
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Preferred Path Routing (PPR) Graphs -
Beyond Signaling Of Paths To Networks

Toerless Eckert, Yingzhen Qu, Uma Chunduri
Huawei – Future Networks

Santa Clara, California, USA
{firstname.lastname}@huawei.com

Abstract— Preferred Path Routing (PPR) is an innovative
architecture to signal explicit paths and per-hop processing
including QoS from computation engines to network nodes
leveraging distribution mechanisms of existing network routing
protocols. PPR supports a wide range of existing forwarding
planes including IP and Segment Routing. Through these
mechanisms, PPR supports more lightweight, scalable and widely
applicable support for high precision network services than prior
signaling mechanisms including the ReSource ReserVation
Protocol with Traffic Engineering (RSVP-TE).

This paper describes the next fundamental step for the PPR
architecture, with the signaling of PPR Graphs instead of only
point to point PPR Paths. This extension provides better
scalability and efficiency both for signaling, but even more so for
the resulting forwarding and QoS processing entries created in
network nodes. For any-to-any connectivity of N nodes, PPR
Graphs can achieve the same O(N) scalability of forwarding
entries as distributed routing protocols (IGPs), compared to O(N2)
in RSVP-TE or PPR point to point Paths. PPR Graphs therefore
enable future networks to support high precision services much
more broadly – independent of the chosen forwarding plane.

Keywords—graphs, paths, scalability, routing protocols,
preferred path routing, next generation networking architecture.

I. INTRODUCTION
[1] introduces Preferred Path Routing (PPR) paths, a novel

signaling architecture for optimized traffic paths in networks
with a centralized Path Computation Engine (PCE) [5]. PPR
Paths intends to overcome limitations of current solutions:

Segment Routing (SR) [2] does not have the explicit notion
of paths on every node along the path, therefore it does not
support high-touch per-path hop-by-hop functions such as
monitoring, accounting, QoS (Policing, Shaping, Buffering) or
other processing. This is the direct result of SR’s goal to be
lightweight by using only in-packet processing instructions, and
primarily source-routing via Segment-Identifiers (SID).

RSVP-TE [7] does establish per-path, per-hop state, but it
does so with a high-overhead and therefore slow hop-by-hop
per-flow state processing signaling mechanism that is very
feature rich, and results in slower than PPR processing, more
overhead and lower scalability.

 RSVP-TE has also has not been defined to support the
variety of forwarding planes used in today’s L3 networks but
only MPLS.

PPR Paths close these gaps. Through the use of reliable in-
network distribution of PPR Paths, first via commonly used
routing protocols, it provides a lightweight signaling
architecture of hop-by-hop path processing state for a variety of
forwarding planes including Segment Routing.

One key limitation of PPR Paths as introduced in [1] is its
exclusive reliance on point-to-point paths and the resulting scale
limitation: A network with N nodes and full-mesh of PPR Path
connectivity between them requires O(N^2) forwarding states.

Due to the PPR signaling scheme, it can easily support more
advanced graph types than point-to-point and achieve more
scalable forwarding and processing options. Defining these
graph types, their encoding and resulting forwarding plane
scalability as well as use-case benefits is the contribution to the
PPR architecture described in this paper.

II. PPR OVERVIEW, BACKGROUNG AND ARCHITECTURE
This section summarizes the key PPR architecture

components laid out in [1]. PPR is intended to support any
forwarding plane. So far, it is defined to support the currently
most widely deployed forwarding planes of L3 networks: IPv4,
IPv6, Segment Routing with MPLS (SR-MPLS) [3] and
Segment Routing with IPv6 (SRv6) [4].

As shown in Figure 1, a PCE learns the complete network
topology and traffic engineering parameters of links for example
via the BGP-LS protocol [11]. From the topology and path
requirements (from operator and/or application control), the
PCE calculates optimized paths across the network topology,
typically from an ingress Provider Edge node (PE) to an egress
PE across zero or more Provider (Core) nodes (P).

