
Zero-Loss Virtual Machine Migration
with IPv6 Segment Routing

Yoann Desmouceaux
École Polytechnique, Cisco Systems

yoann.desmouceaux@polytechnique.edu

Mark Townsley
Cisco Systems, École Polytechnique

townsely@cisco.com

Thomas Heide Clausen
École Polytechnique

thomas.clausen@polytechnique.edu

Abstract—With the development of large-scale data centers,
Virtual Machine (VM) migration is a key component for resource
optimization, cost reduction, and maintenance. From a network
perspective, traditional VM migration mechanisms rely on the
hypervisor running at the destination host advertising the new
location of the VM once migration is complete. However, this
creates a period of time during which the VM is not reachable,
yielding packet loss.

This paper introduces a method to perform zero-loss VM
migration by using IPv6 Segment Routing (SR). Rather than
letting the hypervisor update a locator mapping after VM
migration is complete, a logical path consisting of the source
and destination hosts is pre-provisioned. Packets destined to the
migrating VM are sent through this path using SR, shortly before,
during, and shortly after migration – the virtual router on the
source host being in charge of forwarding packets locally if the
VM migration has not completed yet, or to the destination host
otherwise. The proposed mechanism is implemented as a VPP
plugin, and feasibility of zero-loss VM migration is demonstrated
with various workloads. Evaluation shows that this yields benefits
in terms of session opening latency and TCP throughput.

I. INTRODUCTION

Data-centers are shifting to hosting more and more het-
erogeneous workloads, whose lifetimes can vary greatly, and
which can exhibit rapidly changing resource demands and
inter-application dependencies. Furthermore, the development
of live virtual machine (VM) migration [1] (and more recently,
of container migration [2]) has allowed for extended flexibility
in the assignment of tasks to machines. In this context,
many architectures have been developed in which workload
migration is used as a baseline to achieve different goals [3]:
energy minimization [4], network usage minimization [5],
operational cost minimization [6], maintenance [7], etc.

From a network perspective, a challenge raised by live
migration lies in maintaining connectivity to a VM after
it has been migrated. Indeed, hypervisors normally assume
that VMs are migrated within a single LAN, using Reverse
ARP (RARP) to advertise the new location of a VM after
migration. Traditional techniques to overcome this issue rely
on Layer 2 overlays, such as VXLAN [8] or NVGRE [9].
Other approaches include making use of Mobile IP [10] or of
LISP [11]. However, with the emergence of IPv6 [12] data-
centers, new opportunities appear, both for the addressing of
workloads and for re-engineering the data-path. Among the
proposed approaches for mobility within IPv6 data-centers,
Identifier-Locator Addressing (ILA) [13] has been proposed

at the IETF, using high-order bytes of addresses to denote
locators and low-order bytes of addresses to denote identifiers.

A drawback of all these approaches is that they incur
a period of time, during which packets addressed to the
migrating VMs are lost. This raises concerns for applications
that are intolerant to packet losses (e.g. UDP-based delay-
critical applications, virtual network functions, ...).

A. Statement of Purpose

The purpose of the paper is to introduce a VM mobility
solution, which provides “zero-loss” capabilities: assuming
that the network is not lossy, any packet destined to a migrating
VM will eventually be received. To that purpose, the Segment
Routing (SR) [14] architecture is leveraged.

SR is an architecture which allows packets within a desig-
nated domain to be added an extraneous header, designating
an ordered list of segments through which the packet is
expected to go. Segments represent abstract functions to be
performed on packets, and can be as simple as forward to
next segment (enabling source routing and traffic engineering),
but can also represent more complicate instructions (from
custom encapsulation or routing behavior to complete virtual
network functions). This paper specifically targets the IPv6
flavour of SR, in which segments are represented by means
of IPv6 addresses, and where an IPv6 extension header [15]
contains the list of segments. Backwards compatibility with
non-SR-aware routers is maintained, by having the waypoints
modify the destination address of the packet to that of the next
segment, allowing traversal of arbitrary routers while travelling
between two segments.

