
Revive: A Reliable Software Defined Data Plane
Failure Recovery Scheme

Israat Haque
Computer Science, Dalhousie University

israat@dal.ca

MA Moyeen
Computer Science, Dalhousie University

mamoyeen@dal.ca

Abstract—In Software-Defined Networking (SDN) links and
switches (nodes) from data plane suffer from failure and impact
network operations. In the presence of such failures, switches can
use reactive or proactive recovery scheme. In the reactive scheme,
switches contact the controller after detecting a link failure to
get a backup route setup; whereas, switches locally redirect the
traffic to the backup route without controller’s intervention in the
case of the proactive scheme. In this paper, we propose a hybrid
recovery scheme, called Revive, where the controller proactively
installs backup routes only in a subset of the switches between
a source-destination pair. In addition, we judicially configure
the routes in Revive to meet the application and the reliability
demand while efficiently utilize the network resources. Extensive
experimental results in Mininet using real topologies illustrate
the benefits of Revive compared to its counterparts.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] removes network
control functions from hardware like routers and switches,
which in turn makes these devices simple packet forwarders.
The SDN architecture is composed of management, control,
and infrastructure planes, where the policy of the network
services or applications is defined at the management layer.
The control plane (controller) then translates this policy into
network configuration rules for the infrastructure layer (data
plane) devices. The management and control layers commu-
nicate through a Northbound API; whereas, the control and
data plane communicates using the Southbound (SB) API. The
control plane installs packet forwarding rules in the flow tables
of the software enabled data plane elements using the de facto
SB API OpenFlow [2].

SDN improves the flexibility and fosters the innovation in
network monitoring, management and operations. Thus, SDN-
based network design is adopted in data centres, enterprises,
cloud and cellular networks [3], [4]. Also, SDN has received
attention in other emerging networking applications like the
Internet of Things (IoT) and smart cities [5], [6]. All these
applications may suffer from service interruption because of
the failure of links and devices from the data plane. For
instance, cloud network providers suffered from 1600 hours
of service disruptions and US$273 million loss from 2007 to
2013 due to application and infrastructure failures [7].

There are two failure recovery approaches; namely reactive
(restoration) and proactive (protection ) [8], [9]. In the reactive
approach, upon detecting a link failure switches contact the
controller to get the backup route set up to redirect the affected

traffic. Thus, a delay is associated with the reactive approach
to recover from the link failure. On the other hand, in the case
of proactive approach controller preinstalls backup routes at
the flow tables of the switches. The switches upon detecting
a link failure locally redirect the affected traffic without the
controller’s intervention. Thus, the reactive scheme incurs
delay without any burden on the limited memory (TCAM)
of the OpenFlow switches; whereas, the proactive scheme
reduces that delay at the price of extra TCAM usage.

In this paper, we propose a hybrid link failure recovering
scheme called Revive, which combines the benefits from
both the reactive and proactive approaches. Revive preinstalls
backup routes at a subset of the switches between a given
source-destination pair, where switches locally redirect the
affected traffic. However, the success of Revive or any other
recovery schemes will depend on the availability of backup
routes. Thus, we must carefully design a routing topology
that guarantees backup routes between every pair of switches.
The benefits of such topology construction include available
backup routes, congestion avoidance, and load distribution
[10], [11].

In the Revive architecture, the controller constructs and
maintains a k-edge-disjoint routing topology based on the
algorithm proposed in [12]. The strength of this topology
construction algorithm is that in addition to guaranteeing
disjoint routes; it allows the network operators or designers to
select appropriate topology structure to meet the demand of
the applications or services. For instance, we can choose struc-
tures like Shortest Path Tree (SPT), Minimum Spanning Tree
(MST), or Degree Constraint SPT (DCSPT). Each structure
has unique properties suitable for different services. Finally,
this precomputed disjoint routes can reduce the backup route
installation time even for the reactive scheme as the controller
will not need to compute the backup route upon receiving a
path restoration request.