The PCE encodes this path into a PPR Path object and adds
path properties such as QoS parameters (e.g., guaranteed
bandwidth, peak bandwidth and latency/jitter). It then sends the
object to a (any) node in the network, from where it is distributed
to all nodes. Distribution can be via existing Interior Gateway
Protocols (IGP) such as Open Shortest Path First (OSPF) or
Intermediate System to Intermediate System (IS-IS) or in future
potentially faster mechanisms. The network nodes in the IGP

area/domain (both PE and P) examine each object and establish
the necessary processing state as described in the PPR Path. At
minimum this is a forwarding entry with a next-hop determined
from the PPR Path and appropriate QoS for scheduling and/or
shaping (buffering).

Fig. 1. PPR architecture and new PPR Graphs (decentralized PCE see VI.B)

A PPR Path consists of a sequence of Path Description
Elements (PDE), each one identifying a node along the path,
starting with the sender PDE and finishing with the destination
PDE. Each PDE contains an identifier of the node. These are
called PDE-IDs and their format depends on the desired
forwarding plane: IP4 or IPv6 address of the node for IPv4/IPv6
forwarding, or a Node-Segment Identifier (Node-SID)/Global-
adjacency-SID for SR.

The PPR Path has a PPR Identifier (PPR-ID), which
indicates the forwarding entry for the PPR Path on every hop. It
needs to be unique per PPR Path and depends also on the
forwarding plane chosen: IPv4/IPv6 address or SID assigned to
the destination. From the received PPR Path object, the nodes
along the path determine that they need to build forwarding state
for a particular PPR Path because they recognize their PDE-ID,
and then establish an IPv4/IPv6/SID forwarding entry to the next
PDE along the path for the PPR-ID.

The core innovative concept of PPR Paths is the architectural
approach to let control components create complete path objects
that are distributed by the network. This may sound
counterintuitive because most nodes receiving a PPR Path object
do not need to create any forwarding state for a PPR Path,
because they are not PDEs on the path. Practical network design
though shows that the parsing of data structures in control plane
CPUs of network nodes is orders of magnitude faster than the
actual propagation of the information and the establishment of
forwarding plane entries.

PPR simply leverages and extends the playbook of Link-
State Routing IGPs (OSPF/IS-IS). In prior signaling approaches,
such as ReSource Reservation Protocol (RSVP [6]), and its
Traffic Engineering variant (RSVP-TE [7]), the signaling
method is hop-by-hop with high per-hop propagation delay

because each hop needs to operate a per-flow state-machinery
before propagating the message. In PPR, the distribution can
support a larger number of paths and low propagation delay. In
effect, all PDE (hops) on a path can (in optimized
implementations) almost simultaneously establish the PPR Path
state in accelerated forwarding planes.

This basic PPR architecture is not changed by this work. Instead,
this paper extends the architecture by the introduction of more
flexible type of graphs than point-to-point paths, as suggested
also by Figure 1.

III. FROM PPR PAHS TO PPR GRAPHS
PPR Graphs are designed to scale with O(k*N) or even O(k)

PPR-IDs and forwarding entries. Along with PPR Graphs, this
paper also provide solutions for other issues, including:

(1) Fragmentation of PPR object encodings (TLVs) to support
message limitations in distribution mechanisms, especially in
the IS-IS protocol. See IV.A.

(2) A mechanism for grouping of PPR Graphs (policy-groups)
to more easily orchestrate PPR Graphs to the traffic on PE nodes
that should use them. Ssee IV.C.

(3) More intelligent utilization of the PPR Graph object
information than simple nexthop forwarding extraction, as
shown via the PPR Graph QoS functions in IV.E.

More than just the sum of these features, PPR Graphs permit
a completely new paradigm for the mapping of responsibilities
between the distributed nodes of the network and (more
intelligent but complex) centralized PCE components:
Complex/NP-hard path calculations can be removed from the
distributed nodes, while still maintaining the benefits of reliable,
scalable distribution of information from the IGPs as well as
equally scalable, but more flexible forwarding plane entries as
possible with IGPs.

IV. PPR GRAPHS

A. Encoding of PPR Graphs
As Figure 2 shows, a pre-existing point-to-point PPR Path

encodes for a particular PPR-ID a PDE list where the first node
is implicitly the sender for all traffic using this PPR-ID and the
last node is the destination.

Fig. 2. Sender and Destination bits

In PPR Graphs, PDE include two new bits: sender and
destination. In Figure 2 PDE1 and PDE3 are senders and PDE4
and PDE5 are destinations. This is a compressed way to
represent the four PDE lists shown to the right. Multiple senders

are used in PPR Trees. Multiple senders and destinations are
used in PPR Forests, see IV B.

