reachable from the source switch 1.
In addition to RLF, we also consider Waypoint Enforcement
(WPE), which is a desirable security consistency property.
WPE ensures that every packet of each flow goes through
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Fig. 1: An update scenario in
which the old and new paths are
represented by solid and dotted
lines, respectively. Switches that
are not common between old and
new paths are shaded.
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Fig. 2: Induced graph
G(V,E) in which the non-
common switches are
omitted and their attached
links are contracted.

a specific node in the network. Throughout the paper, we call
this special node the waypoint and denote it by wp. Consider
Fig. 2 for an example of WPE violation. Let switch 4 be
the waypoint. If switch 1 is updated before other switches,
traffic will traverse path (1 → 5 → 6), and hence bypasses the
waypoint 4.

C. Update Model

The SDN controller can update the routing path of each
flow by changing the rules installed in the memory of the
network switches without affecting the routing of other flows.
Therefore, we assume that there are no conflicts or depen-
dencies among the rules which we install in a single switch,
and consequently we can update a switch in a single round
of message passing [12]. Thus, we focus on the inter-switch
rule dependencies and assume all intra-switch rules are non-
conflicting. In each round, the controller updates a subset of
switches U ⊆ V , where updating switches in U in any order
preserves LF and WPE. The controller starts a new round after
confirming that the switches chosen in the previous round have
installed the new rules in their memories.

D. Problem Definition

In this paper, we consider the problem of updating the
forwarding behaviour of all switches in G in the minimum
number of rounds, while guaranteeing LF and WPE. We call
this problem Pround which is proven to be NP-hard [9]. A
closely related problem, denoted by Pswitch, is the problem
of maximizing the number of updated switches in a single
round, which is NP-hard as well [23]. Although one can solve
Pround by solving Pswitch in successive rounds, this approach
may encounter a deadlock and consequently fail to update a
problem instance that is actually feasible [5].

III. HEURISTIC RULE UPDATE ALGORITHM

In this section, we design a fast heuristic algorithm, called
Reduced Round Scheduler (RRS), RRS utilizes the structure
of the problem to obtain two different update schedules by
successively solving the Pswitch problem and then reduces
the required number of rounds by merging those schedules.

A. Fast State Generation

Let I denote the set of switches, for which updating any
single switch v ∈ I does not violate the network consistency
requirements. Our goal in this sub-section is to compute I.

Label the switches along the current path from s to d
with natural numbers in an increasing order. These numbers

1 42 3 5

wp

Fig. 3: Unreachable switches (filled gray) can form a loop, not
having a reachable successor. In this situation, L is 0 and a reachable
switch (e.g., switch 4) that connects to them can not be updated.

L(1)=1

L(2)=2 L(3)=3

L(4)=4

L(5)=5

L(6)=5

wp

Fig. 4: Label of the unreachable switch 5 (filled gray) is 5.
Therefore, switch 3 can update and connect to it consistently.
Also, updating switch 5 is consistent because it is unreachable. But
updating both switches creates a loop.

show the order of switches that packets visit on their path
from s to d. Let L:V → N denote the labeling function and
consider two switches u and v. Assume that after the update,
u connects to v. If L(v) < L(u), RLF is violated because u
sends packets back to an already visited switch v. Likewise,
if L(u) < L(wp) < L(v), WPE is violated because a packet
that reaches v never goes back to visit wp. Thus, updating
switch u (that afterward connects to switch v) is consistent
(i.e., u ∈ I) if and only if one of the following conditions
hold:

L(wp) ≤ L(u) < L(v) (1)
L(u) < L(v) ≤ L(wp) (2)

Clearly we can update any unreachable switch without
violating RLF or WPE. However, after updating u, switch v
(u’s next switch) may be unreachable. Thus, we extend the
definition of L to unreachable switches in order to consistently
apply conditions (1) and (2). To this end, we define a successor
relation on the set of switches and denote it with function
S:V → V . Let S(u) denote the current next hop of u which
is determined from πold if u is not updated, and from πnew,
otherwise. The descendants of switch u are all those switches
that are reachable from u. The label of an unreachable switch
is equal to the minimum label of its descendants. With this
definition, we can compare the label of switch u with the
first reachable descendant of v to ensure RLF and WPE are
satisfied based on conditions (1) and (2). If an unreachable
switch has no reachable descendant (see Fig. 3) the label of
that unreachable switch is defined as 0. By this definition,
reachable switches can not be updated to send packets to such
unreachable switches. With the extended definition, L is now
defined for all switches in V . Thus, we can compute I.