We further observe that there is a tradeoff between the
network policy implementation and the efficient resource uti-
lization at the data plane switches. For instance, the network
operators may need to establish the shortest routes among
the switches, which may heavily utilize the TCAM of the
switches along the chosen shortest routes. We exploit the k-
edge disjoint routing topology, the global network view of
the controller, the network traffic analysis, and the dynamic
network programmability of the SDN architecture and propose

978-3-903176-14-0 c© 2018 Crown



a novel solution to utilize the TCAM efficiently. We observe
that the route-stretch (the ratio of the actual to the optimal
routes) of the disjoint secondary paths of the routing topologies
is close to their optimal values. Thus, we can switch to
the disjoint secondary route after the memory usage at the
switches along the primary route reaches a threshold to im-
prove the memory utilization and throughput without violating
the application’s policy. In addition, our initial experimental
results reveal that SPT and MST offer a similar route-stretch,
throughput, restoration delay, and memory usage. Thus, we
may even interchangeably use these structures to distribute
the memory usage among switches.

We implement Revive and compare against [13], [8] in
Mininet [14] emulator. We use Ryu controller [15] and Open
vSwitch (OVS) [16], where OVSs use OpenFlow 1.3 to
communicate with the Ryu controller. We also use Open-
Flow’s Fast Failover Group (FFG) [17] to locally redirect
the affected traffic. Extensive experiments on real network
topology demonstrate that Revive significantly improves both
the path restoration delay and TCAM usage compared to
its counterparts. In addition, Revive balances the memory
utilization among the switches while guarantees reliability and
meets the application policy.

Contributions: The contribution of this paper can be sum-
marized as follows;
• Design a hybrid link failure restoration scheme called

Revive to improve the restoration delay and memory
usage.

• Propose a novel approach of distributing the memory
usage among switches while guaranteeing reliability and
meet the application policy.

• Conducted extensive experiments to evaluate Revive us-
ing real network topology.

The remaining of the paper is structured as follows. We
compare and contrast the work related to Revive in Section II.
We present the detailed design of Revive in Section III. The
experimental setup and associated parameters are presented in
Section IV. We present and discuss the experimental results in
Section V, which follows concluding remarks at Section VI.

II. RELATED WORK

In this section compare and contrast existing proactive and
reactive solutions related to Revive. The proactive recovery
scheme installs backup routes at the switches to locally detect
and recover from link failures. Thus, these schemes reduced
the delay by avoiding communication to the controller at every
failure instances. The authors in [18] proposed a proactive
recovery scheme using alternate routes, flow rules compres-
sion, source routing, and network virtualization. However, the
solution requires the packet headers to carry extra routing
information, which may have an impact on the scalability.

The work [19] used an enhanced Breadth First Search (BFS)
based proactive backup path installation scheme. A couple of
works in [20], [21] use Bidirectional Flow Detection (BFD)
[22] protocol and FFG; whereas, the work [23], [24] used
Link Layer Discovery Protocol (LLDP) and VLAN tags to

locally detect and recover from a link failure. These works
have not considered distributing memory utilization among the
switches, which is a key contribution of Revive. The authors
in [8], [25] locally detected congestion at the switches and
redirected the affected traffic towards the backup routes, which
may create oscillation across the network. The work in [26]
proposed a controller-managed congestion mitigation scheme
without distributing memory utilization.

Reactive link failure recovery schemes need to contact the
controller upon detecting a failure. Thus, these schemes incur
communications delay while efficiently utilize the TCAM. A
reactive link failure recovery method is proposed in [27],
where a failed link is detected with continuous heartbeat
messages. The scheme in [13] optimized the path cost in terms
of the number of hops while reactively selected the backup
routes. A similar reactive recovery approach is presented in
[28]. In contrast to the above proactive and reactive schemes
Revive attempts to bring the best from these two approaches.
Revive proactively installs flow rules only for a subset of
switches that carry traffic for the ongoing communications.

Chen et al. divided the TCAM into two, where flow rules
are installed in a small table to reduce the flow installation
time and efficient TCAM usage [29]. The work in [18],
[30] proposed to compress flow rules that share same actions
and output ports. A TCAM aware routing is proposed in
[31] to reduce the memory demand. These works could
be complementary solutions for Revive, where the goal is
to distribute the TCAM usage among the switches without
violating application policy.