Figure 3 shows on the left a tree graph. A tree has one
destination indicated by the destination bit of its PDE. It is the
root of the tree. All leaves must, and any intermediate nodes may
be senders on the tree as indicated by the sender bit of their PDE.
To represent a graph in a PPR Graph object, it is decomposed
into PDE lists called branches. Unless the last PDE of a branch
is the destination PDE of the tree itself, it must be a PDE that is
also a PDE in another branch. These PDE are where branches
connect/merge to form the tree. In Figure 3, these are C1
connecting Branch 3 with Branch 1, C3 connecting Branch 4
with Branch 2 and C2 (the destination) connecting Branch 1 and
Branch 2.

When a node receives a PPR Tree, it simply needs to
sequentially parse all branches to discover if it is on the tree and
determine the forwarding entry it needs to establish from the
branch where it is not the last PDE. For example, C1 determines
from branch 1 that it needs to set up a forwarding entry towards
C2 (and other processing such as QoS). A node determines that
it is the destination of the tree from the destination bit and the
fact that it is the last PDE in any branch (C2 in the example).

Fig. 3. Composition of Graphs from Branches

Not all transit nodes on a tree need to be senders. In Figure
3, B1 and B5 are not senders. They will still establish the
forwarding/processing entries for this trees PPR-ID to C2, but
they will not use this tree to reach C2 when sourcing traffic
themselves. Instead, they would use another tree for sourcing
traffic themselves to C2 as explained below in IV.C.

Fig. 4. Fragmentation of PPR Graphs

Figure 4 shows how PPR Graphs are represented as one or
more messages, also called fragments to support limited
messages sizes. For example, when using the IS-IS protocol to
distribute PPR Graph objects, messages need to be encoded as
Link State PDUs (LSPs) Type-Length-Value (TLV) objects
with a maximum size of 256 bytes. Each message indicates a

PPR Graph ID (PPG-ID) and a fragment number 1...N. For PPR
Trees, the PPG-ID is the PPR-ID. Each message (fragment)
carries as many branches as it can fit. The last message includes
all non-branch specific parameters such as the type of the PPR
Graph and per-branch or per-PDE (node) default parameters
such as default QoS parameters or other PPR attributes. The last
message has the LasT-Fragment (LTF) bit set to 1. A node
knows that it has received a complete PPR Graph object when it
has for a PPG-ID received messages 1...N where N has LTF:1.

There is no separate PPR Graph type for PPR point-to-point
graphs. They are encoded as PPR Trees that are just a simple
point-to-point path. Typically a path is a single branch, but if the
path is so long that it cannot fit into the message size limit, it is
fragmented into multiple consecutive branches.

B. PPR Forests and bidirectional PPR Forest
When a PPR Graph has more than one destination, it is called a
(unidirectional) PPR Forest, because it can represent multiple
PPR Trees - one for each destination. PPR Forests provide
another level of compression of the information that needs to be
sent from a PCE into the network, and when stored and
parsed/examined on the network nodes, forests can further speed
up processing because of less data to process. Ideally this can
also increase network node cache efficiency due to the smaller
amount of memory required to store and parse a single forest vs.
multiple trees it represents.

Fig. 5. PPR Forest and Bidir-Forest

The (unidirectional) PPR Forest in Figure 5 is the second
PPR Graph type beside PPR Trees. It is indicated in the PPR
Type field of the PPR-ID object. A PPR Forest can have (as
shown in the figure) at most one loop so that all paths described
by this forest are unambiguous. As soon as a graph would have
two or more loops, one or more nodes would need to have two
or more outgoing adjacencies, and that could introduce
undesired ambiguity of path selection. PPR Graphs are meant to
be easy to calculate by PCE and not depend on local behavior of
nodes such as choosing one out of multiple possible paths.
Equal-Cost-Multi-Path (ECMP) adjacencies are therefore also
not included.

When processing a forest, each node on the forest creates a
separate PPR-ID forwarding entry for every destination that it
can reach across the forest. C1 can for example reach A1-A5 and
C2-C3 via the forest, but not B1-B5. It therefore establishes no
forwarding entries for B1-B5 for this forest. Each destination
PDE needs to encode a PPR-ID for itself. These are the PPR-ID
installed in the forwarding plane. The PPG-ID of the PPR Forest

itself is a separate unique identifier not used for forwarding
entries, but solely to identify the object.

