
On Improving Service Chains Survivability
Through Efficient Backup Provisioning

Saifeddine Aidi∗, Mohamed Faten Zhani∗, Yehia Elkhatib∗‡
∗École de Technologie Supérieure (ÉTS Montreal), Montreal, Quebec, Canada
‡MetaLab, School of Computing and Communications, Lancaster University, UK

E-mail: saifeddine.aidi.1@ens.etsmtl.ca, mfzhani@etsmtl.ca, {i.lastname}@lancaster.ac.uk

Abstract—With the growing adoption of Software Defined
Networking (SDN) and Network Function Virtualization
(NFV), large-scale NFV infrastructure deployments are gaining
momentum. Such infrastructures are home to thousands
of network Service Function Chains (SFCs), each composed
of a chain of virtual network functions (VNFs) that are processing
incoming traffic flows. Unfortunately, in such environments,
the failure of a single node may break down several VNFs
and thereby breaking many service chains at the same time.

In this paper, we address this particular problem
and investigate possible solutions to ensure the survivability
of the affected service chains by provisioning backup VNFs
that can take over in case of failure. Specifically, we propose
a survivability management framework to efficiently manage
SFCs and the backup VNFs. We formulate the SFC survivability
problem as an integer linear program that determines
the minimum number of required backups to protect all
the SFCs in the system and identifies their optimal placement
in the infrastructure. We also propose two heuristic algorithms
to cope with the large-scale instances of the problem.
Through extensive simulations of different deployment scenarios,
we show that these algorithms provide near-optimal solutions
with minimal computation time.

I. INTRODUCTION

The emergence of Network Function Virtualization
(NFV) and Software-Defined Networking (SDN) technologies
is currently transforming the way networks are designed
and managed as they provide operators much more flexibility
to dynamically provision and configure network services.
In particular, it is now possible to dynamically create chains
of network services (Service Function Chains - SFCs) that can
process incoming traffic and steer it across a chain of Virtual
Network Functions (VNFs) like routers, IDSs and NATs
that are running on virtual machines.

In the last few years, a large body of work has been
dedicated to address resource provisioning and management
of such SFCs [1]–[6]. Most of existing studies assume
the complete availability of the physical infrastructure which
is not realistic as failures are common in cloud network
infrastructures [7]–[10]. Due to the dependency between
virtual network functions in the chain, a single physical
node failure in the network could easily bring down many
VNFs and hence break several SFCs and make these services
unavailable. Such downtime, even for few seconds, not only
hurts the reputation of service providers but also incurs high
revenue losses depending on the type of the offered service
(e.g., $5,600 per minute according to [11]).

Existing proposals to manage failures and mitigate them can
be broadly categorized into reactive and proactive techniques
[12]. In proactive techniques, backup VNFs are provisioned
whenever an SFC is received and embedded. These backups
remain idle but are activated only when a failure occurs
to take over the service and replace the failed VNFs
[13]–[16]. The second category of existing solutions are
reactive techniques. These techniques do not pre-allocate
backup resources and deal with failures after they occur [15],
[17], [18]. Consequently, they need additional time to allocate
resources and provision new VNF instances to take over the
service. This definitely results in a longer service disruption,
which is very costly for service providers [12]. This makes
proactive techniques more appealing even though they waste
some resources for backup VNFs.

To remediate to this problem and minimize wastage
of resources, several research efforts advocate to use shared
backup VNFs [14] where the same backup resource can be
used to mitigate the failure of a set of VNFs assuming that
they do not fail at the same time (i.e., only a single VNF
from this set can fail at a time). In this context, this paper
investigates possible solutions to ensure the survivability
of service chains against single physical node failures by using
shared backup resources. Unlike previous work addressing
the same problem where backups are shared only between
the VNFs of the same chain [13] [14] , our solution assumes
that backup VNFs are shared among all the chains embedded
in the infrastructure. This significantly reduces the amount
of resources used for the backup VNFs while still ensuring
all SFCs are protected against single failures.

