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Abstract— The Internet of Things (IoT) is an environment that can 
be divided in three large layers: the sensor/actuator level where a 
wide variety of objects with different computing, sensors and 
communication capabilities resides, the communication layer with 
wireless technologies such as ZigBee, Bluetooth and emerging 
6LoWPAN (e.g LoRa), and the intelligence layer, where 
computing analytics/decisions occur. IoT can be used for 
monitoring, inferring problems, decision making at a business 
level or actuating at the edge via IoT nodes. As the IoT sensor 
network grows, an enormous amount of data from multiple 
sources flows  to the intelligence layer. In order to make decisions 
based on analytics over these data, the measurements need to be 
precise and accurate. Data fusion is an effective way to improve 
data quality, however, IoT environments are still evolving and the 
best way and location where data fusion should happen is an open 
problem. This paper presents one potential strategy for IoT sensor 
data fusion by implementing multi-sensor data fusion as 
microservices using a container platform built into an opensource 
IoT middleware based in a fog computing infrastructure which is 
can scale automatically as the influx of data from the IoT nodes 
grows. A number of data fusion tests were performed for different 
amounts of IoT nodes and sensor readings over ZigBee and LoRa 
using a specific data fusion algorithm. The results show that, the 
strategy can be effectively used in IoT heterogeneous 
environments. 
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I. INTRODUCTION AND MOTIVATIONS 

The Internet of Things (IoT) refers to an environment with a 
number of heterogeneous intelligent objects totally 
interconnected, capable of communicating through the Internet 
using many different transport protocols [7][9].  IoT is a part of 
the Future Internet [11] with billions of very low-cost tiny 
objects with low energy consumption, different processing and 
memory capabilities which resorts to a high-level intelligent 
layer whenever specific service is needed.  These devices reside 
at the edge of the Internet and are known as “things”, therefore 
IoT [9]. In IoT, “things” have capacities such as remote sensing 
and actuation based on IoT nodes wirelessly interconnected. 
The sensing/actuation capacity of a population of objects 
present in an environment have become a synonym to the 
concept of pervasive or ubiquitous computing, defining IoT 
capacity as an environment capable of sensing-computing-
actuating [9]. IoT will be applied to most industries in 
innovative applications and in augmenting of existing 
applications, proving pervasive connections and sensing to 
machinery. However, the effort for adapting the infrastructure, 

communication, interfaces, protocols and standards among 
others, and the heterogeneity of such environments, might lead 
to a decision of replacing existing devices to more up-to-date 
IoT devices, which is not always possible when we consider the 
level of automation and the complexity of the existing solution. 
That explains why the full potential of the IoT will be difficult 
to realize. IoT will be a major producer of big data and become 
“a global infrastructure for the information society, which will 
rely on shared data from IoT, enabling advanced services by 
interconnecting (physical and virtual) things based on existing 
and evolving interoperable information and communication 
technologies” [1].   

Data fusion is defined as the theory, techniques and tools 
which are used for combining sensor data, or data derived from 
sensory data, into a common representational format [1][5][8]. 
A timely fusion and analysis of big data (volume, velocity, 
variety, and veracity), acquired from IoT and other sources, to 
enable highly efficient, reliable and accurate decision making 
and management of ubiquitous environments would be a grand 
future challenge. Computational intelligence would play a key 
role in this challenge. In this context, this work makes  a 
contribution by experimenting one potential strategy for IoT 
sensor data fusion in the fog instead of performing it at the IoT 
nodes which in a real scenario are based on a variety of 
hardware features and different computing capabilities, some 
very limited, making it difficult to implement and maintain a 
stable data fusion algorithm in every IoT node, which are likely 
to be by the thousands. To overcome such problem, we did 
implement a multi-sensor data fusion as microservices using a 
container platform built into an opensource IoT middleware 
based in a fog computing infrastructure. This paper is organized 
as follows: section II discusses the strategies for using different 
protocols, architecture features, standards and communication 
technologies, section III verses about data fusion, section IV, 
describes the implementation of data fusion strategy in the fog, 
followed by the discussion of the results achieved by 
performance tests in section V which shows that the strategy is 
feasible and finally a conclusion in section VI.   