The idea underlying this paper is to use SR to solve
the locator/identifier mapping synchronization problem during
VM migration, by letting the gateway (proactively) route
packets destined to a migrating VM through a path comprising
the old and the new hosts. This way, the responsibility of the
old host is reduced to (i) forwarding packets locally while the
migration is not complete and (ii) forwarding packets to the
next segment (the new host) once migration has completed.
This way, no packets are lost during the migration, whereas
traditional solutions would require a mapping to be updated
once migration has completed, leading to potential packet
losses during this period of time. Furthermore, the overhead
on the old host is kept to a minimum, since no tunnel has to
be opened and no Layer-2 overlay is required.

978-3-903176-14-0 c© 2018 IFIP

B. Related Work

Many solutions have been proposed to address the issue
of maintaining Layer-3 network connectivity during and after
VM migration. The simplest solutions involve using a Layer-2
overlay [8], [9], and relying on hypervisors sending gratuitous
Reverse ARP messages after migration. In addition to the
operational complexity incurred by running such overlays, the
VM is not reachable on the new host until the RARP has
propagated, leading to potential packet losses.

Another simple solution consists of creating an IP tunnel
between the source and the destination hosts. In [16], the Xen
hypervisor is modified so that after migration, packets reaching
the hypervisor at the source host are tunnelled towards the new
host. After migration, the VM uses two different addresses (an
“old” and a “new” address), and Dynamic DNS is used so
that external clients can reach the VM via the new address.
The drawback of this approach is that the hypervisor must
co-operate with the destination host during an unpredictable
amount of time by performing tunnelling. This is incompatible
with recent architectures, where packets destined to VMs are
handled by virtual switches rather than by the hypervisor itself.

In [17], Mobile IP is used to assist the migration process.
Traffic from/to the VM is routed through a home agent, which
tunnels it to the correct server hosting the VM. It is the role
of the hypervisor to update the home agent with the new
location of the VM once it has migrated. Thus, after VM
migration, packets can wrongfully reach the source host before
registration of the new location is complete. This approach is
improved in [18], by configuring, before migration, a dummy
secondary interface for the destination network, and swapping
primary and secondary interfaces after migration. This requires
co-operation with the VM as two interfaces are used.

In [19], LISP is used to address the issue of Layer-3
connectivity during VM migration. Packets destined to a VM
traverse a LISP router, which encapsulates them towards the
current resource locator of the VM. The hypervisor is modified
so that, after VM migration, the mapping system is updated
to reflect the new resource locator of the VM. This avoids
triangular routing, but once again the VM is not reachable
during the period of time when the mapping is being updated.

Finally, some other approaches are orthogonal to the context
of this paper, but worth mentioning. In [20], TCP options
are used to facilitate migration of TCP connections. In a
Software Defined Networking (SDN) context, [21] proposes a
framework for virtual router migration, in which control planes
and data planes are migrated during two distinct phases.

II. SR-BASED MIGRATION

This paper assumes that a VM is located within an IPv6
data-center, and accessible through a virtual address (VIP).
Each machine within the data-center is accessible at a physical
address (PIP), and can host several VMs. A location database
maintains a mapping between each virtual address and the
physical address of the server hosting the corresponding VM.
Located at the edge of the data-center, a gateway advertises

data plane
control plane

physical
machine

VM

hyper
-visor

vRouter

location
database controller

gateway

(c::, vip::) (c::, s1::, s2::, vip::)

(c::, vip::)

VIP::/64

s1::/64

vip:: à {s1::, s2::}

physical
machine

VM

hyper
-visor

vRouter

VIP::/64

s2::/64

migration

Figure 1. SR VM Migration: migrating VM.