Our main goal is to ensure the survivability of all embedded
SFCs against any single-node failure in the physical
infrastructure. We reach this objective by proactively
provisioning the minimal number backup VNFs to minimize
resource wastage and by carefully placing them
in the infrastructure. We also take into consideration
the synchronization cost in terms of bandwidth and delay
needed to keep the backup nodes up-to-date.

We can summarize the main contributions of this paper
as follows:

• We propose a resource management framework
with a survivability module. This module allows
to provision and manage backup VNFs and it could be

978-3-903176-14-0 c© 2018 Crown

Figure 1: An example of various embedded SFCs sharing backups.

easily integrated into existing SFC resource
management frameworks.

• We formulate the backup provisioning and placement
problem as an Integer Linear Program (ILP) that finds
the optimal number of shared backups for each type
of VNF and optimally places them in the physical
infrastructure.

• We devise two heuristic algorithms, called BS-Push
and BS-Pull, respectively, that aim at solving the problem
for large-scale scenarios within a reasonable timescale.

• We evaluate the performance of the proposed
heuristics and compare it to the optimal solution
found with the proposed ILP solved by the CPLEX
optimizer.

The remainder of this paper is organized as follows.
Section II provides a detailed description of service chain
survivability problem. We discuss relevant related work
in Section III. In Section IV and V, we mathematically
formulate the addressed problem and then describe
the proposed heuristic solutions. We present the experimental
results in Section VI and follow up with some conclusions
and future work in Section VII.

II. PROBLEM DESCRIPTION

A Service Function Chain is made out from a set of different
types of virtual network functions connected in a specific order
to form a chain that steers the traffic from and to predefined
source and destination [3]. A Virtual Network Function (VNF)
is simply a virtual resource (i.e., virtual machine or container)
that is running a specific network function (e.g., router, load
balancer, NAT, IDS). To build the chain, the VNFs are
connected through a set of virtual links having a sufficient
amount of bandwidth to handle the traffic. Typically, service
function chains are embedded into a physical infrastructure
(referred to as NFV Infrastructure - NFVI [9]).

Figure 1 shows an example of two service chains mapped
onto a wide area NFV infrastructure. The figure shows
for each chain how the VNFs are embedded from the source

to the destination. For instance, chain 2 has traffic coming from
physical node 2 towards physical node 13 and it is composed
of three VNFs of type 1, 2 and 3 that are embedded
in physical nodes 3, 6 and 10, respectively. Chain 1 has only
two VNFs of type 1 and 3 that are embedded in physical
nodes 4 and 11, respectively.

Once SFCs are embedded into the NFVI, the operator
faces the challenging task of ensuring the high survivability
of these SFCs. In other words, they need to survive potential
network failures in order to minimize service interruptions.
However, as mentioned earlier, physical nodes are prone
to failures and a single node failure may result in bringing
down several VNFs and hence breaking multiple service
chains. In this paper, we propose to ensure the survivability
of the SFCs affected by a single failure by leveraging
shared backups that could be used when the failure occurs.
We also assume that a backup VNF should be of the same
type of the set of VNFs it is backing up. In other words,
a VNF of type i can only back up VNFs of type i.
This assumption is reasonable as in practice the backup
is a virtual machine that should implement a specific software
and hence a backup VNF has to contain exactly the same
software stack as the original VNF.

As an example of how shared backups could be placed,
we can see in Figure 1 that physical node 9 hosts a backup
of VNF type 3 (i.e., NF3) that is shared between the VNF
type 3 of chain 1 and that of chain 2. If physical node 11 fails,
and hence NF3 of chain 1 becomes out of service, the backup
NF3 hosted in 9 takes over and replaces the failed function.
Similarly, it can take over the service of NF3 belonging
to chain 2 (hosted in node 10) if it fails. The figure also shows
other examples of shared VNF backups (e.g., NF1 and NF2
hosted in node 8). It is easy to check that the two service chains
shown in this example are perfectly survivable to any single
node failure.