The bidirectional PPR Forest is the third PPR Graph type.
This type implies that the adjacencies between nodes in the
branches (PDE lists) are bidirectional. These bidirectional
forests can have no loops to ensure paths are unambiguous. In
the terminology of graph theory, these graphs are therefore
bidirectional trees, but in the PPR terminology, they are forests
because they have multiple destinations. Note that nodes in such
a forest may have different adjacencies towards different
destinations in the forest, such as C1, but there is no ambiguity
to any individual destination. Specific examples for the use of
forests that show their value are described below in V.A.

C. Calculating PPR Graphs
PPR Paths can be calculated with existing algorithms as it

would be done for RSVP-TE or SR paths, which can be an NP-
hard problem, see [12]. PPR Trees can then be calculated by
merging all non-tree-conflicting PPR Paths to the same
destination into a PPR Tree. Paths conflict if they have different
next-hop adjacencies on the same nodes. PPR Forests can be
created by merging non-conflicting PPR-Trees. How an
optimized PPR Tree structures are computed at a PCE is subject
to future work beyond the scope of this paper. However, Section
V.B offers an example with conflicting PPR Trees and a
discussion how to optimize the results by taking the goal of non-
conflicting paths into account when calculating them.

D. PPR Policy Groups
An individual PPR graph describes a set of unambiguous

paths from sources to destinations, but in most cases, more than
one graph is needed to define between a set of nodes paths from
any node in the set to any other node in the set. A single
bidirectional forest can express this, but in many traffic
engineering cases, the PCE may not want for all traffic between
these nodes to use the same bidirectional forest.

In networks, the need to define any-to-any connectivity
between a set of nodes is a common requirement, for example
when defining the paths for the endpoints of a particular
multipoint service, such as the Virtual Routing and Forwarding
(VRF) instances of a Virtual Private Network (VPN) in all the
PE that act as senders and destinations.

PPR Graphs can be grouped via an identifier called the PPR
Policy group encoded in the parameters of the PPR graph object.
A service such as a VPN is then provisioned with that policy
group and uses in results only the paths from PPR Graphs tagged
with that policy group.

To ensure unambiguous path selection in nodes, the PCE
needs to make sure that PPR Graphs in the same policy group
do not include multiple paths for the same sender/destination
combination. This policy group requirement is the core reason
for the sender bit in a PDE. It allows for nodes to be transit nodes
in multiple PPR Graphs of a policy group towards the same
destination, but to be only a sender in one of them.

E. QoS for PPR Graphs
A PPR Path has exactly one sender and the QoS parameters

describe the resources along the path that need to be reserved for
exactly the traffic from that sender to that destination.

When using PPR Trees, the goal is to minimize/avoid per-
sender state, so not only the packet lookup and forwarding entry
are per-PPR-ID (the PPR-ID of the Tree, which is the PPG-ID)
but also the QoS is per PPR-ID, resulting in the same scaling
benefits for the QoS forwarding elements as PPR Trees do also
for next-hop (forwarding) entries (O(N^2) -> O(N)).

The PPR Tree signals the required QoS resources for each
sender. Every node determining to be on the tree calculates from
the PPR Tree object the aggregate amount of bandwidth required
for all upstream tree senders and then it sets up the appropriate
QoS for these resources on its outgoing interface and binds it to
the PPR-ID, for example as an adjacency/action performed after
PPR-ID lookup.

In Figure 6, an example tree with destination A1 is shown on
the left side. The tree object indicates that sender A1, A2, A5,
and A7 can each send 1 mbps, and A3, A6 and A8 each 2 mbps.
A4 is not a sender. A3 for example determines from this tree
object, that it will forward traffic for this tree onto link L2
towards A1 and that includes traffic from A5, A6, A7, A8 and
itself (A3), for a total of 8 mbps. This QoS parameter is installed
for this PPR-ID forwarding entry on A3 together with the
forwarding entry A1 via L2.

