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Abstract— Preferred Path Routing (PPR) is an innovative 
architecture to signal explicit paths and per-hop processing 
including QoS from computation engines to network nodes 
leveraging distribution mechanisms of existing network routing 
protocols. PPR supports a wide range of existing forwarding 
planes including IP and Segment Routing. Through these 
mechanisms, PPR supports more lightweight, scalable and widely 
applicable support for high precision network services than prior 
signaling mechanisms including the ReSource ReserVation 
Protocol with Traffic Engineering (RSVP-TE). 

This paper describes the next fundamental step for the PPR 
architecture, with the signaling of PPR Graphs instead of only 
point to point PPR Paths. This extension provides better 
scalability and efficiency both for signaling, but even more so for 
the resulting forwarding and QoS processing entries created in 
network nodes. For any-to-any connectivity of N nodes, PPR 
Graphs can achieve the same O(N) scalability of forwarding 
entries as distributed routing protocols (IGPs), compared to O(N2) 
in RSVP-TE or PPR point to point Paths. PPR Graphs therefore 
enable future networks to support high precision services much 
more broadly – independent of the chosen forwarding plane.  

Keywords—graphs, paths, scalability, routing protocols, 
preferred path routing, next generation networking architecture. 

I. INTRODUCTION 
[1] introduces Preferred Path Routing (PPR) paths, a novel 

signaling architecture for optimized traffic paths in networks 
with a centralized Path Computation Engine (PCE) [5]. PPR 
Paths intends to overcome limitations of current solutions:  

Segment Routing (SR) [2] does not have the explicit notion 
of paths on every node along the path, therefore it does not 
support high-touch per-path hop-by-hop functions such as 
monitoring,  accounting, QoS (Policing, Shaping, Buffering) or 
other processing. This is the direct result of SR’s goal to be 
lightweight by using only in-packet processing instructions, and 
primarily source-routing via Segment-Identifiers (SID). 

RSVP-TE [7] does establish per-path, per-hop state, but it 
does so with a high-overhead and therefore slow hop-by-hop 
per-flow state processing signaling mechanism that is very 
feature rich, and results in slower than PPR processing, more 
overhead and lower scalability. 

 RSVP-TE has also has not been defined to support the 
variety of forwarding planes used in today’s L3 networks but 
only MPLS. 

PPR Paths close these gaps. Through the use of reliable in-
network distribution of PPR Paths, first via commonly used 
routing protocols, it provides a lightweight signaling 
architecture of hop-by-hop path processing state for a variety of 
forwarding planes including Segment Routing. 

One key limitation of PPR Paths as introduced in [1] is its 
exclusive reliance on point-to-point paths and the resulting scale 
limitation: A network with N nodes and full-mesh of PPR Path 
connectivity between them requires O(N^2) forwarding states. 

Due to the PPR signaling scheme, it can easily support more 
advanced graph types than point-to-point and achieve more 
scalable forwarding and processing options. Defining these 
graph types, their encoding and resulting forwarding plane 
scalability as well as use-case benefits is the contribution to the 
PPR architecture described in this paper.   

II. PPR OVERVIEW, BACKGROUNG AND  ARCHITECTURE 
This section summarizes the key PPR architecture 

components laid out in [1]. PPR is intended to support any 
forwarding plane. So far, it is defined to support the currently 
most widely deployed forwarding planes of L3 networks: IPv4, 
IPv6, Segment Routing with MPLS (SR-MPLS) [3] and 
Segment Routing with IPv6 (SRv6) [4].  

As shown in Figure 1, a PCE learns the complete network 
topology and traffic engineering parameters of links for example 
via the BGP-LS protocol [11]. From the topology and path 
requirements (from operator and/or application control), the 
PCE calculates optimized paths across the network topology, 
typically from an ingress Provider Edge node (PE) to an egress 
PE across zero or more Provider (Core) nodes (P).  