Furthermore, backup VNFs are continuously synchronized
with the active VNFs to be ready to take over the service
in case of failure (see green arrows in Figure 1). For instance,

the backup NF3 hosted in 9 has the state of NF3 hosted
in physical node 11 and that of NF3 hosted in 10. Whenever
a failure happens, the last state of the failed function will be
used when the backup is activated. State synchronization
can be done at a different level. For example, at the level
of the virtual machine running the function (e.g., memory
synchronization [19]) or using customized synchronization
scripts depending on the type of the network function
(e.g., synchronizing rules in firewalls).

To make sure that state synchronization is efficient,
the latency between a VNF and its backup should not exceed
a certain bound. Furthermore, synchronization of the VNF
state may consume bandwidth that should be minimized.
In our work, we ensure to minimize the synchronization delay
and consumed bandwidth by limiting the number of hops
between each VNF and its backup (for example, the number
of hops is limited to 2 in Figure 1).

The main challenge that we are addressing in this paper
is how to find the minimal number of backup nodes
and to determine their optimal placement in the physical
infrastructure for each type of VNF taking into account
the synchronization delay and the cost in terms of bandwidth
consumption.

III. RELATED WORK

In this section, we provide an overview of representative
work on the survivability problem. We note that most existing
work focuses on virtual networks survivability and not SFCs.
However, they are still valid for our case as a service function
chain can be seen as a particular case of a virtual network with
a specific topology. In the following, we summarize existing
techniques to ensure the survivability of SFCs and virtual
networks as either reactive or proactive [12].

Reactive techniques do not pre-allocate resources for backup
but simply deal with a failure when it occurs. This leads
to a long convergence time after the failure, resulting
in a higher service downtime. On the other hand, proactive
solutions anticipate failures and pre-allocate backup resources
to ensure fast recovery of the service in case of failures.

Yu et al. [13] considered the case of a single-node
failure and introduced two approaches to provision backup
nodes. The first approach, called 1-redundant, redesigns the
virtual network request into a survivable request by adding
a single backup node. The second approach is called
k-redundant where k is a constant that represents the number
of backup nodes to be provisioned. The problem with
these approaches is that a single redundant node may
not be enough whereas k redundant nodes might be too
much, and hence could lead to a wastage of resources.
To address this limitation, the solutions presented in this
current work aim at finding the optimal number of backup
nodes when the proposed ILP is used or at least minimize
it when the proposed heuristics are used.

In the same direction, Ayoubi et al. [14] explored the
space between 1 and k to find the optimal number of
backup nodes to be incorporated into the requested virtual

network. However, in this solution, the backup virtual nodes
are provisioned for each request and hence they are not shared
with other virtual networks. Our work is different in that it
provisions backups that are shared among all virtual nodes
belonging to all virtual infrastructures (i.e., SFCs) embedded
in the physical infrastructure. As a result, our solutions further
reduce the total number of backups provisioned in the system.

Xiao et al. [17] proposed a topology-aware solution that
ensures a rational resource allocation for the virtual network
and a fail-over remapping based on a set of pre-computed
detour-paths. Rahman et al. [15] also proposed a hybrid
approach that benefits from a set of a possible backup detours
for each link. These detours are proactively precomputed
before the arrival of virtual network requests to allow fast
re-routing in case of link failure.

Finally, Bo et al. [18] proposed a greedy algorithm
that, in case of a link failure, searches for alternative
resources to re-allocate the end-to-end path or re-embed
the entire virtual network if resources are not sufficient.
This may result in long convergence time and higher
service downtime. In [21], Ayoubi et al. have demonstrated
the NP-hard nature of the survivability-aware embedding
and proposed a polynomial time heuristic algorithm to restore
failed services while maintaining the QoS requirements
in terms of delays in case of single-node failures. Multiple
failures were addressed in [22] where a heuristic was
introduced in order to find a backup node. The algorithm
is based on filtering techniques to parse the solution space
and to speed up the search process for backups.

We summarize in Table I the aforementioned solutions.
The table presents the type of solution (i.e., reactive
vs. proactive) and it indicates whether it is addressing
a single or multiple failures, node or link failures and whether
the backup are shared between the virtual nodes of all virtual
networks or among the virtual nodes of a single virtual
network. As shown in the Table, the novelty of our work lies
in the idea of sharing backups between VNFs of the same type
that belong to different or virtual networks (or service chains)
rather than the same virtual network (or service chain),
which further reduces the amount of backup resources
while still ensuring the survivability of the virtual networks
to any single failure.