Theorem 1. I can be computed in O(|V |).

Proof. The induced graph that represents the problem has |V |
nodes and 2(|V |−1) edges (πold and πnew). Therefore we can
use Breadth-First search algorithm to compute function L in
O(|V |). We can test conditions (1) and (2) in O(1), therefore
I can be computed in O(|V |).

We still can not update the switches in I altogether.
Lemma 1 presents a negative result about I.

Lemma 1. Updating a subset of I may cause RLF or WPE
violation.



Algorithm 1 SWITCHX
Input: G(V, E). ▷ Graph described in Sect. II
Output: U,R.
1: procedure SWITCHX
2: L(G) ▷ Label switches with function L described in Sect. III-A
3: for (u, v) ∈ πnew do
4: if u.updated == False then
5: if G.wp.L ≤ u.L ≤ v.L or u.L ≤ u.L ≤ G.wp.L then
6: I.add(u)
7: for v ∈ I do
8: if v is reachable from s then R.add(v)
9: else U.add(u)

10: return U,R

Proof. Consider Fig. 4 in which updating switch 3 is con-
sistent because 3 = L(3) < L(5) = 5. Updating switch
5 is also consistent because it is unreachable. However,
updating these two switches simultaneously creates a loop
(1 → 2 → 3 → 4 → 5 → 2). There exists a similar scenario
for violation of WPE.

Our goal is to update the maximum number of switches
in I, while preserving RLF and WPE. Observe that if we
only update the reachable switches, denoted by R, or only
unreachable switches, denoted by U , the update is consistent.
A switch is unreachable if packets cannot reach it by following
the current forwarding rules starting from the source switch
s. We can determine the reachability of switches while com-
puting I without increasing the complexity of the algorithm.
We call the algorithm that uses the function L to update the
switches in a single round SWITCHX. SWITCHX is outlined
in Algorithm 1. Lemma 2 proves that either R or U contains
at least half of the maximum number of switches that can be
consistently updated in a single round.

Lemma 2. Updating switches in the bigger set of R and U
yields a 2-approximation algorithm for the problem Pswitch.

Proof. Updating any switch in I individually is consistent.
Therefore, the optimum solution is smaller than I. Further-
more, since every switch that can be updated consistently is
either reachable (a member of R) or unreachable (a member
of U), we have I = R ∪ U . Now assume, for the sake
of contradiction, that |R| < 1

2 |I| and |U| < 1
2 |I|. Since

R∩ U = ϕ, we have,
|R ∪ U| = |R|+ |U| − |R ∩ U| = |R|+ |U| <

1

2
|I|+

1

2
|I| = |I|

However, this contradicts the fact that I = R∪ U .

B. Deadlock-Free Update Scheduler
Our goal is to solve the problem Pround by apply-

ing SWITCHX iteratively. Since SWITCHX is a linear-time
2-approximation algorithm, the iterative solution is expected
to result in a reasonably efficient algorithm. However, it
may result in a deadlock [5]. To avoid deadlocks, first we
plug SWITCHX into a search algorithm, called Deadlock-Free
Update (DFU), and then apply a MERGE algorithm to reduce
the number of rounds, as described in the following.

DFU uses a list of |V | booleans to represent the state of the
switches, i.e., whether a switch is updated or not. DFU starts
from the state where no switch is updated. Then, to search the
solution space (which has at most 2|V |−1 states), it applies

Algorithm 2 DFU: Deadlock-Free Update Scheduler
Input: G(V, E). ▷ Graph described in Sect. II
Output: A deadlock-free update schedule.
1: procedure DFU
2: init_conf ← [false] ∗ |V |
3: q ← priority_queue(init_conf)
4: while q.has_next do
5: cur_conf ← q.head
6: L(G, cur_conf) ▷ L is described in Sect. III-A
7: U,R ← SWITCHX(G)
8: for candid ⊂ U or R do
9: next_conf ← UPDATE(cur_conf, candid) ▷ See Sect. III-B

10: if next_conf not visited then
11: if false /∈ next_conf then return solution
12: else q.add(next_conf)
13: return failure

SWITCHX to incrementally generate the next consistently
reachable states. DFU uses a priority queue to explore the
states with higher number of updated switches sooner, and
accelerates the discovery of the final state. The path that
connects the initial state to the final state is a consistent update
schedule of all switches.