The PCE encodes this path into a PPR Path object and adds 
path properties such as QoS parameters (e.g., guaranteed 
bandwidth, peak bandwidth and latency/jitter). It then sends the 
object to a (any) node in the network, from where it is distributed 
to all nodes. Distribution can be via existing Interior Gateway 
Protocols (IGP) such as Open Shortest Path First (OSPF) or 
Intermediate System to Intermediate System (IS-IS) or in future 
potentially faster mechanisms. The network nodes in the IGP 



area/domain (both PE and P) examine each object and establish 
the necessary processing state as described in the PPR Path. At 
minimum this is a forwarding entry with a next-hop determined 
from the PPR Path and appropriate QoS for scheduling and/or 
shaping (buffering). 

 
Fig. 1. PPR architecture and new PPR Graphs (decentralized PCE see VI.B) 

A PPR Path consists of a sequence of Path Description 
Elements (PDE), each one identifying a node along the path, 
starting with the sender PDE and finishing with the destination 
PDE. Each PDE contains an identifier of the node. These are 
called PDE-IDs and their format depends on the desired 
forwarding plane: IP4 or IPv6 address of the node for IPv4/IPv6 
forwarding, or a Node-Segment Identifier (Node-SID)/Global-
adjacency-SID for SR. 

The PPR Path has a PPR Identifier (PPR-ID), which 
indicates the forwarding entry for the PPR Path on every hop. It 
needs to be unique per PPR Path and depends also on the 
forwarding plane chosen: IPv4/IPv6 address or SID assigned to 
the destination.  From the received PPR Path object, the nodes 
along the path determine that they need to build forwarding state 
for a particular PPR Path because they recognize their PDE-ID, 
and then establish an IPv4/IPv6/SID forwarding entry to the next 
PDE along the path for the PPR-ID. 

The core innovative concept of PPR Paths is the architectural 
approach to let control components create complete path objects 
that are distributed by the network. This may sound 
counterintuitive because most nodes receiving a PPR Path object 
do not need to create any forwarding state for a PPR Path, 
because they are not PDEs on the path.  Practical network design 
though shows that the parsing of data structures in control plane 
CPUs of network nodes is orders of magnitude faster than the 
actual propagation of the information and the establishment of 
forwarding plane entries. 

PPR simply leverages and extends the playbook of Link-
State Routing IGPs (OSPF/IS-IS). In prior signaling approaches, 
such as ReSource Reservation Protocol (RSVP [6]), and its 
Traffic Engineering variant (RSVP-TE [7]), the signaling 
method is hop-by-hop with high per-hop propagation delay 

because each hop needs to operate a per-flow state-machinery 
before propagating the message. In PPR, the distribution can 
support a larger number of paths and low propagation delay. In 
effect, all PDE (hops) on a path can (in optimized 
implementations) almost simultaneously establish the PPR Path 
state in accelerated forwarding planes. 

This basic PPR architecture is not changed by this work. Instead, 
this paper extends the architecture by the introduction of more 
flexible type of graphs than point-to-point paths, as suggested 
also by Figure 1.  

III. FROM PPR PAHS TO PPR GRAPHS 
PPR Graphs are designed to scale with O(k*N) or even O(k) 

PPR-IDs and forwarding entries. Along with PPR Graphs, this 
paper also provide solutions for other issues, including: 

(1) Fragmentation of PPR object encodings (TLVs) to support 
message limitations in distribution mechanisms, especially in 
the IS-IS protocol. See IV.A. 

(2) A mechanism for grouping of PPR Graphs (policy-groups) 
to more easily orchestrate PPR Graphs to the traffic on PE nodes 
that should use them. Ssee IV.C. 

(3) More intelligent utilization of the PPR Graph object 
information than simple nexthop forwarding extraction, as 
shown via the PPR Graph QoS functions in IV.E. 

More than just the sum of these features, PPR Graphs permit 
a completely new paradigm for the mapping of responsibilities 
between the distributed nodes of the network and (more 
intelligent  but complex) centralized PCE components: 
Complex/NP-hard path calculations can be removed from the 
distributed nodes, while still maintaining the benefits of reliable, 
scalable distribution of information from the IGPs as well as 
equally scalable, but more flexible forwarding plane entries as 
possible with IGPs. 