IV. SURVIVABILITY MANAGEMENT FRAMEWORK

In this section, we propose a management framework
that incorporates a survivability module. Figure 2 shows
the main components of this framework. It is made out from
the following modules:

• Service Chain Provisioning Module: This module
allocates the resources for the service chains and instantiates
the required virtual machines running the network functions.
It also makes use of the SDN controller to provision
the required amount of bandwidth and to set the required
forwarding rules into the switches to steer the traffic
across the VNFs composing each service chain.

Table I: Existing solutions vs. the proposed ones

Solutions
Type of solution Single/Multiple

failures
Node/Link

failures Support of Shared backups

Proactive Reactive Single Multiple Node Link Supported Shared among
all VNs

Shared among
a single VN

Yu et al. [13] x x x x x
Ayoubi et al. [14] x x x x x

Guo et al. [20] x x x - -
Xiao et al. [17] x x x - -

Rahman et al. [15] x x x - -
Bo et al. [18] x x x - -

Ayoubi et al. [21] x x x - -
Ghaleb et al. [22] x x x x - -
BS-Pull/BS-Push x x x x x

Figure 2: Architecture of the Proposed Resource Management
Framework with the Survivability Module.

It is worth noting that the design of this module is out
of the scope of this work. There is a large body of work
addressing this module and any of the existing solutions
could be used (e.g., [2], [4], [6]).

• Monitoring Module: This module is in charge
of continuously monitoring the infrastructure physical nodes
and links and of feeding other modules at real time with
the state of the resources. When a failure is detected, the
monitoring module reports to the survivability module,
which, in turn, reacts to mitigate the failure and ensure
service continuity.

• Rerouting Module: In case of failure, the rerouting
module redirects the traffic, that is originally destined
to the failed VNFs, to the backup VNFs.

• Backup Provisioning Module: This module is
responsible for finding the minimal number of backups needed
to ensure the survivability of the embedded chains and to
determine their locations. This module also instantiates the
backup VNFs and the synchronization links required to keep
them up-to-date. In the following section, we describe in

details the proposed solutions to provision backup VNFs while
achieving the sought-after objectives.

V. BACKUP PROVISIONING SOLUTIONS

A. Integer Linear Program

In this section, we formulate the service chain survivability
problem as an ILP aiming at minimizing the amount
of resources allocated for the backup instances while ensuring
a minimal synchronization cost and delay.

• Infrastructure and chain modeling: We model the
physical infrastructure as a graph denoted by G = (N,L)
where N is the set of physical nodes and L is the set
of physical links connecting them. Each physical node n ∈ N
has a computing capacity cn. The capacity cn is expressed as
the maximal number of VNFs that can be hosted by physical
node n ∈ N . For sake of simplicity, we assume that each
VNF is running on a single virtual machine with a standard
size. We hence can see cn as the maximal number of virtual
machines that could be provisioned in the physical node n.
We also define din as the minimum number of hops separating
the physical nodes i and n.

We model the service chain as a graph denoted
by S = (V,E) where V is the set of its composing VNFs
and E is the set of virtual links connecting them. We assume
there are different types of VNFs (e.g., Firewall, IDS, NAT).
We denote by J the set of VNF types and we define mij

as the number of VNFs of type j ∈ J embedded in physical
node i.

• Decision Variables: We define two decision variables.
We denote by xij the number of backup VNFs of type j
embedded in physical node i. We also define yijn ∈ {0,1}
to indicate whether the backups provisioned for the VNFs
of type j embedded in the physical node i are hosted
in the physical node n.