DFU is outlined in Algorithm 2. In line 2, a list of |V | false
entries is used to show the initial state. The priority queue is
initialized in line 3. In line 6, the function L is computed for
all switches. Then, SWITCHX is called in line 7, to calculate
sets R and U . In lines 8 to 12, DFU generates the new states
and checks if the final state has been found. Specifically, the
UPDATE method takes the current state and a set of switches
denoted by candid whose update is consistent, and generates
another state which is identical to the input state except for
the switches in candid that are updated to their final states.
In favor of brevity and readability, details of bookkeeping to
retrieve the solution (line 11) and ensuring that each state is
visited once (line 10) are omitted.

C. RRS Algorithm

The Reduced Round Schedule (RRS) algorithm employs
DFU to find two different schedules for the update problem
and then merges the schedules to build another update schedule
that has fewer number of rounds. We demonstrate the intuition
behind the algorithm through an example.

Example: Consider the network in Fig. 5(a), and let switch
6 be the waypoint. DFU updates the maximum number of
switches (i.e. {1, 2}) in the first round, while in the next
4 rounds only 1 switch can be updated consistently. In the
second round, only switch 3 can be updated because updating
switches 4 and 6 creates the loops (4 → 3 → . . . ) and
(6 → 5 → . . . ), respectively, and updating switch 5 violates
WPE. In the third round, we can only update switch 4. Finally,
switches 5 and 6 are updated in the fourth and fifth rounds,
respectively. Therefore, it finds an update schedule with 5
rounds. Now, create a new problem instance by swapping πold

and πnew. The result is depicted in Fig. 5(b). DFU updates this
network in 3 rounds ({1, 6} in the first round, then {3, 4, 5},
and finally {2}). Note that, the second schedule updates the
first problem in 3 rounds if we apply it in the reverse order.

Next, we prove that if we swap πold and πnew in a network,
the solution of the new problem (updating πnew to πold)
correctly solves the original problem (updating πold to πnew)



1 2 3 4 5 6 7

(a) Original Problem

1 4 3 2 6 5 7

(b) Transformed Problem

Fig. 5: An example in which DFU finds a better solution if we
transform the problem by swapping πold and πnew.

if applied in reverse order of rounds. We refer to this property
as reversibility.

Theorem 2. The problem of consistent network update with
RLF and WPE properties is reversible.

Proof. Assume that in a problem instance all switches are
updated. Let sf denote the final state of the network (i.e.,
state of all switches). Suppose that reverting the update of a
maximal set w of switches is consistent and takes the network
to another state sf−1. By the definition of consistency, any
state that is obtained by reverting the update of any subset
w′ ⊆ w is also consistent. Furthermore, each state that is
obtained from sf by reverting the update of the switches
in w′ ⊆ w, is exactly the state that is obtained from sf−1
by updating the switches in w − w′. Since any state that is
reachable from sf by reverting the update of switches in w is
consistent, all the states reachable from sf−1 by applying w
are also consistent. Since in each round the initial and final
states are consistent, by induction, it can be shown that a
consistent schedule for the reversed version of the problem
is also a consistent schedule for the original problem.

The RRS algorithm is presented in Algorithm 3. It uses DFU
to solve the original and reverse problems and then merges
the solutions to reduce the number of rounds. We refer to
the solutions of the original and reverse problem as forward
and backward schedules, respectively. The MERGE algorithm
which is used to combine the forward and backward schedules
is described next.