IV. PPR GRAPHS 

A. Encoding of PPR Graphs 
As Figure 2 shows, a pre-existing point-to-point PPR Path 

encodes for a particular PPR-ID a PDE list where the first node 
is implicitly the sender for all traffic using this PPR-ID and the 
last node is the destination.  

 
Fig. 2. Sender and Destination bits 

In PPR Graphs, PDE include two new bits: sender and 
destination. In Figure 2 PDE1 and PDE3 are senders and PDE4 
and PDE5 are destinations. This is a compressed way to 
represent the four PDE lists shown to the right. Multiple senders 



are used in PPR Trees. Multiple senders and destinations are 
used in PPR Forests, see IV B.  

Figure 3 shows on the left a tree graph. A tree has one 
destination indicated by the destination bit of its PDE. It is the 
root of the tree. All leaves must, and any intermediate nodes may 
be senders on the tree as indicated by the sender bit of their PDE. 
To represent a graph in a PPR Graph object, it is decomposed 
into PDE lists called branches. Unless the last PDE of a branch 
is the destination PDE of the tree itself, it must be a PDE that is 
also a PDE in another branch. These PDE are where branches 
connect/merge to form the tree. In Figure 3, these are C1 
connecting Branch 3 with Branch 1, C3 connecting Branch 4 
with Branch 2 and C2 (the destination) connecting Branch 1 and 
Branch 2. 

When a node receives a PPR Tree, it simply needs to 
sequentially parse all branches to discover if it is on the tree and 
determine the forwarding entry it needs to establish from the 
branch where it is not the last PDE. For example, C1 determines 
from branch 1 that it needs to set up a forwarding entry towards 
C2 (and other processing such as QoS). A node determines that 
it is the destination of the tree from the destination bit and the 
fact that it is the last PDE in any branch (C2 in the example). 

 
Fig. 3. Composition of Graphs from Branches 

Not all transit nodes on a tree need to be senders. In Figure 
3, B1 and B5 are not senders. They will still establish the 
forwarding/processing entries for this trees PPR-ID to C2, but 
they will not use this tree to reach C2 when sourcing traffic 
themselves. Instead, they would use another tree for sourcing 
traffic themselves to C2 as explained below in IV.C. 

 
Fig. 4. Fragmentation of PPR Graphs 

Figure 4 shows how PPR Graphs are represented as one or 
more messages, also called fragments to support limited 
messages sizes.  For example, when using the IS-IS protocol to 
distribute PPR Graph objects, messages need to be encoded as 
Link State PDUs (LSPs) Type-Length-Value (TLV) objects 
with a maximum size  of 256 bytes. Each message indicates a 

PPR Graph ID (PPG-ID) and a fragment number 1...N. For PPR 
Trees, the PPG-ID is the PPR-ID. Each message (fragment) 
carries as many branches as it can fit. The last message includes 
all non-branch specific parameters such as the type of the PPR 
Graph and per-branch or per-PDE (node) default parameters 
such as default QoS parameters or other PPR attributes.  The last 
message has the LasT-Fragment (LTF) bit set to 1. A node 
knows that it has received a complete PPR Graph object when it 
has for a PPG-ID received messages 1...N where N has LTF:1. 

There is no separate PPR Graph type for PPR point-to-point 
graphs. They are encoded as PPR Trees that are just a simple 
point-to-point path. Typically a path is a single branch, but if the 
path is so long that it cannot fit into the message size limit, it is 
fragmented into multiple consecutive branches. 

B. PPR Forests and bidirectional PPR Forest 
When a PPR Graph has more than one destination, it is called a 
(unidirectional) PPR Forest, because it can represent multiple 
PPR Trees - one for each destination. PPR Forests provide 
another level of compression of the information that needs to be 
sent from a PCE into the network, and when stored and 
parsed/examined on the network nodes, forests can further speed 
up processing because of less data to process. Ideally this can 
also increase network node cache efficiency due to the smaller 
amount of memory required to store and parse a single forest vs. 
multiple trees it represents. 