• Problem constraints: In order to find a feasible
solution, several constraints must be satisfied. For instance,
to ensure that the primary and backup VNFs are not

embedded in the same physical node, the following constraint
must be satisfied:

yiji = 0 ∀i ∈ N, ∀j ∈ J (1)

We also need to ensure that all VNFs of type j embedded
in the physical node i necessarily have backups in another
physical node: ∑

n∈N
yijn = 1 ∀i ∈ N, ∀j ∈ J (2)

Furthermore, if the backups for the type j VNFs embedded
in the physical node i are hosted in physical node n then
the total number VNF backups of type j provisioned in n
should be higher or equal than the number of VNFs of type
j embedded in node i. In other words, we have:

if yijn = 1 then xnj ≥ mij ∀i, n ∈ N, ∀j ∈ J (3)

This if statement can be translated as the following constraint:

mij ≤ xnj + M(1− yijn) ∀i, n ∈ N, ∀j ∈ J (4)

where M is a constant with a large value (in the vicinity
of 10, 000).

Furthermore, to ensure that the physical node hosting
the backups have sufficient resources, the following capacity
constraint must be satisfied for every physical node n:∑

j∈J
mnj +

∑
j∈J

xnj ≤ cn ∀n ∈ N (5)

where the first term represents the number of VNFs hosted
in the physical node n and the second term represents
the number of VNF backups hosted in the same physical node.

Finally, as we have to minimize the synchronization cost
and delay between the VNFs and their backups, we limit
the number of hops between each VNF and its backup
to a limited number of hops denoted by dmax. Thus, we have:

if yijn = 1 then din ≤ dmax ∀i, n ∈ N, ∀j ∈ J (6)

The previous statement can be also written as the following
constraint:

din ≤ dmax + M(1− yijn) ∀i, n ∈ N, ∀j ∈ J (7)

where M is a constant with a large value.
It is also worth noting that, for sake of simplicity,

we assume that the number of hops between two physical
nodes reflects the time delay between them. However, this may
not be always true. In this case, our model can be easily
updated to consider the propagation delay between the nodes
by defining din as the delay of the shortest path between
nodes i and n, and dmax as the maximum delay required
between a VNF and its backup.

• Objective function: Our ultimate goal is to minimize
the amount of resources used by the backup VNFs
while satisfying all the aforementioned constraints.
This can be achieved by minimizing the total number

of backups in all the physical nodes of the physical
infrastructure. The objective function can be then written as:

min
∑
i∈N

∑
j∈J

xij (8)

B. Heuristic Algorithms

In this section, we will present two heuristic solutions
designed to solve the survivability problem. We call the first
algorithm Backup Sharing “Pull” (BS-Pull) as we are looking
at each physical node to find the maximum number
of VNFs that it can backup (we refer to this as pulling).
The second algorithm is called Backup Sharing “Push”
(BS-Push) as the algorithm tries to push the coverage
of the physical node in order to let it host backups of VNFs
that are as spread as possible in several physical nodes.

Both algorithms are carried out in two phases. The first
phase aims at finding the candidate physical nodes that satisfy
the constraints of number of hops and the capacity for each
type of VNFs. The second phase aims at selecting among

Algorithm 1 BS-Pull

1: Inputs
2: N : set of physical nodes
3: un: total number of VNFs hosted in physical node n
4: mij : number of type j VNFs hosted in physical node i
5: for j ∈ J do . Parsing VNF types
6: BNodes(j)← Ø . set of physical nodes whose

type j VNFs have already backups
7: repeat
8: . Parsing all potential hosting nodes
9: for n ∈ N do

10: SNeigh(n)← Ø . set of source neighbors
for physical node n

11: bn← 0 . number of type j VNFs able to
use shared VNF backups hosted
in node n

12: . Finding source neighbors of n
13: for i ∈ N\(BNodes(j) ∪ {n}) do
14: if dni ≤ dmax & mij + un ≤ cn then
15: SNeigh(n)← SNeigh(n) ∪ {i}
16: bn ← bn + mij

17: end if
18: end for
19: end for
20: . Finding the node nhost that maximizes the

number of type j VNFs that are backed up
21: nhost = arg maxn bn
22: . Compute the number of shared backups s
23: s = maxi∈SNeigh(nhost)(mij)
24: . Allocate backups and update unhost

25: Allocate (s backups, VNF type j, host nhost)
26: BNodes(j)← BNodes(j) ∪ SNeigh(nhost)
27: until SNeigh(n) = Ø ∀n ∈ N
28: end for

the candidate nodes the ones that should host the backups.
The difference between the two algorithms lies in the way
the candidates hosting nodes are selected. In the following,
we provide the details of the two proposed algorithms.