Fig. 6. QoS for PPR Trees

How to determine the aggregate QoS parameters depends on
the parameter. Committed Bitrate (CBR) from senders are
simply added up and the sum is the bandwidth that needs to be
guaranteed for the tree on the outgoing interface as in this
example. Likewise, the burst sizes from each sender can be
added up and determine the amount of buffers required for the
tree on the outgoing interface.

Because only an aggregate QoS is installed in the
(transit/egress) forwarding plane of a tree, each sender should
also ensure that the traffic it is contributing itself to the tree does
not exceed the tree signaled limits for this sender. If the source
of the traffic itself is not trusted, this can be done by installing
ingress QoS policies for locally sourced traffic on the sender
node according to the Qos parameters for this sender in the PPR-
Tree.

PPR Trees may be used for traffic from applications where
traffic from different senders is coordinated. If A1 for example
was connected to a mixer in some Telepresence system, and A2-
A8/(A4) are the routers connected to the conference participants,
then it could be known that the mixer would always control the
participants such that at most two senders are sending
simultaneously: The current speaker and the previous speaker in
the conference. The maximum aggregate QoS can therefore be

included in the PPR Tree object and limit the per-link resource
allocation as shown on the right hand side picture of Figure 6 to
3 mbps on links L4 (performed by A4) and L2 (performed by
A3). 3 mbps is the maximum two senders could send at the same
time.

For efficient encoding, the QoS parameters used for most
senders is encoded as "default QoS parameters" in the PPR
parameters (1 mbps in the example), and only senders with
different parameters would have those encoded per sender in the
senders PDE (2 mbps in the example).

Signaling only the sender contribution in a PPR Tree is not
only efficient, but calculating the aggregate on the PCE and
signaling it in the tree has also other benefits: the nodes in the
network can also dynamically take the IGP signaled physical
topology of the network into account. If some link or node in the
network fails and sending nodes behind that failure therefore
become unreachable, the resource allocation on the local node
can accordingly be updated.

When using PPR Forests, the semantic is extended to all the
destinations in the forest: A sender may split up the traffic it
sends into a forest arbitrarily to the destinations it can reach
across the forest, but the aggregate traffic from the sender must
never exceed the QoS indicated in the forest for this sender. The
calculation for the amount of QoS on every link in a forest stays
therefore unchanged from a tree, because every outgoing
adjacency on the forest will reach at least one destination. The
only difference in forwarding plane setup is the fact that if an
adjacency to a next PDE reaches two or more destinations, then
this means that all the PPR-ID forwarding entries for those
destinations must use the same shared QoS, such as the same
per-forest/per-interface queue or shaper.

V. COMPARISONS WITH EXISTING TECHNOLOGIES

A. Dual-Path redundancy engineering with PPR Graphs

Fig. 7. Segment Routing with dual-path

Even the best resource reservation does not protect against
packet loss due to physical layer issues such as bit errors.
Proactive protection/Forward-Error protection can and is often
used, but it introduces additional delay and/or overhead. High
resilient service solutions such as required to transport Time
Sensitive Networking (TSN) ethernet packets or other
Deterministic Networking (DetNet) services therefore often
require the use of two alternative paths from a sender to a
destination that are known to not share any single source of
failure. The packets are then replicated on entry into the network

onto both paths, using sequence numbers to identify packets and
remove duplicates on egress from the network. These ingress
Packet Replication and egress Elimination Function (PR-EF) are
assumed to exist and not something novel in PPR.

Calculating dual-paths can be a complex function on a PCE,
depending on the topology and constraints, though distributed
algorithms do also exist. See [10] for further references on this
topic. The best results are achieved with solutions supporting
strict hop-by-hop paths for the forwarding plane, such as
possible with RSVP-TE or PPR.

Figure 7 shows an example of the problem in a simple
example with Segment Routing (SR). A5 sends copy 1 of the
traffic clockwise to A8, and copy 2 counterclockwise. This can
be made to work reliable by making SR use strict hop-by-hop
label stacks with adjacency SIDs set up to not use fast rerouting.
{A6,A7,A8} for copy 1 and {A4,A3,A2,A1,A8} for copy 2. If
for example A3 fails then SID A3 becomes unreachable on A4
and copy 2 packets are dropped on A4. This is desired because
there is no redundancy benefit of passing copy 2
counterclockwise around the ring and the counter clock path
may not even have resources for another copy.