III. REVIVE ARCHITECTURE AND DESIGN

The architecture of Revive is shown in Figure 1. The
demand or policy from services and applications are defined
at the application layer. Thus, the routing policy of Revive
is defined at the application layer. The controller acquires
that policy to define the route configuration rules for the
OpenFlow enabled data plane elements. Furthermore, the

Fig. 1. Revive Architecture.

controller periodically gathers the network state information
to dynamically update the network configuration rules to meet
the demand of the applications. In the following, the operation
of the major modules of Revive is presented.



Topology management: This module collects and main-
tains the information of the data plane elements to define the
network topology. We define the network topology as a graph
G(V,E), where V is the set of data plane switches and E
is the set of links among them. We then defined a k-edge
connected routing topology Dk(G) of G(V,E) such that there
are k edge-disjoint alternative routes between every pair of
nodes in Dk(G). We use the algorithm in [12] to construct the
k-edge connected routing topology using spanning structures
SPT or MST. In the case of any link failure, the affected switch
sends a control message to the Revive controller to update
the network topology. In addition, the controller periodically
gathers the network state information to update the topology.

Route configuration: The hybrid route configuration
scheme of Revive is depicted in Algorithm 1. The algorithm
states that upon receiving a flow installation request from
a switch, the controller uses Algorithm 1 to determine the
primary (optimal) and backup (near-optimal) routes for the
given source-destination pair. The controller then installs both
the primary and backup links at each switch along only the
primary route. Recall that in the reactive recovery scheme
controller installs the flow rule after receiving an installation
request, which may occur because of regular packet generation
from a host or because of a link failure. On the other hand,
proactive scheme preinstalls all possible primary and backup
routes at each switch without considering their demand.

Algorithm 1 Flow Installation Algorithm
1: Input: sr, dt
2: Output: PrimaryPorti, SecondaryPorti
3: SWp ← |PrimaryRoute(sr, dt)|
4: for i ∈ SWp do
5: lp ← PrimaryRoute(i, dt)
6: lb ← SecondaryRoute(i, dt)
7: FlowTablei ← lp
8: PrimaryPorti ← ExtractPort(lp)
9: SecondaryPorti ← ExtractPort(lb)

10: ConfigureFFG(PrimaryPorti, SecondaryPorti)
11: end for

In Algorithm1, sr, dt, and SWp define a source, a destination,
and the number of switches along the primary route between
sr and dt, respectively. For each of these switches, Revive
installs the primary route in the associated flow tables. It
also configures the FFG group of these switches with the
primary and secondary ports. Thus, initially both the reactive
and Revive starts with a setup of switches having no pre-
installed flow rules in their TCAM. However, Revive installs
flow rules according to Algorithm 1 upon receiving a flow
installation request. If there are t source-destination pairs
having k alternate routes with an average primary route length
of L, then the memory complexity of Revive can be O(ktL);
whereas, the memory complexity of the proactive approach
would be O(ktLV ). Thus, Revive significantly reduces the
TCAM demand without incurring extra communication delay
in the presence of a link failure.

Detecting link failure and redirecting traffic: In Revive,
we use OpenFlow’s FFG to detect a link failure at the data
plane and redirects the traffic to the available alternate route.
The FFG consists of a list of buckets, each with associated
actions and watch port (watch group) to monitor the ”liveli-
ness” of a port (group). At a time a single live port or group is
active. In the case of a failure, we can choose the next available
live port or group. FFG can use BFD protocol to detect the
link status, where a connected pair of switches exchanges
periodical HELLO messages to measure the ”liveliness” of
the associated link. Any missing HELLO message for a certain
period indicates that the associated link is down.

Memory management: The task of this module is to
optimize the TCAM usage at the switches and the route-stretch
without violating the application policy. Suppose Mtcami

represents the TCAM occupancy of a switch i between a
source-destination pair with a route-stretch Lrtj . The memory
management module optimizes the following objective func-
tion.

min α

|L|∑
i=1

Mtcami + βLrtj (1)

Here α and β are the controlling parameters to give appropriate
weight to the memory usage or route-stretch as per the demand
of the application. We use a heuristic to balance between the
memory utilization and the route-stretch, which is outlined
below.