 
Fig. 5. PPR Forest and Bidir-Forest 

The (unidirectional) PPR Forest in Figure 5 is the second 
PPR Graph type beside PPR Trees. It is indicated in the PPR 
Type field of the PPR-ID object.  A PPR Forest can have (as 
shown in the figure) at most one loop so that all paths described 
by this forest are unambiguous. As soon as a graph would have 
two or more loops, one or more nodes would need to have two 
or more outgoing adjacencies, and that could introduce 
undesired ambiguity of path selection. PPR Graphs are meant to 
be easy to calculate by PCE and not depend on local behavior of 
nodes such as choosing one out of multiple possible paths. 
Equal-Cost-Multi-Path (ECMP) adjacencies are therefore also 
not included. 

When processing a forest, each node on the forest creates a 
separate PPR-ID forwarding entry for every destination that it 
can reach across the forest. C1 can for example reach A1-A5 and 
C2-C3 via the forest, but not B1-B5. It therefore establishes no 
forwarding entries for B1-B5 for this forest. Each destination 
PDE needs to encode a PPR-ID for itself. These are the PPR-ID 
installed in the forwarding plane. The PPG-ID of the PPR Forest  



itself is a separate unique identifier not used for forwarding 
entries, but solely to identify the object. 

The bidirectional PPR Forest is the third PPR Graph type. 
This type implies that the adjacencies between nodes in the 
branches (PDE lists) are bidirectional. These bidirectional 
forests can have no loops to ensure paths are unambiguous. In 
the terminology of graph theory, these graphs are therefore 
bidirectional trees, but in the PPR terminology, they are forests 
because they have multiple destinations. Note that nodes in such 
a forest may have different adjacencies towards different 
destinations in the forest, such as C1, but there is no ambiguity 
to any individual destination. Specific examples for the use of 
forests that show their value are described below in V.A. 

C. Calculating PPR Graphs 
PPR Paths can be calculated with existing algorithms as it 

would be done for  RSVP-TE or SR paths, which can be an NP-
hard problem, see [12]. PPR Trees can then be calculated by 
merging all non-tree-conflicting PPR Paths to the same 
destination into a PPR Tree. Paths conflict if they have different 
next-hop adjacencies on the same nodes. PPR Forests can be 
created by merging non-conflicting PPR-Trees. How an 
optimized PPR Tree structures are computed at a PCE is subject 
to future work beyond the scope of this paper. However, Section 
V.B offers an example with conflicting PPR Trees and a 
discussion how to optimize the results by taking the goal of non-
conflicting paths into account when calculating them.  

D. PPR Policy Groups 
An individual PPR graph describes a set of unambiguous 

paths from sources to destinations, but in most cases, more than 
one graph is needed to define between a set of nodes paths from 
any node in the set to any other node in the set.  A single 
bidirectional forest can express this, but in many traffic 
engineering cases, the PCE may not want for all traffic between 
these nodes to use the same bidirectional forest. 

In networks, the need to define any-to-any connectivity 
between a set of nodes is a common requirement, for example 
when defining the paths for the endpoints of a particular 
multipoint service, such as the Virtual Routing and Forwarding 
(VRF) instances of a Virtual Private Network (VPN) in all the 
PE that act as senders and destinations. 

PPR Graphs can be grouped via an identifier called the PPR 
Policy group encoded in the parameters of the PPR graph object. 
A service such as a VPN is then provisioned with that policy 
group and uses in results only the paths from PPR Graphs tagged 
with that policy group. 

To ensure unambiguous path selection in nodes, the PCE 
needs to make sure that PPR Graphs in the same policy group 
do not include multiple paths for the same sender/destination 
combination. This policy group requirement is the core reason 
for the sender bit in a PDE. It allows for nodes to be transit nodes 
in multiple PPR Graphs of a policy group towards the same 
destination, but to be only a sender in one of them. 

E. QoS for PPR Graphs 
A PPR Path has exactly one sender and the QoS parameters 

describe the resources along the path that need to be reserved for 
exactly the traffic from that sender to that destination. 