In actual broadband or mobile backhaul access/aggregation
networks, rings can have 20 or more nodes based on the
geography of deployment, so hop-by-hp explicit label stacks are
not feasible. If instead loose label stacks are used, traffic will be
undesirably rerouted as shown on the right picture of figure 7.
Copy 2 has the minimum label stack to route packets
counterclockwise: A2, A8. When A3 fails, traffic is rerouted
clockwise, overloading not only the clockwise direction with
unnecessary duplicate traffic, but even passing the packet all the
way to A2 and back to A8.

Fig. 8. PPR Forests for a ring

In comparison, consider a setup for the same problem with
PPR in Figure 8. Only two PPR Forests are needed to support
sending from every node in the ring packets in either direction
to any other node. Every node is marked as sender and receiver
in both forests, every node uses two PPR-IDs, one used in the
clockwise, the other in the counterclockwise ring. When a node
fails, there will be no rerouting of PPR traffic because no FRR
has been set up explicitly for these forests. The number of
forwarding identifier used by PPR in this example is also the
same as what would be required in SR: 2 * N: PPR-ID or
adjacency SIDs.

B. Path engineering with PPR Trees
When engineered / preferred paths are used for a limited set

of high value services, explicitly engineered point-to-point paths
as supported by RSVP/RSVP-TE or PPR Paths is typically
scalable, but the more systematic the engineering requirements
become, the more O(k*N^2) becomes an issue. Segment
Routing can alleviate some of the scaling issues, but it is limited
by the maximum supported label stack size, and it trades P node
forwarding state with ingress-PE labels-stack encapsulation
forwarding state. Even worse, it cannot create per-hop QoS state
for its paths or monitor them independently per-hop, as SR is
only a stateless path steering mechanism.

One lightweight form of path engineering that has been
deployed in SP networks for more than a decade is the
calculation of optimization per-hop metrics of the IGP. Mid to
long-term traffic statistics between PEs are taken, and then an
exhaustive search for a set of IGP interface metrics is done that
results in traffic to be distributed across all paths such that the
worst-case maximum load on any link is as low as possible. One
of the first PCE products supporting this solution was called
"Cariden Mate", and [9] outlines its current version support of
this functionality.

Using the IGP to create engineered paths can - as described
in the above reference - only achieves limited optimization
because every change of an interface metric does affect not only
one traffic flow / path, but all traffic flows / paths that potentially
would go through that interface. They cannot independently of
each other be optimized. But the use of the IGP is very attractive
from a scalability perspective: Instead of O(N^2) as with RSVP-
TE, the result of using an IGP is instead the establishment of
O(N) forwarding entries - one for each destination on every node
in the network.

The ideal solution to support O(N) scalability for path
engineered forwarding entries is therefore one which does allow
to describe similar forwarding as the result of an IGP, but
without the limitations incurred by the IGP path calculation: for
a particular destination a tree from potentially every node in a
network to a particular destination as the root of this tree.

Fig. 9. Two PPR Tree graphs for a single destination

Depending on engineering constraints, a single tree may not
suffice though. Figure 9 shows an example of two PPR Tree
graphs for path engineered traffic from all other PE to PE5. In
this example, link L1 and L2 can only support traffic from half
of the sender PEs, so a single tree is not possible because P1
needs to distinguish traffic from PE1/PE2 vs. traffic from
PE3/PE4.

When these two PPR Tree graphs are signaled into the
network, only the nodes on a tree create forwarding entries for
that tree. Only P1, P2 and PE5 need to create two forwarding

entries (for both trees), all other nodes only need to create one
or no forwarding entry at all.

With PPR graphs, a PCE can calculate exactly the tree(s) that
it wants to use for a destination, independent from trees to any
other destination (unlike when using engineered IGP link
metrics). In a simple option, the PCE simply calculates from
every sender of a path to the destination and then it calculates
the minimum number of trees representing these paths. In a more
advanced calculation, the PCE would take the desire to create a
minimum number of trees into account when calculating the
paths in the first place.

VI. CONCLUSIONS AND NEXT STEPS

A. Summary
PPR Graphs are the next fundamental extension to the

Preferred Path Routing architecture.