The memory management module first installs the flow rules
along the primary route between a source-destination pair as
per the application policy. It then monitors the memory usage
along that route and switches to the backup route once the
memory usage of a switch along the primary route reaches a
predefined threshold. Furthermore, this module can dynami-
cally update the weight to balance between the reliability, the
efficient resource utilization, and the application demand. The
proposed routing topology guarantees that the route-stretch
of the backup routes is close to the optimal one. Thus, by
switching to the backup routes, the memory utilization is
distributed among the switches without compromising on the
route-stretch and the application demand.

IV. EXPERIMENTAL SETUP

This section describes the emulation environment used for
the evaluation of Revive. We run the emulation on a server

Fig. 2. A ten node topology.



with 2.66GHz CPU, 45GB RAM, and 12 cores. The Mininet
2.3 emulator runs on the Ubuntu 16.04.3 LTS operating
system. Open vSwitch 2.9.2 kernel switch is used to emulate
the switches at the data plane. These switches use OpenFlow
1.3 protocol to communicate with the Ryu 4.24 controller over
links with a bandwidth of 1.5Mbps. We consider a ten node

Fig. 3. A twenty node carrier-grade network topology from Electric Light-
wave.

topology shown in Figure 2 and a twenty node carrier-grade
network topology from the Electric Lightwave [32] shown in
Figure 3 to evaluate the performance of the proposed solution.
We randomly choose ten source-destination pairs to route
traffic among them. They are chosen from the two opposite
edges of the topology to force the traffic to flow through a
long route. We capture the traffic at appropriate ports using
tcpdump.

We measure the link failure recovery time, the TCAM
usage, the throughput, and the hop-stretch (ratio of the number
of hops between a source-destination pair to the optimal
number of hops) to evaluate the performance of Revive, where
the results are the average of ten pairs. The 95% confidence
interval is quite small; thus, omitted from the figures.

The reaction time is calculated based on the timestamp
of the packets while traversing through the ports and the
links. For instance, the difference between the timestamps
at an exit and an entry port can be defined as the recovery
time. The link failure is detected using the BFD protocol
at the switches. We consider multiple link failures with a
different percentage and measure corresponding recovery time
and hop-stretch. In particular, we randomly fail a link between
a given source-destination pair; thus, switch to the backup
route. In the backup route we again randomly fail another link.
We continue this process until we reach the destination. To
measure the throughput, we vary the traffic loads at the sources
and use iPerf [33] utility. Furthermore, we vary the number
of hosts at the switches while measuring the throughput. We
consider both the TCP and UDP traffic. We construct a 2-
edge connected routing topology by first extracting a subgraph,
D1(G) (based on SPT or MST), of the physical topology
G(V,E). We then remove the edges of D1(G) from G, which
may make G composed of multiple connected components.
We build second 1-edge connected subgraph out of these
components, and merge them with D1(G) to form D2(G).

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first present the experimental results to
evaluate and compare Revive with reactive [13] and proactive
[8] approaches in terms of the TCAM usage and the recovery

time from link failures. Next, we present the hop-stretch of
these three schemes with different percentage of link failures.
The performance of SPT and MST based routing topologies
then come regarding their hop-stretch and throughput. Finally,
we present the results on distributing the TCAM usage among
switches to enhance the throughput while offering the reliabil-
ity and meet the application policy. We consider real topology
from a carrier-grade network to evaluate the performance of
Revive in addition to studying an emulated topology.

(a) TCAM usage (b) Recovery time

Fig. 4. The average TCAM usage and the link failure recovery time in Mininet
topology.

Evaluation of memory usage and failure recovery
time: Figure 4 presents the TCAM usage and the average
link failure recovery time of reactive, proactive, and hybrid
(Revive) schemes on SPT-based routing topology. The TCAM
usage of the reactive scheme is the best as it installs on-
demand flow rules only after receiving a packet at a source
or after experiencing a link failure. Revive installs the same
number of flows in the TCAM of the switches along the
primary route; however, it installs primary and backup ports
in the associated group table. In addition, Revive needs a

Fig. 5. The average link failure recovery time in Mininet topology.