II. IOT HETEROGENEITY CHALLENGE 

The development of the IoT has enabled a variety of different 
applications in different markets and sectors and new business 
models such as PSS – Product Service Systems [13]. Intelligent 
things are part of end-to-end processes which make decisions 
based on context information provided by IoT [9].  IoT enables 
digital business by merging the physical and virtual worlds in a 
continuous effort over existing processes and solutions [11]. 



 

 

IoT can be viewed as a distributed computing environment 
composed by three large layers: 1. Sensor/actuator network 
layer composed of a wide variety of sensor objects (the IoT 
nodes), computational capacities, architectural features, and 
different communication interfaces and standards for 
interconnection; 2. Communication layer which make use of 
different wireless communication technologies including WiFi 
– IEEE 802.11abgn, ZigBee – IEEE 802.15.4, Bluetooth 4.2/5 
– IEEE 802.15 and emerging technologies such as LoRa based 
on LoRaWAN open standard, SigFox and NB-Weightless-P 
among others [9]. 3. Intelligence layer located in a fog/cloud 
computing supported by an IoT middleware which manages 
IoT nodes by means of Virtual Objects (VO) including security, 
sensor data collection and actuation messages. The IoT 
middleware also provides connection to NoSQL for storing 
fused sensor data.  

 In IoT, message transport protocols need to be agnostic to 
the communication technology used at link level. MQTT 
(Message Queue Telemetry Transport) – ISO/IEC PRF 20922, 
a publish/subscribe lightweight messaging protocol designed 
for constrained environments such as M2M (Machine to 
Machine) communications and the IoT middleware, is 
becoming the most adopted standard. MQTT is a many-to-
many communication protocol which support   three semantics 
for persistence: at most once, at least once and exactly once, 
very adequate for requirements of continuously event reporting 
from IoT sensor reads [9]. MQTT allows a continuous 
transportation of event sensor data with a very low overhead. 
Wireless technologies such as LoRa, provides long range 
communication, up to 25-30km with very low bandwidth of 
around 9600-48000 bps. Usually LoRa implementations drop 
completely the TCP/IP stack resorting to LoRa frames routing 
only up to the gateway in order to minimize the effect in the 
latency due to the stack processing overhead of the protocol. 
MQTT data is unstructured, meaning that endpoints at IoT 
nodes and endpoints at IoT middleware must know in advance 
how to encode and decode exchanged messages. CoAP – 
Constrained Application Protocol [9], is another protocol 
specifically designed for IoT and M2M – directed to simple 
low power devices at the IoT node level. It uses the 
request/reply model using a RESTful paradigm and a built-in 
service and resource discovery.  CoAP has the advantage of 
providing inbuild support for metadata and content negotiation 
making it very suited for transferring state information 
between IoT nodes and the middleware making it suitable for 
solutions with central intelligence, which is not the case in this 
project. This paper focus on the provision of data fusion built 
into the IoT middleware in order to deal with the heterogeneity 
encountered on the sensor and communication layers. 

III. DATA FUSION FOR IOT 

   By 2020, it is expected that the number of IoT sensor 
objects might reach 50 billion becoming the main generator of 
Big Data. A major challenge will be to provide data fusion 
capability to enhance the quality of data for analysis in proper 
and flexible manners in the IoT environment in different 
applications such as smart cities and agricultural farms. In IoT, 
large amount of data is produced in small periods of time – 
reliable data and accurate information are critical in IoT – the 