(e.g. with BGP) the whole virtual address prefix. When receiv-
ing traffic for a given VIP, the router will steer it through an
SR policy consisting of one segment, namely the PIP of the
machine hosting the VM. Each machine is running a virtual
router (in our implementation, VPP1), which is connected
to the physical interface(s) of the server, and to each VM
by means of a virtual interface (in our implementation, a
vhost-user interface). In sum, under normal operation
(when the VM is running on a single host), the gateway will
tunnel traffic for a VM towards the machine hosting it.

The mechanism introduced in this paper assumes that a con-
troller is running in the data-center, which decides about the
allocation of VMs to physical machines. When the controller
decides to move a VM from a host to another, it proactively
modifies the routing tables of the gateway, so that the traffic for
the corresponding VIP is steered into an SR policy consisting
of two segments, corresponding to the old and new machines
hosting the VM. This way, when the VM is migrating, the
gateway will steer traffic to the old host. As long as the VM
has not completed migration, traffic will be intercepted by the
old host (figure 1); as soon as migration is complete, the old
host will simply forward traffic to the next segment, namely
the new host. This way, no synchronization is required between
the old host and the network: traffic is loosely sent to a logical
path comprising both hosts.

III. DETAILED SPECIFICATION

This section introduces a formal description of the SR
functions necessary to perform zero-loss migration, as well
as the behavior of the gateway.

A. Segment Routing Functions

Three SR functions are defined:
1) Forward to Local (fw): The fw function simply for-

wards the packet to the next segment. In SR terminology [22],
this corresponding to the END behavior.

2) Forward to Local if Present (fwp): The fwp function
forwards the packet to the last segment (skipping intermediary
segments), only if the corresponding VIP v is present locally;
otherwise it acts as the fw function and forwards the packet to

1https://gerrit.fd.io/r/vpp

(c::, vip::)

V
M

V
M

gateway vRouter

vip::/128

vRouter

(c::, vip::) (c::, s1::, vip::) (c::, vip::)

R(s1)
VM running on s1

Controller updates
gateway before

migration
vip::/128

Hypervisor starts
migration,

VM running on s1,
VM stopped on s2

(c::, vip::) (c::, s1::, s2::, vip::) (c::, vip::)

M(s1,s2) up => forward
to local

(c::, vip::) (c::, s1::, s2::, vip::) (c::, vip::)

M(s1,s2) up => forward
to local

Pre-copy finished,
VM stopped on s1,
VM stopped on s2

(c::, vip::) (c::, s1::, s2::, vip::)

M(s1,s2) down => forward
to next segment

(c::, s1::, s2::, vip::)

down => buffer

Sync finished,
VM destroyed on s1,

VM running on s2

(c::, vip::) (c::, s1::, s2::, vip::)

M(s1,s2) absent => forward
to next segment

(c::, s1::, s2::, vip::)

up => release buffer
and forward to local

(c::, vip::)

Controller updates
gateway after

migration

(c::, vip::) (c::, s2::, vip::) (c::, vip::)

R(s2)

Iterative copy
Last copy

client

c::/128 s1::/64 s2::/64

Figure 2. SR Migration: detailed example.

the next segment. The forwarding decision is made by the vir-
tual router by inspecting its routing table, and seeing whether
the entry for v corresponds to a virtual (local) interface, whose
link-status is up. This corresponds to the END.S behavior [22]
with a custom policy for forwarding decisions.

3) Buffer and Forward to Local (bfw): The bfw function
inspects the last segment v. If v is not present locally (i.e. if the
corresponding virtual interface is not ready), it will buffer the
packets for further delivery. Otherwise, it flushes any buffered
packet to the virtual interface corresponding to v, and forwards
the current packet to the last segment v.

This is achieved thanks to a packet buffer in the virtual
router, which must be provisioned with a size large enough to
handle all potential packets coming during the VM downtime
phase. If a VM is expected to receive traffic at rate of r
packets/s and to be down during ∆t seconds, buffers must
be provisioned with a size of r ·∆t packets.