PPR Graphs are compact encodings of path and processing
information as well as optionally QoS resources, monitoring or
other processing instructions from controllers such as PCE(s) to
network nodes. PPR Graphs therefore support fast and efficient
signaling to network nodes. Per-sender QoS and in network
node calculation of aggregate QoS is an example of both that
efficient signaling as well as the ability to express aggregated
processing state and leveraging the knowledge of the whole
graph in each node.

B. Future work
The concept introduced with PPR Graphs has a wide range

of opportunities for extensions, but its novel functions also
require more quantitative assessment (for example through
simulations) of achievable performance factors.

Interesting candidate extensions include QoS for
deterministic networking, where more than just bandwidth
based QoS is required. Interesting routing extensions could and
will include Anycasting and signaling of scalable reroute trees
as well as multicast for various type of trees - sender specific
and shared trees. The PPR Graph concept can especially be
attractive for IP multicast when only partial deployment is
possible.

In the presented PPR Graph mechanisms, the ability of many
forwarding planes to supported aggregation itself is not
exploited. Such forwarding plane capabilities can be expressed
via structured PPR-IDs and then automatically map to
aggregated forwarding entries, such as IPv4/IPv6 prefix lookup
forwarding entries. Those can automatically be calculated from
information in the PPR Graphs.

Many performance assessments will require prototyping or
extrapolation of performance of comparable existing product
functions, such as the speed of distribution in IGPs, speed of
downloads of forwarding entries and so on.

Assessments that require more fundamental algorithmic
work includes calculation mechanisms for engineered paths that
leverage the ability of PPR graphs for aggregation: how much
can the paths towards each destination be non-tree-conflicting
(IV.C) - and therefore provide more scalable, aggregated
forwarding state, while still optimizing the overall network
throughput ?

REFERENCES
[1] U. Chunduri, A. Clemm, R. Li, “Preferred Path Routing – A Next-

Generation Routing Framework Beyond Segment Routing”, accepted for
2018 IEEE Global Communications Conference (GLOBECOM), Abu
Dhabi, UAE, 2018.

[2] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, P. Francois, “The
Segment Routing Architecture”, 2015 IEEE Global Communications
Conference (GLOBECOM), San Diego, CA, 2015.

[3] A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, R. Shakir,
“Segment Routing with MPLS data plane”, draft-ietf-spring-segment-
routing-mpls-14 (work in progress), IETF, June 2018.

[4] S. Previdi, C. Filsfils, J. Leddy, S. Matsushima, D. Voyer, “IPv6 Segment
Routing Header (SRH)”, draft-ietf-6man-segment-routing-header-14
(work in progress), IETF, June 2018.

[5] A. Farrel, Q. Zhao, R. Li, C. Zhou, "An Architecture for Use of PCE and
the PCE Communication Protocol (PCEP) in a Network with Central
Control", IETF RFC 8283, December 2017.

[6] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, "Resource
ReSerVation Protocol (RSVP)", IETF RFC2205, September 1997.

[7] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow,
"RSVP-TE: Extensions to RSVP for LSP Tunnels", IETF RFC3209,
December 2001.

[8] D. Medhi, K. Ramasamy, “Network Routing, Second Edition:
Algorithms, Protocols, and Architectures”, ISBN-13: 978-0128007372,
Morgan Kaufman, September 2017.

[9] “Cisco WAE Design 6.4 User Guide, Metric Optimization“,
https://www.cisco.com/c/en/us/td/docs/net_mgmt/wae/6-
4/design/user/guide/WAE_Design_User_Guide/wd_metric_opt.html,
retrieved August 2018.

[10] Enyedi, G., "Novel Algorithms for IP Fast Reroute", Department of
Telecommunications and Media Informatics, Budapest University of
Technology and Economics Ph.D. Thesis, February 2011.
https://repozitorium.omikk.bme.hu/bitstream/handle/10890/1040/ertekez
es.pdf.

[11] H. Gredler, J. Medved, S. Previdi, A. Farrel, S. Ray, “North-Bound
Distribution of Link-State and Traffic Engineering (TE) Information
Using BGP”, IETF RFC7752, March 2016.

[12] B. Jozsa, "Traffic Engineering Algorithms for MPLS Networks", Ph.D.
Dissertation Summary, https://db.bme.hu/~jozsa/papers/
PhD_Booklet_E.pdf , retrieved September 2018.