amount of errors in data collected grows with the volume. The 
basis for planning, decision-making and control of intelligent 
autonomous machines [15] is data accuracy which can be 
achieved through the use of data fusion, an efficient way of 
optimally utilizing large volumes of data from multiple sources 
[3][6][10]. Multi-sensor data fusion seeks to combine 
information from multiple sensors to achieve inferences that 
would not be possible from a single IoT sensor data source. The 
core of the fusion and data is not in the architecture but in the 
data fusion methods [4]. However, depending on the method, 
the computational power required may be higher or lower – in 
this way the execution of data fusion at IoT nodes is dependent 
on available computing power. On the other hand, the 
implementation of data fusion in IoT middleware at the fog can 
be crucial for applications that require the reading of data from 
numerous sensor sources and data analysis through the use of 
artificial intelligence for predicting breaks based on inference 
and decision making of actuation in different IoT nodes. This 
explains why we have taken decision to implement the sensor 
data fusion in the fog. Artificial intelligence (AI) also has a 
crucial role in IoT especially in IoT applications where 
prediction and inference are used in the process of decision 
making. In this way, implementing the data fusion in the fog 
enables the evolving of different algorithms including those for 
Machine Learning (ML) or Deep Learning (DL) over fused 
data, in a more straightforward manner. Application areas of 
IoT such as autonomous vehicles can use data fusion strategies 
such as DL which is commonly used in complex multimodal 
learning procedure, as an example in the extraction of 
correlated audio and video characteristics. DL model can also 
be applied for deep multimodal fusion of discrete events [2]. 
DL-based data fusion methods domains include data fusion for 
activity recognition, data fusion for network traffic and 
pedestrian detection [1] – all of them IoT enabled applications. 
The use of DL techniques in data fusion demand computational 
resource consumption and a very large amount of training data, 
another reason to locate the IoT data fusion at the fog. 

IV. FOG BASED IOT DATA FUSION IMPLEMENTATION 

Scenario: The work described in this section is a part of a 
research project which focus on precision agriculture. At 
present, data collection and analysis for precision agriculture in 
Brazil is either done locally using sensors connected to onboard 
computers in tractors and trucks or data is entered manually in 
handheld devices and sent to a central database using mobile 
communication when available or satellite communication in 
remote areas [14]. Sample of soil, crops, pests and so on, are 
collected in many different locations and then taken a 
laboratory for analysis. It is an expensive and inefficient 
methodology, not to mention that it is nearly impossible to 
monitor and make actuations remotely due to data latency. 
Based on this scenario, the main project aims to develop a low 
cost multisensory IoT solution architecture to replace and also 
incorporate existing solutions which are based on a variety of 
devices, software, proprietary data formats and interfaces as 
well as several communication technologies such as 3G, 4G, 
WiFi, ZigBee and satellite. The requirements for the project 
corroborate with the discussion made here so far: the solution 
should be able to deal with a variety of existing solutions such 
as micro weather stations disconnected to the internet, be able 



 

 

to incorporate existing solutions, be able to collect sensor data 
over very long distances in sugar cane fields, from a variety of 
sensors. To attend that, we decided to use two different IoT 
modules for interfacing with existing sensors and for 
connecting weather stations to the Internet: one based on 
Arduino equipped with ZigBee radio and the other based on 
ESP32 with a LoRa and WiFi radios onboard. For the gateway 
side, the ZigBee networks uses a Raspberry Pi 3 B+ and the 
LoRa network uses the same ESP32. The initial solution was 
developed for collecting sensor data from micro meteorological 
stations positioned at distances varying from 10 to 2000 meters 
using ZigBee (up to 500 meters) and LoRa. 

The proposed solution architecture in Fig.1 depicts the IoT 
nodes connecting with a fog-based IoT middleware through 
LoRa and ZigBee gateways. The IoT middleware is an 
opensource construction from Kaa IoT [16] version 0.9 which 
features an architecture based on a cluster of processing nodes. 
Each processing node run a combination of services for control, 
operations and bootstrap. Control services manages system 
data, processes web APIs and external system calls. Apache 
Zookeeper maintains nodes running with high availability.  

 