B. Gateway Operation

For each VIP v, the controller maintains an entry L(v)
in the gateway which is either R(s1) (“running on s1”) or
M(s1, s2) (“migrating from s1 to s2”), depending on the state
of v. Conceptually, this forms a mapping v 7→ L(v), where
L(v) is the location of v. Practically, this is implemented by
means of routing adjacencies in the FIB of the gateway. The
gateway uses the transit behavior T.INSERT [22] for v, that
is, this routing adjacency triggers insertion of an SR header on
packets destined to v. When the gateway receives a packet for
v, if the corresponding entry L(v) is R(s1), then a SR header2

(s1::fw, v) is inserted. If the corresponding entry L(v) is
M(s1, s2), then a SR header (s1::fwp, s2::bfw, v) is inserted.

2SR headers are shown in reverse packet order (traversal order).

C. Detailed Migration Process

1) Normal Operation: Under “normal operation”, that is,
when a VM v is running on a server s1, the gateway is
configured to map v to L(v) = R(s1). Thus, packets destined
to v are forwarded to s1 by means of a single-hop SR tunnel.

2) Migration Operation: Figure 2 provides an example of
the operation that occurs when a VM is migrated. When the
controller decides to move v from s1 to s2, it updates the
gateway so as to remap the entry for v to L(v) = M(s1, s2).
It then queries the hypervisors running on s1 and s2 to initiate
the live migration process.

As a first step, the VM is stopped on s2 and running on s1,
while the memory of v is iteratively copied by the hypervisor
(out-of-band) from s1 to s2. The gateway inserts an SR header
(s1::fwp, s2::bfw, v) in the packets it receives for v. Since the
virtual router on s1 sees that the virtual interface of the VM is
up, upon triggering of the fwp function, it will simply forward
these packets to that interface (skipping the s2 segment).

As a second step, the hypervisor has finished iteratively
copying the memory of the VM to the new host, and needs
to perform the copy of the last memory pages as well as the
CPU state. At this point, the VM is stopped on both s1 and
s2. The gateway still inserts an SRH (s1::fwp, s2::bfw, v) in
packets it receives. Now that the VM is stopped on s1 (which
the virtual router at s1 detects by inspecting the status of the
corresponding virtual interface, now in link-down state), the
fwp function will simply forward packets to the next segment.
Since s2 is not yet running the VM (which the virtual router
at s2 detects by inspecting the status of the corresponding
virtual interface, also in link-down state), the bfw function
will temporarily buffer the packet.

As a third step, the VM is started back on host s2. Before
the controller (and thus the gateway) is notified of this, the
gateway has a stale mapping L(v) = M(s1, s2), and the same
SRH is inserted in the packets destined to v. Thus, the first
server s1 forwards these to s2. Now, the bfw function on
s2 will trigger release of the buffered packets to the virtual
interface of the VM, and further packets are forwarded without
buffering.

As a fourth step, the controller is notified of the end of the
migration, and can update the gateway to map v to L(v) =
R(s2): normal operation resumes, packets reach s2 directly.

IV. EVALUATION

A. Testbed and Methodology

The SR functions described in section III-C have been im-
plemented as VPP plugins. No collaboration between VPP and
the hypervisor is needed; rather, forwarding decisions are made
from within VPP by inspecting the state of the vhost-user
interface corresponding to the VM of interest. Buffers for the
bfw function are sized to 8192 packets (consuming 16 MB
of RAM), allowing to sustain MTU-sized traffic at ≈ 1 Gbps
for a typical VM downtime of 100 ms.

A simple testbed is set up with three physical machines,
as in figure 1: the first one plays the role of a gateway

 2500
 3000
 3500
 4000
 4500

 2500 3000 3500 4000 4500

R
ec

ei
ve

d
(m

s)

Sent (ms)

Non-SR migration

 2500
 3000
 3500
 4000
 4500

 2500 3000 3500 4000 4500

R
ec

ei
ve

d
(m

s)

Sent (ms)

SR migration, drop

 2500
 3000
 3500
 4000
 4500

 2500 3000 3500 4000 4500

R
ec

ei
ve

d
(m

s)

Sent (ms)