couple more flow entries along the primary route to switch
over to the backup route once when TCAM usage exceeds a
threshold. The proactive approach preinstalls all possible flow
rules in all switches; thus, consumes the highest amount of
memory. The number of flow entries increases with increas-
ing number of source-destination pairs for both the reactive
and Revive; whereas, the TCAM uses of proactive approach
remains constant irrespective of the change in the number of



pairs. The link failure recovery time of the proactive scheme
is the best because of the available rules in all switches. Thus,
the switch can use FFG to locally redirect the traffic without
communicating with the controller. The reactive scheme has
the worst recovery time as it needs to contact the controller
for every single failure events. The recovery time of Revive is
similar to that of proactive approach as Revive avoids reaching
the controller at every failure. Figure 5 illustrates the trend of
the average link failure recovery time of the proactive, reactive,
and hybrid schemes with different percentage of link failures.
Unlike the correlated multiple link failures used in [34], we
consider multiple disjoint link failures. In particular, for a
given source-destination pair we recursively fail a link along
the chosen route until a packet reaches the destination. The
reactive approach has the worst recovery time that increases
with the increasing percentage of link failure. This behavior
is expected as switches need to contact the controller for the
backup route setup. The recovery time of the proactive and
Revive is almost constant irrespective of the percentage of
link failure.

(a) Hop-stretch

(b) Throughput

Fig. 6. The average hop-stretch and the throughput in Mininet topology.

Impact of routing topologies: We will next investigate
the performance of Revive on various routing topologies. This
evaluation will be useful for the services or applications to
select the right routing topology while configuring routes. We
consider SPT and MST as the candidate routing topologies;
however, any spanning structures can be used. We have con-
sidered a different percentage of link failures and traffic loads
while measuring the average hop-stretch and the throughput of
Revive on SPT and MST in Mininet topology (Figure 6). The
SPT has the better hop-stretch compared to the MST as the
former one follows the shortest route. MST usually selects

shorter links thus experiences a few extra hops. However,
this might be useful to distribute loads among the switches,
which we observe while measuring their throughput. Their
throughput is quite similar. We then estimate the same hop-

(a) Hop-stretch

(b) Throughput

Fig. 7. The average hop-stretch and the throughput in real topology.

stretch and throughout of these two routing topologies on
real network topology (Figure 7) from a carrier-grade network
provider called Electric Lightwave from the USA. The result
is similar to the one we observed with the emulated topology.

Consolidating memory usage: In applications like data
centers and cloud networks, hosts may dynamically join the
networks. If the application policy demands the shortest routes,
then the TCAM of the switches along the primary route will
soon be overwhelmed by the newly joined hosts. However,
the TCAM of the switches from the backup routes might
be underutilized. The hop-stretch of these backup routes of
SPT and MST does not deviate significantly from the optimal
value of 1.0. In addition, their throughput and link failure
recovery time is quite impressive. Thus, we next focus on
consolidating the TCAM usage of the switches using these
spanning structures while supporting the reliability, enhancing
the throughput and meeting the application policy.

In terms of distributing the memory usage, the controller in
Revive first configures the primary and backup routes as per
the application policy. It then monitors the TCAM usage of the
switches and delegates the routing to the backup routes upon
detecting that the memory usage of a switch along the primary
route exceeds a predefined threshold. Without delegating the
routing to the backup routes, TCAM along the primary route
will be full, and switches will start dropping packets. We
have considered both the SPT and the MST based routing
topologies, where packets initially follow the SPT/MST based
primary route, then switch to the secondary route of the re-



spective topology, i.e., SPT2/MST2 (disjoint secondary route).
It is also possible to combine these two routing topologies;
e.g., SPT based primary and MST based secondary or vice
versa. The evaluation results in Mininet topology is shown in

(a) SPT based

(b) SPT-MST based

Fig. 8. The average throughput in Mininet topology.