• Algorithm BS-Pull: Algorithm 1 describes the BS-Pull
algorithm. It aims to allocate VNF backups for each VNF
type one by one. Assuming we consider VNF type j ∈ J first,
all nodes in the physical infrastructure are assumed to be able
to host backups for type j VNFs. Our goal in the following
steps is to select which node or nodes could really host
these backups and how many backups per node.

We first define the source neighbors of a physical node n
(i.e., SNeigh(n)) as the set of physical nodes that could be
reached from n within at most dmax hops and such as node n
has enough resources to host the backup VNFs required
to back up type j VNFs hosted in any of these source
neighbors. In other words, if the backup VNFs are provisioned
in node n, they can be shared among all the source
neighbors of n.

For each physical node n ∈ N , we compute the set
of source neighbors SNeigh(n) and we also compute bn,
which is the number of VNFs of type j that could share
the VNF backups that could be provisioned in physical
node n (Lines 9-19). The higher bn is, the higher
is the number of VNFs sharing the backups. As a result,
to maximize backup sharing, we select the node nhost ∈ N
that has the highest value of bn to be the hosting node
of the VNF backups. We then allocate the backup VNFs
in the node nhost (function Allocate in Line 25). We repeat
this operation until no source neighbors could be identified
for all the physical nodes. Having no source neighbors for all
physical nodes means that either there is no enough resources
to host the backup VNFs (while satisfying the constraint
on the number of hops) or there is no VNFs of type j
that are left without backups. Finally, the whole process
is repeated for all VNF types.

• Algorithm BS-Push: in this algorithm, we are adopting
an approach different from the first one. For a particular
physical node, our goal is maximize the number of its source
neighbors that are using it (i.e., the physical node) to host
their VNF backups (unlike BS-Pull that maximizes the number
of VNFs that are backed up by the physical node
but not the number of source neighbors using it).

As shown in Algorithm 2, similar to BS-Pull, BS-Push
computes the set of source neighbors for all the physical nodes
(Line 8). However, the algorithm selects the node nhost that
has the highest number of source neighbors in order to host
the VNF backups of all these neighbors (Line 10). The backup
resources are then allocated and associated to all neighbors
of the selected node (Line 14). The operation is then repeated
until there are no more source neighbors for all physical
nodes. Finally, the whole process is applied again for each
of the VNF types.

Algorithm 2 BS-Push

1: Inputs
2: N : set of physical nodes
3: un: total number of VNFs hosted in physical node n
4: mij : number of type j VNFs hosted in physical node i
5: for j ∈ J do . Parsing VNF types
6: BNodes(j)← Ø . set of physical nodes whose

type j VNFs have already backups
7: repeat
8: Compute SNeigh(n) ∀n ∈ N
9: . Finding the node nhost that is connected to

to the maximum number of neighbors
10: nhost = arg maxn |SNeigh(n)|
11: . Compute the number of shared backups s
12: s = maxi∈SNeigh(nhost)(mij)
13: . Allocate backups and update unhost

14: Allocate (s backups, VNF type j, host nhost)
15: BNodes(j)← BNodes(j) ∪ SNeigh(nhost)
16: until SNeigh(n) = Ø ∀n ∈ N
17: end for

VI. SIMULATION AND RESULTS

In this section, we compare the performance of the proposed
algorithms with the optimal solution provided by CPLEX
in terms of total number of backups and the execution
time. To do so, we implemented the algorithms in C
and simulated the physical infrastructure and the service chain
embedding. We have considered a network with 24 physical
nodes with different computing capacities randomly generated
from 20 to 50 virtual machines. For simplicity, we assume
that all virtual machines have the same resource capacities
and that a single VNF is hoted by a single virtual machine.
Furthermore, the physical nodes are connected through 55
physical links that were randomly generated. We assume
the embedding of service chains (i.e., VNFs and virtual links)
is already carried out by an existing VNF placement algorithm.
In our experiments, we used the resource allocation algorithm
for service chains that was proposed by Racheg et al. [4].