When using PPR Trees, the goal is to minimize/avoid per-
sender state, so not only the packet lookup and forwarding entry 
are per-PPR-ID (the PPR-ID of the Tree, which is the PPG-ID) 
but also the QoS is per PPR-ID, resulting in the same scaling 
benefits for the QoS forwarding elements as PPR Trees do also 
for next-hop (forwarding) entries (O(N^2) -> O(N)). 

The PPR Tree signals the required QoS resources for each 
sender.  Every node determining to be on the tree calculates from 
the PPR Tree object the aggregate amount of bandwidth required 
for all upstream tree senders and then it sets up the appropriate 
QoS for these resources on its outgoing interface and binds it to 
the PPR-ID, for example as an adjacency/action performed after 
PPR-ID lookup. 

In Figure 6, an example tree with destination A1 is shown on 
the left side.  The tree object indicates that sender A1, A2, A5, 
and A7 can each send 1 mbps, and A3, A6 and A8 each 2 mbps. 
A4 is not a sender. A3 for example determines from this tree 
object, that it will forward traffic for this tree onto link L2 
towards A1 and that includes traffic from  A5, A6, A7, A8 and 
itself (A3), for a total of 8 mbps. This QoS parameter is installed 
for this PPR-ID forwarding entry on A3 together with the 
forwarding entry A1 via L2. 

 
Fig. 6. QoS for PPR Trees 

How to determine the aggregate QoS parameters depends on 
the parameter. Committed Bitrate (CBR) from senders are 
simply added up and the sum is the bandwidth that needs to be 
guaranteed for the tree on the outgoing interface as in this 
example. Likewise, the burst sizes from each sender can be 
added up and determine the amount of buffers required for the 
tree on the outgoing interface. 

Because only an aggregate QoS is installed in the 
(transit/egress) forwarding plane of a tree, each sender should 
also ensure that the traffic it is contributing itself to the tree does 
not exceed the tree signaled limits for this sender. If the source 
of the traffic itself is not trusted, this can be done by installing 
ingress QoS policies for locally sourced traffic on the sender 
node according to the Qos parameters for this sender in the PPR-
Tree. 

PPR Trees may be used for traffic from applications where 
traffic from different senders is coordinated. If A1 for example 
was connected to a mixer in some Telepresence system, and A2-
A8/(A4) are the routers connected to the conference participants, 
then it could be known that the mixer would always control the 
participants such that at most two senders are sending 
simultaneously: The current speaker and the previous speaker in 
the conference. The maximum aggregate QoS can therefore be 



included in the PPR Tree object and limit the per-link resource 
allocation as shown on the right hand side picture of Figure 6 to 
3 mbps on links L4 (performed by A4) and L2 (performed by 
A3). 3 mbps is the maximum two senders could send at the same 
time. 

For efficient encoding, the QoS parameters used for most 
senders is encoded as "default QoS parameters" in the PPR 
parameters (1 mbps in the example), and only senders with 
different parameters would have those encoded per sender in the 
senders PDE (2 mbps in the example). 

Signaling only the sender contribution in a PPR Tree is not 
only efficient, but calculating the aggregate on the PCE and 
signaling it in the tree has also other benefits: the nodes in the 
network can also dynamically take the IGP signaled physical 
topology of the network into account. If some link or node in the 
network fails and sending nodes behind that failure therefore 
become unreachable, the resource allocation on the local node 
can accordingly be updated. 

When using PPR Forests, the semantic is extended to all the 
destinations in the forest: A sender may split up the traffic it 
sends into a forest arbitrarily to the destinations it can reach 
across the forest, but the aggregate traffic from the sender must 
never exceed the QoS indicated in the forest for this sender. The 
calculation for the amount of QoS on every link in a forest stays 
therefore unchanged from a tree, because every outgoing 
adjacency on the forest will reach at least one destination. The 
only difference in forwarding plane setup is the fact that if an 
adjacency to a next PDE reaches two or more destinations, then 
this means that all the PPR-ID forwarding entries for those 
destinations must use the same shared QoS, such as the same 
per-forest/per-interface queue or shaper. 