SR migration, buffer

 2500
 3000
 3500
 4000
 4500

 2500 3000 3500 4000 4500

R
ec

ei
ve

d
(m

s)

Sent (ms)

No migration

Figure 3. Illustration of SR migration: ping experiment for the different
mechanisms.

gw, and the two other ones s1, s2 represent compute nodes,
which are candidates to host virtual machines. A client VM
v1 (representing the “outside” of the data-center) is attached
to the gateway. A VM v0 represents a server that will be
migrated. That VM is first running on s1, then migrated from
s1 to s2. In order to reflect this, the gateway is configured in
the M(s1, s2) state, i.e. it inserts (s1::fwp, s2::bfw, v0) in all
packets destined to v0. Four mechanisms are compared:

1) no-migration, i.e. the VM is not migrated;
2) non-SR migration (“baseline scenario”), i.e. the gateway

is first in state R(s1), and once the migration is complete
the controller puts the gateway in state R(s2) (without
going through a migration state M(s1, s2));

3) SR migration without buffer, i.e. the gateway is in state
M(s1, s2) but packets received on s2 while the VM is
not yet up are dropped instead of buffered;

4) SR migration with buffer (“zero-loss migration” as in
section III-C), i.e. the gateway is in state M(s1, s2) and
packets received on s2 while the VM is not yet up are
buffered.

The baseline scenario serves as an illustration of mechanisms
such as LISP-based migration [19], wherein packet loss occurs
due to the locator mapping being updated only after migration.

B. Ping (illustration)

In order to illustrate the behavior of these four mechanisms,
a ping3 is run between the client VM v1 and the server VM
v0, while v0 is migrated. One packet is sent every millisecond,
and the RTT for each packet is recorded. Figure 3 shows
the time at which an echo answer is received as a function
of when the corresponding echo request was sent. Without
migration, each answer is received approximately 0.1 ms
after the corresponding query is sent. With non-SR migration,
packets were lost during 722 ms (corresponding to the VM
downtime, plus the network reconfiguration time), whereas
with SR migration without buffer, packets were lost for only
174 ms (corresponding to the VM downtime). Finally, with
SR migration with buffer, 175 packets were buffered while the
VM was down, and replied to as soon as the VM went up
again.

3In its standard implementation, the ping utility adapts its sending rate if
it sees that probes are not replied to. Here, it was recompiled so that packets
are sent with the same rate, no matter how many of them are not answered.

0

0.9

0.99

0.999

 0.001 0.01 0.1 1

C
D

F

Response time (s)

Non-SR migration
SR migration, drop

SR migration, buffer
No migration

Figure 4. Evaluation of SR migration: response times for the static HTTP
workload, λ = 1500 s−1 (log-log scales).

0

0.9

0.99

0.999

 0.001 0.01 0.1 1

C
D

F

Response time (s)

Non-SR migration
SR migration, drop

SR migration, buffer
No migration

Figure 5. Evaluation of SR migration: response times for the dynamic HTTP
workload, λ = 1500 s−1 (log-log scales).

C. HTTP Workload (ants)

To understand the behavior of SR-migration when facing
a delay-sensitive workload, a simple evaluation scenario is
carried out. The server VM v0 is set up with an Apache HTTP
server – serving a default static file (whose size is 12 KB). As
previously, the VM is first running on s1, then migrated from
s1 to s2. A traffic generator is attached to the gateway, sending
a Poisson stream of 6000 queries with rate λ = 1500 s−1,
during which the VM is migrated. The experiment is repeated
10 times, for each of the four previously-introduced evaluation
scenarios. Response times for all queries are recorded and
reported in figure 4.