Figure 3: Studied scenarios with different infrastructure
utilization.

We considered 8 different embedding scenarios where
the utilization of the infrastructure has been gradually
increased as shown in Figure 3. We can see in the figure

that we have low-utilization scenarios (i.e., s1 to s4) where
utilization is less than 50% and also high-utilization scenarios
(e.g., s5 to s8) where utilization is higher than 50%.

The objective of the experiments is to compare the number
of backups and the number of VNFs left without backup
provided by our algorithms with the one provided by CPLEX.

Figure 4: Total number of provisioned backups.

Figure 5: Number of VNFs without backup provisions.

A. Number of backups
Figure 4 compares the total number of backups found

with the proposed heuristic algorithms with the optimal
solution produced by CPLEX for each scenario.
We can see that for low-utilization scenarios (i.e., S1–S4),
the two heuristics provide a slightly higher number
of backups compared to the optimal solution provided
by CPLEX in low utilization scenarios, indicating that their
solutions are not far from the optimal ones. In addition,
we notice that BS-Pull generally provides lower numbers
of backups compared to PS-Push.

For high-utilization scenarios (S5–S8), it becomes
harder to find even a feasible solution, i.e., a solution
that ensures that all VNFs in the infrastructures have
backups. We can see that, for S5 and S6, only CPLEX
could find a solution (which is optimal) whereas the two
heuristics do not ensure that there are backups for all VNFs
as depicted in Figure 5, which shows that many VNFs are left
without backups using the heuristics when utilization is high.

Figure 4 also shows that for scenarios S7 and S8
that have high utilization (above 70%), CPLEX does not
find an optimal solution that allow to provide backups
for all VNFs. This is because there is no enough free resources
in the infrastructure to provision all the required backups.
The heuristics in this case still provide a solution even though
several VNFs are left without backups as shown in Figure 5.

B. Execution Time
Figure 6 depicts the execution time of the two proposed

algorithms compared to that of CPLEX for each

of the 8 studied scenarios. The execution time for CPLEX
goes from 2s to 7min (S6) as the infrastructure utilization
increases. This is because the number of variables in the
ILP increase (e.g., the number of nodes and that of VNFs)
and makes the problem harder to solve because of the
large research space. It is also clear from the figure that
the two algorithms’ execution times does not significantly
change as the utilization of the infrastructure increases. We
note, again, that beyond the sixth scenario (i.e., for S7–8),
no optimal solution could be found due to the unavailability
of free resources in the infrastructure.

Figure 6: Execution time of the different algorithms.

C. Synchronization Cost

Figure 7 shows the average number of hops between
an embedded VNF and its backup for the different solutions
and across the studied scenarios. The number of hops
provides some insight about the potential synchronization
cost in terms of delay and bandwidth. The results show
that for the two algorithms as well as CPLEX, the number
of hops is below the maximal number of hops dmax

specified as input to all solutions (i.e., dmax is equal
to 2 in our experiments).

Figure 7: Synchronization distance of the different algorithms.

VII. CONCLUSION

In this paper, we addressed one of the uprising challenges
faced by the infrastructure providers: the survivability
of the service chains against node failures. We hence proposed
a novel solution that provision the minimal number of shared
backup VNFs that minimizes the amount of resources
allocated for the backup.

We hence formulated the problem as an ILP
and then proposed two heuristic algorithms to solve
the problem for large-scale scenarios. Through extensive
simulations, we demonstrated that our algorithms provide
solutions that are close to the optimal one provided by CPLEX
while they reduce the execution time considerably.

As a future work, we aim to further optimize
both algorithms in order to reduce their complexity.
We also plan to extend this work to take into consideration
multiple node failures.

REFERENCES

[1] M. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 2, pp.
909–928, 2013.

[2] J. G. Herrera and J. F. Botero, “Resource allocation in NFV:
A comprehensive survey,” IEEE Transactions on Network and Service
Management (TNSM), vol. 13, no. 3, pp. 518–532, 2016.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art
and research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[4] W. Racheg, N. Ghrada, and M. F. Zhani, “Profit-driven resource
provisioning in NFV-based environments,” in IEEE International
Conference on Communications (ICC), 2017, pp. 1–7.