Fig. 1. Fog-based data fusion architecture for heterogeneous IoT sensors 

The operations service is in charge of communicating with 
multiple IoT nodes concurrently. When all the processing nodes 
are setup with operations services enabled, the cluster scales 
horizontally automatically also providing load balancing in the 
processing nodes. The bootstrap service is in charge of 
managing IoT nodes and connection parameters which might 
include IP address, TCP port, security credentials and so on. It 
maintains the list of services operations available which can be 
retrieved by the IoT nodes. IoT nodes are maintained as virtual 
objects (VO´s) inside the IoT middleware. In this project, 
messages are handled by a MQTT broker built on top of the IoT 
middleware as shown in Fig.1, for routing incoming messages 
from IoT nodes to topic subscribers using JSON format. The 
topics in this case are sensor data reads from IoT nodes and the 
subscribers are DFMC - data fusion microservice containers. 
Each VO, an IoT node metadata structure, has at least one 
correspondent DFMC. In the present implementation, JSON 
formatted messages from IoT nodes are made available for 
consuming at the corresponding microservice through the IoT 
cluster nodes operations services which is running the MQTT 
broker. The microservice containers platform used to 
implement DFMC in this  project is the Docker implementation  
running on the IoT middleware cluster nodes on the same server 
machine supported by Ubuntu 18.04 fog infrastructure. When a 
JSON message coming from an IoT node arrives at its 
corresponding DFMC in the platform, the data fusion is  
performed over the data and the result is written in a MongoDB 

database (NoSQL) using Avro (a remote procedure call which 
implements a pipeline over a source-sink channel framework 
which compacts the source data into a  binary format called 
BSON) – a binary JSON [17]. MongoDB is a document-
oriented database organized in individual rows of BSON 
documents with no particular schema, residing at the fog 
infrastructure in this project. 

The initial data fusion implementation uses the Chauvenet 
criterion which is very useful for a measurement series when 
some particular measurements strikingly differs from the 
majority and must be rejected [15]. However, the Chauvenet 
criterion has some limitations on its use as a fusion algorithm 
because it evaluates whether a point deviates from the average 
of the values which could cause the elimination of correct 
values in case the majority of the readings are erroneous. The 
theory of Dempster Shafer allows a combination of evidence 
from a variety of sources to achieve a degree of credibility, a 
more flexible strategy compared to the Bayesian approach 
which works with probabilities, i.e., the probability that a 
marked point is wrong or correct [18]. Another way to improve 
the accuracy of the data in the fusion process is to increase the 
number of measurements as a function of time. The choice of 
rejecting data is quite controversial for some cases, but in our 
case, the measurements of climate data such as air humidity, air 
temperature, wind vane and speed which normally do not 
change abruptly, this data fusion strategy can be satisfactory 
used. To apply the Chauvenet criterion, for every N 
measurements xi,…,xN of a single quantity x, we calculate X   

the sample mean and σx the sample standard deviation. If one of 
the measurements xsus differs so much from X  then we 

proceeded with the calculation of tsus as shown in (1), which is 
the number of how much they differ. 

 

           
(1) 

Next, we calculate the probability Prob(outside tsusσ) by 
subtracting 100% minus the probability Prob(within tsusσ). The 
probabilities are calculated using the Gauss distribution for a 
specific interval.  The Prob(outside tsusσ) multiplied by N, the 
number of measurements results in n, the expected number as 
deviant as xsus. When n falls below 0.5 then the sample is 
discarded [15]. At present, data fusion is only available as 
DFMC for Chauvenet criterion. Other data fusion algorithms 
will soon be available. The combination of a publish / subscribe 
protocol with DFMC provides the possibility of using different 
data fusion algorithms over the same sensor data in different 
containers, i.e., DFMCs with different data fusion algorithms 
can be subscribers to the same topic - data readings from a 
specific IoT node, making it easy to switch from one data fusion 
strategy to another or even decide which data fusion result is 
better, based on the same set of sensor readings. 

V. RESULTS 

The use of microservices containers paired with endpoints at 
IoT nodes make it possible to perform data fusion in parallel as 
it would have happened if the data fusion were performed at the 
IoT nodes but with the advantage of being in a centralized fog 
infrastructure compared to a distributed network of 



 

 

heterogeneous IoT nodes.  Fig. 2 shows the raw data and fusion 
data in pairs distributed along a number of DFMC´s, showing 
wind speed measurements from a couple of real micro 
meteorological stations, combined with data fabricated in other 
75 IoT nodes based on ESP32. The purpose of this experiment 
was to exercise and demonstrate the proper functioning of data 
fusion implemented as DFMC´s in the IoT platform. Data fusion 
stored in the NoSQL database are interpreted and displayed via 
Apache Zeppelin, a platform capable of data analytics and data 
interpreting from many different sources including MongoDB. 