The majority of queries are executed when the VM is not
migrating, and exhibit small response times (≤ 3 ms). The
other queries correspond to those that started while the VM
was migrating. With non-SR migration, TCP SYN packets are
lost when the VM is down, but some are also lost after the
VM has restarted on s2, due to the reconfiguration delay. Due
to the SYN retransmit delay of 1 s, those queries exhibit a
response time ≥ 1 s (more than 19% of queries are concerned).
With SR migration without buffer, TCP SYN packets are lost
when the VM is down, but as soon as the VM is up they
are successfully transmitted again. This explains why queries
suffering from a SYN retransmit are less numerous than with
the baseline scenario: less than 4% of queries have a response
time greater than 1 s. Finally, with SR migration with buffer,
TCP SYN packets are buffered while the VM is down. The
corresponding response time is simply delayed by the VM
downtime (≈ 100 ms in these experiments), rather by the SYN
retransmit delay. Less than 0.7% of queries exhibit a response

 0

 2

 4

 0 2 4 6 8 10

Th
ro

ug
hp

ut
(G

bp
s)

Non-SR migration

 0

 2

 4

 0 2 4 6 8 10

Th
ro

ug
hp

ut
(G

bp
s)

SR migration, drop

 0

 2

 4

 0 2 4 6 8 10

Th
ro

ug
hp

ut
(G

bp
s)

SR migration, buffer

 0

 2

 4

 0 2 4 6 8 10Th
ro

ug
hp

ut
(G

bp
s)

Time (s)

No migration

Figure 6. Evaluation of SR migration: instantaneous aggregate throughput,
for one iperf run with 50 clients.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
D

F

Instantaneous throughput (Gbps)

Non-SR migration
SR migration, drop

SR migration, buffer
No migration

Figure 7. Evaluation of SR migration: distribution of the instantaneous
aggregate throughput, over the 10 iperf runs with 50 clients.

time greater than 1 s, whereas more than 99.2% of queries
have a response time lower than 200 ms.

A similar experiment is then performed on a more realistic
workload. This time, the workload consists in drawing a
random number k (from an exponential distribution with mean
E[k] = 4) and serving k copies of the previous static file. This
allows to induce variability in the response times, as well
as more network traffic. Again, the experiment is repeated
10 times, and client response times are recorded: results are
depicted in figure 5. With non-SR migration, more than 19%
of queries are replied to within 1 s or more. In comparison,
less than 4% of queries exhibit a response time greater than
1 s with SR migration without buffer, and this drops to 0.4%
for SR migration with buffer. Furthermore, 99.5% of queries
are served within less than 200 ms with the latter mechanism.

D. Iperf Workload (elephants)

The previous set of experiments gave insight on the behavior
of the different migration mechanisms in presence of short-
lived flows. To understand the influence of SR-migration on
longer connections, an experiment with parallel TCP flows is
performed. The same experimental platform as in the previous
section is used – except that this time, a delay of 2.5 ms is
added between the VM v1 (representing clients) and the VM
v0 (representing the server to be migrated), so as to represent
clients outside the data center. An instance of iperf with 50

 0

 2

 4

 0 2 4 6 8 10

Th
ro

ug
hp

ut
(G

bp
s)

Non-SR migration

 0

 2

 4

 0 2 4 6 8 10

Th
ro

ug
hp

ut
(G

bp
s)

SR migration, drop

 0

 2

 4

 0 2 4 6 8 10

Th
ro

ug
hp

ut
(G

bp
s)

SR migration, buffer

 0

 2

 4

 0 2 4 6 8 10Th
ro

ug
hp

ut
(G

bp
s)

Time (s)

No migration

Figure 8. Evaluation of SR migration: instantaneous aggregate throughput,
for one iperf sink run with 50 clients.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
D

F

Instantaneous throughput (Gbps)

Non-SR migration
SR migration, drop

SR migration, buffer
No migration

Figure 9. Evaluation of SR migration: distribution of the instantaneous
aggregate throughput, over the 10 iperf sink runs with 50 clients.

parallel connections is started on the client VM, for 10 seconds
(the rationale for using many parallel connections is to smooth
the effects of TCP congestion control). In the meantime, the
server VM is migrated from machine s1 to s2, using the same
4 mechanisms as before. The experiment is repeated 10 times.