MERGE Algorithm: Let wi,r ⊂ V be the set of switches
that schedule i ∈ {1, 2} (where, i = 1 refers to the forward
and i = 2 refers to the backward schedule) has updated
up to (and including) round r. Denote the maximum round
number in the schedule i by Ri. For each schedule i, create
a directed graph Gi(Vi, Ei) as follows. For each round r of
the schedule i, add a node to graph Gi. Each node stores
three values r, wi,r, and Ri − r. Note that Ri − r shows
the required number of rounds to complete schedule i starting
from round r. In each graph, add the directed edge v{r,.,.}
to v{r+1,.,.} (“.” means wildcard) to show a transition from
round r to r + 1 in the corresponding schedule. Consider a
Algorithm 3 RRS: Reduced Round Scheduler
Input: G1(V1, E1). ▷ Graph described in Sect. II
Output: A Scheduling if exists.
1: procedure RRS(G1(V1, E1))
2: G2(V2, E2)← G1.copy()
3: for e ∈ E2 do
4: if e.label == πold then e.label← πnew

5: else e.label← πold

6: sol_fwd ← DFU(G1)
7: sol_bwd ← DFU(G2)
8: return MERGE(sol_fwd, sol_bwd) ▷ Defined in Sect. III-C
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Fig. 6: Runtime comparison of RRS, MIP, and GRD. Y-axis is
logarithmically scaled. The red marks are outliers that are 1.5×IQR
(Interquartile Range) or more above (below) the third (first) quartile.

pair of nodes v{.,wi,r,d}, v
′
{.,w′

i′,r′ ,d
′} which are not in the same

graph. If wi,r ⊂ w′i′,r′ and d′ < d−1, and we can consistently
update the switches in w′i′,r′ − wi,r in a single round, then
add a directed edge from v to v′. Such links build schedules
which are better than schedule i by at least one round. We
can reduce the time of merging the graphs by observing that,
if the transition from node v{.,.,d} to v′{.,.,d′} is not consistent,
the transition to any other node v′′{.,.,d′<d′′} is not consistent
either. Finally, add two nodes S and D. Connect the source and
destination of the graphs Gi to S and D with proper directions,
respectively. Clearly, the length of the shortest path from S to
D minus two is the length of a consistent update schedule
which is never longer than any of the input schedules.

IV. PERFORMANCE EVALUATION

Setup and Parameters. We evaluate RRS by comparing it
with the exact solution of Problem MIP (denoted by MIP)
and the greedy algorithm proposed in [23] (denoted by GRD)
which solves Pswitch optimally. All algorithms terminate after
100 seconds if they don’t find a solution or show infeasibility.
Note that, if MIP can not find the optimal solution before
100 seconds, it will return the best found feasible solution.
Therefore, in practice other algorithms may perform better
than MIP. We implemented all algorithms in Python and used
Gurobi 8.0 to solve the optimization problems. We conducted
the experiments on a machine with Intel(R) 2.10 GHz Xeon(R)
CPU, 16GB memory, and Ubuntu 16.04 as the operating
system. We also present the results of running DFU on the
original and reverse problem instances (Sect. III-C) and denote
them by FWD and BWD, respectively.
Data Set. We use a public dataset of 28, 581 scenarios1.
For each problem instance, the new path, πnew, and the
only waypoint, wp, are generated randomly. The number of
switches in a path ranges from 5 to 35. Since the length of
any path is less than or equal to the diameter of the network,
the network instances considered in our experiments cover a
wide range of network sizes.
Runtime Comparison. The scenarios are divided into three
groups: (1) Small scenarios with path lengths ≤15, (2)
Medium scenarios with path lengths 15 to 25, and (3) Large
scenarios with path lengths >25. There are approximately
9K problem instances in each group. Figure 6 shows the
runtime distribution of RRS, MIP, and GRD algorithms. Even
in the small scenarios, the superiority of RRS is evident.

1The dataset is publicly available at http://net.t-labs.tu-
berlin.de/∼stefan/netup.tar.gz
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Fig. 7: Average and empirical CDF of the number of rounds for different number of switches.