 

Fig. 2. DFMC - data fusion microservice containers working in parallel. 

The resulting data fusion curve from the Chauvenet criterion 
is shown in Fig. 3 for air humidity over time produced by 4 
sensor reads every 5 seconds at the IoT node at a micro 
meteorological station and sent to a DFCM using Chauvenet 
with N = 4. In this experiment both raw and fusion data were 
stored in order to compare the raw and fusion curves for air 
humidity every 5 seconds. We can notice that in nine occasions, 
air humidity measurements were strikingly out of the mean 
sensor data as the plotted dots of raw data measurements shows. 
That demonstrates the effectiveness of the Chauvenet criterion 
for this specific problem and the usability of the platform 
implemented. 

 

Fig. 3. Fusion data / raw data comparison curves – relative air humidity 

Considering that the data fusion can be timely performed at 
the DFMC, we have then executed a performance test by 
comparing data fusions being executed in the IoT middleware 
with a single DFMC against the same load on a single thread 
data fusion implementing the same algorithm in C and set to run 
in a raspberry pi 3 b+, a common hardware module used in LoRa 
gateways, another potential location for performing data fusion 
in IoT environments.  Fig. 4 shows that when the number of data 
fusion goes beyond 250, the fusion time tends to grow 
exponentially in the gateway contrasting to the quasi linear 
growth in the processing time at the DFMC implemented in the 
platform. 

 

Fig. 4. Data fusion performance – IoT middleware versus IoT gateway 

As the communication links play an important part in the 
message latency from IoT nodes to DFMC, we did compare 
sensor data messages over ZigBee and LoRa by means of round 
trip time (RTT), as depicted in Fig. 5. The measurements were 
done between an IoT node and their gateways, both using radios 
of 915Mhz and a bandwidth of 250 kbps and messages with 48 
bytes long. From 10 up to 200 meters the RTT is roughly the 
same for both technologies. Going upwards, LoRa becomes 4 to 
10 times faster than ZigBee from 350 to 500 meters distance, a 
zone where LoRa performs better than ZigBee for sensor data.  

 

Fig. 5. Comparison of LoRa and ZigBee RTT´s (round trip time) 

This experiment, shows that computing power is a hindrance 
to implement data fusion in gateways or at the edge in the IoT 
nodes – on the other hand the increment of computing power 
allocated by the IoT middleware, as the processing demand 
increases is a key feature for data fusion in large scale IoT 
environments. The better performance of LoRa can be explained 
by the absence of TCP/IP header processing time compared to 
ZigBee which causes an effect on the latency. Also, radio 
modulation of LoRa, which uses CSS – chirping spread 
spectrum, contributes to minimize the need for frame 
retransmission. The peak seen around 300 meters can be 
explained by obstacles, bushes in this case between the IoT 
nodes and the gateways which caused diffraction and 
retransmission. The IoT wireless network will be a matter of 
further work in the next phases of this project, which intend to 
investigate the use of AI algorithms for routing frames and 
stream processing for IoT data fusion using implementations in 
FPGA at gateways and routers.  

VI. CONCLUSIONS 

Data fusion is a compulsory task for sensor data in IoT 
environments. In our experiment the need for data fusion 
appearred in several sensor reads which clearly had wrong 
measurements read from the meteorological stations. The use 
of DFMC in the fog fed by a publish/subscribe mechanism  
have demonstrated to be a straightforward way for IoT data 
collection and data fusion. Although the platform with IoT 
middleware and DFMC were located in a fog computing 
platform in this project, it was possible to witness the dynamic 
increase computing power as the influx of IoT sensor data grew 
showing that the chosen strategy is feasible for heteregeneous 
IoT environments. Beyond that, the use of DFMC developed in 
this work provides a flexible IoT data fusion platform which 
allows the use of different algorithms in new DFMC by simply 
subscribing to the same topic with the MQTT broker. In the 
next phases of this work, additional stress tests using other data 
fusion algorithms and filters will be performed in combination 
with a fast low latency wireless IoT network in order to 
potentially offload intelligence from robots to the fog-based IoT 
platform described in this work. 
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