Figure 6 depicts the instantaneous throughput (aggregated
over the 50 subflows) for one of the 10 runs, collected every
0.5 s. Before and during VM migration, the throughput is
rather stable, oscillating around 3.5 Gbps. When the migration
ends, around t = 7s, there is a drop in throughput, due to the
VM downtime (≈ 150 ms in these experiments). While this
drop is significant with non-SR migration (going to 1.8 Gbps
in the run reported in figure 6), it remains reasonably high
with SR migration (2.7 Gbps in this experiment). The low
performance of non-SR migration can be explained by TCP
reducing its congestion window, due to the large amount of
time when no packets are received by the VM. With SR
migration, this downtime is lower, and thus the congestion
window is less reduced. The impact of buffering, versus
dropping packets while the VM is not yet up on the new host,
seems to be negligible.

In order to quantify these behaviors, figure 7 depicts the
distribution of the instantaneous aggregate throughput (col-
lected every 0.5 s), over all the 10 runs. With the no migration
scenario, the instantaneous throughput stays between 2.9 and

3.7 Gbps. SR migration is able to maintain the throughput
above 2.3 Gbps at all times, whereas with non-SR migration
the instantaneous throughput can drop to 0.4 Gbps during the
migration phase. With non-SR migration, the throughput is
lower than 2.2 Gbps for 5% of the time (compared to never
with SR migration), and lower than 2.9 Gbps for 10% of the
time (compared to 5% of the time with SR migration).

E. Iperf Sink Workload

The same set of experiments is repeated, except that in this
case the iperf instance running in the VM is acting as a sink.
This can model use-cases where the VM receives a lot of
data – for instance, if it is an HTTP proxy or a firewall. In
such a scenario, packets lost during the migration process are
actual data packets (rather than simple TCP acknowledgements
packets, as in the previous set of experiments), thus packet loss
is expected to have a greater influence on the overall quality
of service.

As previously, figure 8 reports the instantaneous throughput
(aggregated over the 50 subflows) for one of the 10 runs,
collected every 0.5 s. This time, the drop in throughput when
using non-SR migration is more critical, going to 0.2 Gbps.
Figure 7 depicts the CDF of the instantaneous aggregate
throughput as collected every 0.5 s, over the 10 runs. Non-
SR migration still exhibits low performance, with the 5-th
percentile for throughput being 0.6 Gbps, as compared to
1.9 Gbps for SR migration. Furthermore, in this case, there
is a (small yet perceptible) benefit from buffering packets
vs dropping them when using SR migration, as each x-th
percentile for throughput is greater with SR migration with
buffer than with SR migration with drop.

V. CONCLUSION

This paper has introduced a mechanism to perform zero-loss
VM migration in IPv6 data-centers. Contrary to traditional
approaches, which maintain connectivity to migrating VMs
reactively by updating the location of VMs after they have
migrated, this paper introduces a proactive mechanism, which
pre-provisions a logical path through which packets will flow
shortly before, during, and shortly after, migration. This is
enabled by the use of IPv6 Segment Routing, allowing to steer
packets destined to a migrating VM through this logical path.
This way, coupling between the data plane and the hypervisor
is reduced to a minimum: the only operation that a virtual
router performs upon receipt of a packet, is checking whether
the corresponding interface is up, and forward the packet
locally or to the next segment accordingly. Implementation
on a real virtual router, VPP, and evaluation by means of
diversified workloads, show that the proposed mechanism is
indeed able to provide zero-loss VM migration, with benefits
both in terms of TCP throughput and session opening latency.

This paper has focused on VMs processing traffic from/to
the outside of the data-center, i.e. egress-facing servers or
virtual network functions. An interesting question to be inves-
tigated is how to use similar techniques to provide seamless
migration for VMs handling intra-data-center traffic.

REFERENCES

[1] C. Clark et al., “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

[2] R. Bolla et al., “Seamless and transparent migration for tcp sessions,”
in Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014
IEEE 25th Annual International Symposium on. IEEE, 2014, pp. 1469–
1473.