[5] L. Qu, C. Assi, and K. Shaban, “Network function virtualization
scheduling with transmission delay optimization,” in IEEE/IFIP Network
Operations and Management Symposium (NOMS), 2016, pp. 638–644.

[6] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Piecing together the nfv provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2015.

[7] J. Lee, H. Ko, D. Suh, S. Jang, and S. Pack, “Overload and failure
management in service function chaining,” in IEEE Conference on
Network Softwarization (NetSoft), 2017, pp. 1–5.

[8] “Fail-slow at scale: When the cloud stops working,”
https://www.zdnet.com/article/how-clouds-fail-slow/, accessed:
2018-07-10.

[9] “ETSI GS NFV-REL 001 V1.1.1 (2015-01), Network Functions
Virtualisation (NFV) Resiliency Requirements,” https://goo.gl/PbQySQ,
accessed: 2018-07-10.

[10] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable
virtual data center embedding in clouds,” IEEE International Conference
on Computer Communications (INFOCOM), April 27 - Mai 2 2014.

[11] “Downtime, outages and failures - understanding their true costs,”
https://www.evolven.com/blog/downtime-outages-and-failures-
understanding-their-true-costs.html , accessed: 2018-07-13.

[12] M. F. Zhani and R. Boutaba, Survivability and Fault Tolerance in
the Cloud. John Wiley & Sons, Inc, 2015, pp. 295–308. [Online].
Available: http://dx.doi.org/10.1002/9781119042655.ch12

[13] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost efficient design of
survivable virtual infrastructure to recover from facility node failures,”
in IEEE International Conference on Communications (ICC), 2011, pp.
1–6.

[14] S. Ayoubi, Y. Chen, and C. Assi, “Towards promoting backup-sharing
in survivable virtual network design,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 3218–3231, 2016.

[15] M. R. Rahman and R. Boutaba, “SVNE: Survivable virtual network
embedding algorithms for network virtualization,” IEEE Transactions on
Network and Service Management, vol. 10, no. 2, pp. 105–118, 2013.

[16] M. G. Rabbani, M. F. Zhani, and R. Boutaba, “On achieving
high survivability in virtualized data centers,” IEICE Transactions on
Communications, vol. E97-B, no. 1, January 2014.

[17] A. Xiao, Y. Wang, L. Meng, X. Qiu, and W. Li, “Topology-aware virtual
network embedding to survive multiple node failures,” in IEEE Global
Communications Conference (GLOBECOM), 2014, pp. 1823–1828.

[18] L. Bo, T. Huang, X.-c. SUN, J.-y. CHEN, and Y.-j. LIU, “Dynamic
recovery for survivable virtual network embedding,” The Journal of
China Universities of Posts and Telecommunications, vol. 21, no. 3,
pp. 77–84, 2014.

[19] R. Boutaba, Q. Zhang, and M. F. Zhani, “Virtual machine migration:
Benefits, challenges and approaches,” in Communication Infrastructures
for Cloud Computing: Design and Applications, H. T. Mouftah and
B. Kantarci, Eds. USA: IGI-Global, 2013, pp. 383–408.

[20] B. Guo, C. Qiao, J. Wang, H. Yu, Y. Zuo, J. Li, Z. Chen, and Y. He,
“Survivable virtual network design and embedding to survive a facility
node failure,” IEEE Journal of Lightwave Technology, vol. 32, no. 3,
pp. 483–493, 2014.

[21] S. Ayoubi, C. Assi, L. Narayanan, and K. Shaban, “Optimal
polynomial time algorithm for restoring multicast cloud services,” IEEE
Communications Letters, vol. 20, no. 8, pp. 1543–1546, 2016.

[22] A. M. Ghaleb, T. Khalifa, S. Ayoubi, K. B. Shaban, and C. Assi,
“Surviving multiple failures in multicast virtual networks with virtual
machines migration,” IEEE Transactions on Network and Service
Management, vol. 13, no. 4, pp. 899–912, 2016.