While RRS solves all small scenarios in less than 1 second,
in some scenarios MIP reaches the 100 seconds time limit
(note the logarithmic y-axis). Runtime medians of running
RRS on small, medium and large scenarios are 9 × 10−4,
0.014, and 0.46 seconds, respectively, which compared to the
ones obtained by MIP, namely 0.12, 4.7, and 36 seconds,
show 323x speedup. The runtime medians of running GRD
on small, medium and large scenarios are 0.047, 0.089, and
0.12 seconds, respectively, in which RRS shows 5.5x speedup
in comparison. The efficiency of SWITCHX is the main reason
behind the performance of RRS.
Ability to Find a Solution. Table I summarizes the ratio
of solved, infeasible, and failed instances. GRD shows its
limitation even on small scenarios. Specifically, it fails to solve
1250 small instances (i.e., 13%) which are solved by other
algorithms. Likewise, MIP fails to solve 43 small instances
(i.e., 0.4%) which are solved by RRS. Note that, for small and
medium scenarios, there is actually no room for improvement,
and thus the performances of the algorithms resemble each
other. However, in large scenarios, RRS outperforms MIP and
GRD, and achieves near optimal performance. In general, RRS
solves 6% and 14.7% more instances compared to MIP and
GRD. Furthermore, RRS solves 109 more instances compared
to the FWD and BWD algorithms.
Number of Rounds Comparison. Average number of rounds
obtained by different algorithms is represented in Fig. 7(a).
For small scenarios, the performances of all algorithms are
similar. Most notably, the average number of rounds under
RRS is always lower than that of other algorithms. We can
see that MIP is not scalable, and for large scenarios, its
performance degrades significantly. Figs. 7(b), 7(c), and 7(d)
show the empirical cumulative distribution functions (ECDF)
of the number of rounds achieved by the algorithms in different
scenarios. We observe that the majority of small scenarios are
solved in at most 5 rounds, while 10 rounds are needed to

TABLE I: Ratio of solved, infeasible and failed instances
Size Status Algorithm

RRS MIP GRD FWD BWD

Small
Solved 0.90 0.90 0.86 0.90 0.90

Infeasible 0.09 0.08 0.0 0.09 0.09
Failure 0.0 0.004 0.13 0.0 0.0

Medium
Solved 0.95 0.94 0.82 0.95 0.95

Infeasible 0.04 0.006 0.0 0.04 0.04
Failure 10−4 0.05 0.18 0.001 10−4

Large
Solved 0.99 0.84 0.80 0.98 0.98

Infeasible 0.002 10−4 0.0 0.001 0.001
Failure 0.006 0.15 0.19 0.01 0.01
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Fig. 8: Empirical CDF for the ratio of the number of rounds
of different algorithms.

solve almost all medium and large scenarios. However, in large
scenarios, MIP shows a considerably lower performance and
sometimes computes a schedule with more than 30 rounds,
while RRS never uses more than 15 rounds. Note that, GRD
fails to solve the complicated problem instances (e.g., it
fails to solve 1700 large scenarios). Therefore, Fig. 7(d) can
only capture the performance of GRD on easier problem
instances. Consequently, Fig. 7(d) shows that GRD schedules
rule updates in a small number of rounds. RRS, however,
solves more problem instances, and at the same time finds
schedules that have fewer number of rounds. This means that
RRS computes good schedules even for complicated problem
instances.
Effect of MERGE algorithm. Consider the ECDF of the
ratio of the number of rounds among different algorithms in
Fig. 8. Since RRS uses the approximate SWITCHX algorithm
we should expect an inferior performance compared to GRD
which uses the optimal algorithm for Pswitch problem. How-
ever, Fig. 8(a) shows that RRS, by using the MERGE algorithm
and combining the solutions of BWD and FWD, achieves 10%
to 20% improvement compared to GRD for different scenario
sizes. Figure 8(b) compares RRS and MIP. We can see that
RRS reduces the number of rounds in 15% of large scenarios.
Furthermore, there are scenarios in which the ratio of the
number of rounds between RRS and MIP is close to zero.
This means that MIP is not scalable, and under the same time
constraint as RRS, it performs considerably worse.

V. CONCLUSION

We designed RRS algorithm to update SDNs with minimum
number of rounds under RLF and WPE. RRS uses three novel
building blocks and significantly reduces the time complexity
of solving the problem. Extensive evaluations showed that our
algorithm is able to find schedules that are efficient in terms
of the number of rounds. In the future, we plan to consider
other types of consistency properties.
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