V. COMPARISONS WITH EXISTING TECHNOLOGIES 

A. Dual-Path redundancy engineering with PPR Graphs 

 
Fig. 7. Segment Routing with dual-path 

Even the best resource reservation does not protect against 
packet loss due to physical layer issues such as bit errors. 
Proactive protection/Forward-Error protection can and is often 
used, but it introduces additional delay and/or overhead. High 
resilient service solutions such as required to transport Time 
Sensitive Networking (TSN) ethernet packets or other 
Deterministic Networking (DetNet) services therefore often 
require the use of two alternative paths from a sender to a 
destination that are known to not share any single source of 
failure.  The packets are then replicated on entry into the network 

onto both paths, using sequence numbers to identify packets and 
remove duplicates on egress from the network. These ingress 
Packet Replication and egress Elimination Function (PR-EF) are 
assumed to exist and not something novel in PPR. 

Calculating dual-paths can be a complex function on a PCE, 
depending on the topology and constraints,  though distributed 
algorithms do also exist. See [10] for further references on this 
topic. The best results are achieved with solutions supporting 
strict hop-by-hop paths for the forwarding plane, such as 
possible with RSVP-TE or PPR. 

Figure 7 shows an example of the problem in a simple 
example with Segment Routing (SR). A5 sends copy 1 of the 
traffic clockwise to A8, and copy 2 counterclockwise. This can 
be made to work reliable by making SR use strict hop-by-hop 
label stacks with adjacency SIDs set up to not use fast rerouting. 
{A6,A7,A8} for copy 1  and {A4,A3,A2,A1,A8} for copy 2.  If 
for example A3 fails then SID A3 becomes unreachable on A4 
and copy 2 packets are dropped on A4. This is desired because 
there is no redundancy benefit of passing copy 2 
counterclockwise around the ring and the counter clock path 
may not even have resources for another copy. 

In actual broadband or mobile backhaul access/aggregation 
networks, rings can have 20 or more nodes based on the 
geography of deployment, so hop-by-hp explicit label stacks are 
not feasible.  If instead loose label stacks are used, traffic will be 
undesirably rerouted as shown on the right picture of figure 7. 
Copy 2 has the minimum label stack to route packets 
counterclockwise: A2, A8. When A3 fails, traffic is rerouted 
clockwise, overloading not only the clockwise direction with 
unnecessary duplicate traffic, but even passing the packet all the 
way to A2 and back to A8.  

 
Fig. 8. PPR Forests for a ring 

In comparison, consider a setup for the same problem with 
PPR in Figure 8.  Only two PPR Forests are needed to support 
sending from every node in the ring packets in either direction 
to any other node. Every node is marked as sender and receiver 
in both forests, every node uses two PPR-IDs, one used in the 
clockwise, the other in the counterclockwise ring. When a node 
fails, there will be no rerouting of PPR traffic because no FRR 
has been set up explicitly for these forests. The number of 
forwarding identifier used by PPR in this example is also the 
same as what would be required in SR: 2 * N: PPR-ID or 
adjacency SIDs.  



B. Path engineering with PPR Trees 
When engineered / preferred paths are used for a limited set 

of high value services, explicitly engineered point-to-point paths 
as supported by RSVP/RSVP-TE or PPR Paths is typically 
scalable, but the more systematic the engineering requirements 
become, the more O(k*N^2) becomes an issue. Segment 
Routing can alleviate some of the scaling issues, but it is limited 
by the maximum supported label stack size, and it trades P node 
forwarding state with ingress-PE labels-stack encapsulation 
forwarding state. Even worse, it cannot create per-hop QoS state 
for its paths or monitor them independently per-hop, as SR is 
only a stateless path steering mechanism. 

One lightweight form of path engineering that has been 
deployed in SP networks for more than a decade is the 
calculation of optimization per-hop metrics of the IGP. Mid to 
long-term traffic statistics between PEs are taken, and then an 
exhaustive search for a set of IGP interface metrics is done that 
results in traffic to be distributed across all paths such that the 
worst-case maximum load on any link is as low as possible. One 
of the first PCE products supporting this solution was called 
"Cariden Mate", and [9] outlines its current version support of 
this functionality. 