Figure 8. It is apparent from the results that better throughput
can be achieved by consolidating the memory usage among the
switches from the primary and the secondary routes instead of
strictly using the former one. In particular, without delegating
the TCAM usage Revive will continue to use the primary
route and start dropping packets when the TCAM gets full.
We consider SPT and SPT-MST based topology to distribute
the TCAM usage. In the former case, both the primary and
the backup routes are SPT based; while in the latter case
the primary route is SPT based and the backup one is MST
based. In both cases, we observe similar performance with the
fact that the throughput can be improved by distributing the
memory usage. Figure 9 illustrates the TCAM usage among

(a) SPT based (b) SPT-MST based

Fig. 9. The average TCAM utilization in Mininet topology.

the switches from the primary and the backup routes of the

chosen SPT and SPT-MST based topology. The top plot in
each sub-figure shows the memory distribution among the
switches between a source-destination pair, where the TCAM
of the switches from the backup routes is not used. These
available memories can be used to better distribute the memory
utilization and to enhance the throughput, which is shown in
the bottom plots of the sub-figures. We use VLAN tagging at
the source to split the traffic among the primary and secondary
routes; whereas, intermediate switches install actual flow rules.
We furthermore measure the throughput, and the TCAM uses
on the real topology and obtains similar results that are shown
in Figure 9. However, we do not include those results due to
the space limitation.

Take away lessons: It is always useful to bring together
the best services from different design approaches to further
improve service. This was the motivation to design Revive
based on the reactive and the proactive link failure recov-
ery schemes. The experimental results in emulated and real
topologies show that Revive can improve both the TCAM
usage and the failure recovery time. Thus, Revive may support
applications that demand strict time requirements like data
centres, cloud or carrier-grade networks. Revive adopted a
k-edge connected routing topology that guarantees k−edge
disjoint routes among every pair of switches and supports a
wide range of spanning structures to meet various application
demand (optimal distance, hops, or energy). These spanning
structures furthermore guarantees a route-stretch factor close
to 1.0, i.e., the disjoint backup route does not deviate much
from the optimal value. These properties help Revive to enjoy
low hop-stretch and high throughput. Revive then consoli-
dated the memory usage among the switches to utilize the
network resources efficiently and further enhanced the network
throughput while meeting the application policy. This is done
by exploiting the k−edge disjoint topology and the global
network monitoring, traffic analysis, and dynamic network
programming ability of the SDN architecture.

VI. CONCLUSIONS

In this paper, we have presented Revive, a hybrid approach
of recovering from link failures at the data plane of SDN. It
has exploited the advantages of the reactive (optimal memory
uses) and proactive (optimal recovery time) recovery schemes
to offer efficient memory utilization and small recovery time.
Furthermore, Revive could choose any spanning structures as
the routing topology to meet the application policy. Finally,
Revive consolidated the TCAM usages among the switches
between a source-destination pair without violating the appli-
cation policy and reliability. Experimental results on emulated
and real topologies revealed that Revive could be the right
choice for applications like data centers or cloud networks
to offer reliable services. In addition, it could provide the
application policy enforcement and the network performance
while efficiently utilize the network resources.

REFERENCES

[1] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking, vol. 17, no. 4, pp. 1270–1283, Aug. 2009.



[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, March 2008.

[3] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Aug.
2013.

[4] M. Darianian, C. Williamson, and I. Haque, “Experimental evaluation of
two openflow controllers,” in T2017 IEEE 25th International Conference
on Network Protocols (ICNP), October 2017.

[5] I. Haque and N. Abu-Ghazaleh, “Wireless software defined networking:
a survey and taxonomy,” IEEE Communications Surveys and Tutorials,
2016, (forthcoming).

[6] V. Kolar, I. T. Haque, V. P. Munishwar, and N. B. Abu-Ghazaleh,
“CTCV: A protocol for coordinated transport of correlated video in smart
camera networks,” in ICNP. IEEE Computer Society, 2016, pp. 1–10.

[7] P. Fonseca and E. Mota, “A survey on fault management in software-
defined networks,” IEEE Communications Surveys and Tutorials, vol. 19,
no. 4, pp. 2284–2321, 2017.

[8] Y. Lin, H. Teng, C. Hsu, C. Liao, and Y. Lai, “Fast failover and
switchover for link failures and congestion in software defined net-
works,” in ICC. IEEE, 2016, pp. 1–6.

[9] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research
challenges for traffic engineering in software defined networks,” IEEE
Network, vol. 30, no. 3, pp. 52–58, June 2016.

[10] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 4, pp. 527–538, Aug. 2014.