[3] R. W. Ahmad et al., “A survey on virtual machine migration and server
consolidation frameworks for cloud data centers,” Journal of Network
and Computer Applications, vol. 52, pp. 11–25, 2015.

[4] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient VM scheduling
for cloud data centers: Exact allocation and migration algorithms,” in
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing. IEEE, 2013.

[5] D. kakadia, N. Kopri, and V. Varma, “Network-aware virtual machine
consolidation for large data centers,” in NDM ’13 Proceedings of the
Third International Workshop on Network-Aware Data Management.
ACM (6), 2013.

[6] D. Zeng, L. Gu, and S. Guo, “Cost minimization for big data processing
in geo-distributed data centers,” in Cloud Networking for Big Data.
Springer, 2015, pp. 59–78.

[7] Y. Wang et al., “Virtual routers on the move: live router migration
as a network-management primitive,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4. ACM, 2008, pp. 231–242.

[8] M. Mahalingam et al., “Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” RFC 7348, Aug. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7348.txt

[9] P. Garg and Y.-S. Wang, “NVGRE: Network Virtualization Using
Generic Routing Encapsulation,” RFC 7637, Sep. 2015. [Online].
Available: https://rfc-editor.org/rfc/rfc7637.txt

[10] D. B. Johnson, J. Arkko, and C. E. Perkins, “Mobility Support
in IPv6,” RFC 6275, Jul. 2011. [Online]. Available: https://rfc-
editor.org/rfc/rfc6275.txt

[11] D. Saucez et al., “Designing a deployable internet: the locator/identifier
separation protocol,” Internet Computing, IEEE, vol. 16, no. 6, pp. 14–
21, 2012.

[12] S. E. Deering, “Internet Protocol, version 6 (IPv6) specification,” in
Requests For Comments. IETF, 1998, no. 2460.

[13] T. Herbert, “Identifier-locator addressing for network virtualization,”
https://tools.ietf.org/html/draft-herbert-nvo3-ila-01, 2015.

[14] C. Filsfils et al., “The segment routing architecture,” in 2015 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–6.

[15] ——, “IPv6 Segment Routing Header (SRH),” Internet Engineering Task
Force, Internet-Draft draft-ietf-6man-segment-routing-header-14, 2018,
work in Progress.

[16] R. Bradford et al., “Live wide-area migration of virtual machines
including local persistent state,” in Proceedings of the 3rd international
conference on Virtual execution environments. ACM, 2007, pp. 169–
179.

[17] Q. Li et al., “Hypermip: Hypervisor controlled mobile ip for virtual
machine live migration across networks,” in High Assurance Systems
Engineering Symposium, 2008. HASE 2008. 11th IEEE. IEEE, 2008,
pp. 80–88.

[18] H. Watanabe et al., “A performance improvement method for the global
live migration of virtual machine with ip mobility,” in Proceedings of
the Fifth International Conference on Mobile Computing and Ubiquitous
Networking (ICMU 2010), vol. 94, 2010, pp. 1–6.

[19] P. Raad et al., “Achieving sub-second downtimes in large-scale virtual
machine migrations with lisp,” IEEE Transactions on Network and
Service Management, vol. 11, no. 2, pp. 133–143, 2014.

[20] U. Kalim et al., “Seamless migration of virtual machines across net-
works,” in Computer Communications and Networks (ICCCN), 2013
22nd International Conference on. IEEE, 2013, pp. 1–7.

[21] D. M. F. Mattos and O. C. M. B. Duarte, “Xenflow: Seamless migration
primitive and quality of service for virtual networks,” in Global Com-
munications Conference (GLOBECOM), 2014 IEEE. IEEE, 2014, pp.
2326–2331.

[22] C. Filsfils et al., “SRv6 Network Programming,” Internet Engi-
neering Task Force, Internet-Draft draft-filsfils-spring-srv6-network-
programming-05, 2018, work in Progress.