Using the IGP to create engineered paths can - as described 
in the above reference - only achieves limited optimization 
because every change of an interface metric does affect not only 
one traffic flow / path, but all traffic flows / paths that potentially 
would go through that interface. They cannot independently of 
each other be optimized. But the use of the IGP is very attractive 
from a scalability perspective: Instead of O(N^2) as with RSVP-
TE, the result of using an IGP is instead the establishment of 
O(N) forwarding entries - one for each destination on every node 
in the network. 

The ideal solution to support O(N) scalability for path 
engineered forwarding entries is therefore one which does allow 
to describe similar forwarding as the result of an IGP, but 
without the limitations incurred by the IGP path calculation: for 
a particular destination a tree from potentially every node in a 
network to a particular destination as the root of this tree. 

 
Fig. 9. Two PPR Tree graphs for a single destination 

Depending on engineering constraints, a single tree may not 
suffice though.  Figure 9 shows an example of two PPR Tree 
graphs for path engineered traffic from all other PE to PE5. In 
this example, link L1 and L2 can only support traffic from half 
of the sender PEs, so a single tree is not possible because P1 
needs to distinguish traffic from PE1/PE2 vs. traffic from 
PE3/PE4. 

When these two PPR Tree graphs are signaled into the 
network, only the nodes on a tree create forwarding entries for 
that tree. Only P1, P2 and PE5 need to create two forwarding 

entries (for both trees), all other nodes only need to create one 
or no forwarding entry at all. 

With PPR graphs, a PCE can calculate exactly the tree(s) that 
it wants to use for a destination, independent from trees to any 
other destination (unlike when using engineered IGP link 
metrics). In a simple option, the PCE simply calculates from 
every sender of a path to the destination and then it calculates 
the minimum number of trees representing these paths. In a more 
advanced calculation, the PCE would take the desire to create a 
minimum number of trees into account when calculating the 
paths in the first place. 

VI. CONCLUSIONS AND NEXT STEPS 

A. Summary 
PPR Graphs are the next fundamental extension to the 

Preferred Path Routing architecture.  

PPR Graphs are compact encodings of path and processing 
information as well as optionally QoS resources, monitoring or 
other processing instructions from controllers such as PCE(s) to 
network nodes. PPR Graphs therefore support fast and efficient 
signaling to network nodes. Per-sender QoS and in network 
node calculation of aggregate QoS is an example of both that 
efficient signaling as well as the ability to express aggregated 
processing state and leveraging the knowledge of the whole 
graph in each node. 

B. Future work 
The concept introduced with PPR Graphs has a wide range 

of opportunities for extensions, but its novel functions also 
require more quantitative assessment (for example through 
simulations) of achievable performance factors. 

Interesting candidate extensions include QoS for 
deterministic networking, where more than just bandwidth 
based QoS is required. Interesting routing extensions could and 
will include Anycasting and signaling of scalable reroute trees 
as well as multicast for various type of trees - sender specific 
and shared trees. The PPR Graph concept can especially be 
attractive for IP multicast when only partial deployment is 
possible.  

In the presented PPR Graph mechanisms, the ability of many 
forwarding planes to supported aggregation itself is not 
exploited. Such forwarding plane capabilities can be expressed 
via structured PPR-IDs and then automatically map to 
aggregated forwarding entries, such as IPv4/IPv6 prefix lookup 
forwarding entries. Those can automatically be calculated from 
information in the PPR Graphs. 

Many performance assessments will require prototyping or 
extrapolation of performance of comparable existing product 
functions, such as the speed of distribution in IGPs, speed of 
downloads of forwarding entries and so on. 

Assessments that require more fundamental algorithmic 
work includes calculation mechanisms for engineered paths that 
leverage the ability of PPR graphs for aggregation: how much 
can the paths towards each destination be non-tree-conflicting 
(IV.C) - and therefore provide more scalable, aggregated 
forwarding state, while still optimizing the overall network 
throughput ? 
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