[11] H. Liu et al., “Traffic engineering with forward fault correction,” in Pro-
ceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM
’14, 2014, pp. 527–538.

[12] I. Haque, S. Islam, and J. Harms, “On selecting a reliable topology in
wireless sensor networks,” in Proceedings of the 2015 IEEE Interna-
tional Conference on Communications, ser. ICC ’15, 2015.

[13] S. A. Astaneh and S. Shah-Heydari, “Optimization of SDN flow oper-
ations in multi-failure restoration scenarios,” IEEE Trans. Network and
Service Management, vol. 13, no. 3, pp. 421–432, 2016.

[14] “Mininet,” http://mininet.org.
[15] “Ryu Controller,” http://osrg.github.com/ryu/.
[16] “Open vSwitch,” http://openvswitch.org/.
[17] O. S. Specification, “Version 1.3.0,” 2013.
[18] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast

failover via forwarding table compression,” in Proceedings of the
Symposium on SDN Research, 2016, p. 9.

[19] Z. Zhu, Q. Li, M. Xu, Z. Song, and S. Xia, “A customized and
cost-efficient backup scheme in software-defined networks,” in Network
Protocols (ICNP), 2017 IEEE 25th International Conference on. IEEE,
2017, pp. 1–6.

[20] A. Ghannami and C. Shao, “Efficient fast recovery mechanism in
software-defined networks: multipath routing approach,” in Internet
Technology and Secured Transactions (ICITST), 2016 11th International
Conference for, 2016, pp. 432–435.

[21] N. L. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery
in software-defined networks,” in Software Defined Networks (EWSDN),
2014 Third European Workshop on, 2014, pp. 61–66.

[22] “Bidirectional Forwarding Detection (BFD) PRotocol,” https://tools.ietf.
org/html/rfc5880.

[23] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and
N. Feamster, “Coronet: Fault tolerance for software defined networks,”
in Network Protocols (ICNP), 2012 20th IEEE International Conference
on, 2012, pp. 1–2.

[24] H. Liaoruo, S. Qingguo, and S. Wenjuan, “A source routing based
link protection method for link failure in sdn,” in Computer and
Communications (ICCC), 2016 2nd IEEE International Conference on,
2016, pp. 2588–2594.

[25] A. Xie, X. Wang, G. Maier, and S. Lu, “Designing a disaster-
resilient network with software defined networking,” arXiv preprint
arXiv:1602.06686, 2016.

[26] V. Padma and P. Yogesh, “Proactive failure recovery in openflow based
software defined networks,” in Signal Processing, Communication and
Networking (ICSCN), 2015 3rd International Conference on, 2015, pp.
1–6.

[27] V. Muthumanikandan and C. Valliyammai, “Link failure recovery using
shortest path fast rerouting technique in sdn,” Wireless Personal Com-
munications, vol. 97, no. 2, pp. 2475–2495, 2017.

[28] M. Kuźniar, P. Perešı́ni, N. Vasić, M. Canini, and D. Kostić, “Automatic
failure recovery for software-defined networks,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, 2013, pp. 159–160.

[29] H. Chen and T. Benson, “The case for making tight control plane latency
guarantees in sdn switches,” in Proceedings of the Symposium on SDN
Research, ser. SOSR ’17, 2017, pp. 150–156.

[30] R. MacDavid, R. Birkner, O. Rottenstreich, A. Gupta, N. Feamster, and
J. Rexford, “Concise encoding of flow attributes in sdn switches,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17, 2017,
pp. 48–60.

[31] S. Zhang, Q. Zhang, A. Tizghadama, B. Park, H. Bannazadeh,
R. Boutaba, and A. Leon-Garciaa, “Tcam space-efficient routing in a
software defined network,” Computer Networks, vol. 125, pp. 26–40,
2017.

[32] “Electric Lightwave,” http://www.electriclightwave.com.
[33] “iPerf,” https://iperf.fr/iperf-doc.php.
[34] J. Tapolcai, B. Vass, Z. Heszberger, J. Biró, D. Hay, F. A. Kuipers,

and L. Rónyai, “A tractable stochastic model of correlated link failures
caused by disasters,” in Proc. IEEE INFOCOM, Honolulu, USA, Apr.
2018.


