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Abstract—Efficient network slicing is vital to deal with the
highly variable and dynamic characteristics of traffic in 5G
networks. Network slicing addresses a challenging dynamic
network resource allocation problem where a single network
infrastructure is divided into (virtual) multiple slices to meet the
demands of different users with varying requirements, the main
challenges being — the traffic arrival characteristics and the job
resource requirements (e.g., compute, memory and bandwidth re-
sources) for each slice can be highly dynamic. Traditional model-
based optimization or queueing theoretic modeling becomes
intractable with the high reliability, and stringent bandwidth
and latency requirements imposed by 5G. We propose a deep
reinforcement learning approach to address this dynamic coupled
resource allocation problem. Model evaluation using synthetic
and real workload data demonstrates that our deep reinforcement
learning solution improves overall resource utilization, latency
performance, and demands satisfied as compared to a baseline
equal slicing strategy.

Index Terms—network slicing, deep reinforcement learning

I. INTRODUCTION

The challenges introduced by new technologies such as net-
work function virtualization (NFV) [1] and software-defined
networking (SDN) [2], and new network architectures such
as 5G, are driving network transformations that radically
change the way operators manage their networks and orches-
trate network services. The network architectures come with
a diverse range of capabilities and requirements, including
massive capacity, ultra low latency, ultra high reliability, and
support for massive machine to machine communications in
the context of Industry 4.0 [3]. In order to consolidate mul-
tiple networks with varied requirements, the 5G architecture
must exploit network virtualization and programmability. This
introduces the problem of network slicing [4], where a single
network infrastructure is divided into multiple sub-networks,
and each slice can be operated by different parties. Each
network slice represents an independent virtualized end-to-

end network customized to meet the specific needs of an
application, service, device, customer or operator [4].

A typical example used for 5G is as follows: deploy Internet
of Things (IoT), Mobile Broadband (MBB), and vehicular
communications applications on the same network, where
IoT will typically have a large number of devices each with
low throughput, MBB will have a smaller number of devices
with high bandwidth content, and vehicular communications
will have stringent latency requirements. The goal of network
slicing is to enable partitioning of the physical network at an
end-to-end level to allow optimum grouping of traffic, tenant
isolation, and configuration of resources at a macro level.

Network slicing can be modeled as a dynamic resource
allocation problem. Once the network is sliced into multiple
sub-networks with SLA requirements on latency, bandwidth,
reliability, etc., the underlying infrastructure operator needs
to ensure that the SLAs for each slice are guaranteed under
conditions of variability in the slice request arrivals and
resource requirement distributions. While traditionally such
network resource allocation problems have been solved using
analytical queueing theoretic and optimization methods [5],
[6], [7], given the complexity and scale of modern networks
such methods are not feasible. Thus we resort to approximate
black-box models using Reinforcement Learning (RL) [8]

Reinforcement learning is a computational approach for
goal-directed learning and decision making, with the goal
being to select actions to maximize future rewards [8]. The
emphasis is on learning by an agent where each action influ-
ences the agent’s future state, through direct interaction with
its environment, without the need for exemplary supervision
or complete models of the environment. RL can adapt the
mapping from state to actions to maximize expected rewards in
response to changing environmental conditions, for example,
network environment, traffic dynamics, job size distribution,
etc. Our hypothesis is that deep RL can be used to learn good
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network slicing strategies by learning over simulated and trace
driven workload data, and such learned policies can be applied
for real network slicing deployments.

We face three main challenges for efficient dynamic re-
source allocation for network slicing: unknown request arrival
process, heterogeneous resource requirements for each slice,
and finite resource capacities. While existing solutions deal
with each challenge separately, we propose a unified solution
using deep RL that can deal with these challenges simultane-
ously. In our formulation, each network slice has bandwidth
and compute resource requirements, where the distributions
of these requests are not known apriori. Our contributions
are as follows: mathematical formulation of network slicing
resource allocation as a Markov Decision Process (MDP); a
policy-gradient method to solve this problem based on the
REINFORCE [9] algorithm; and an experimental study with
varying resource budgets using simulated and real datasets.

II. BACKGROUND ON RL AND DEEP RL

We give a brief introduction of RL next, specifically the
use of neural networks for RL function approximation, and
the policy gradient learning algorithm.

A. Basic Reinforcement Learning Model

In RL, an agent interacts with an environment. The agent has
a set of actions to choose from, and the action can influence the
next state of the environment. At each time step t, the RL agent
observes a local copy of the environment’s state st, and selects
an action at. At the next time step t+1, the agent observes a
reward rt which represents the cost/reward for taking the last
action. The agent also observes the next state st+1. We make
the markovian assumption that the future state (st+1) only
depend on the current state (st), and also that the dynamics
are stationary. The agent’s goal is to maximize the expected
cumulative discounted return, Rt = E[

∑
t γ

t · rt], for γ ∈
[0, 1), where the parameter γ is the discount factor.

B. Policy

The agent chooses actions based on a learned policy,
which is a probability distribution over actions for any state,
π : π(s, a) → [0, 1], where π(s, a) denotes the probability of
taking action a in state s, and

∑
a π(s, a) = 1,∀s. In most

practical scenarios, especially network environments, there are
exponentially many possible (s,a) pairs (see Section III). Thus
modern methods favor function approximators [8] that are
scalable. A function approximator is parameterized by θ, and
policies are denoted by πθ(s, a). We use a deep neural network
as the function approximator [8] in our models.

C. Policy Gradient Methods

We utilize the policy gradient methods class of policy learn-
ing algorithms that try to learn an optimal policy using gradient
descent (or ascent) [8]. The objective is to maximize the
expected cumulative reward; the gradient of this objective is,
∇θEπθ [

∑∞
t=0 γ

trt] = Eπθ [∇θ log πθ(s, a)Qπθ (s, a)], where
Qπθ represents the expected cumulative discounted reward

from selecting the action a in state s and then following policy
πθ. These methods estimate the gradient by sampling trajecto-
ries of policy executions and obtaining a reward estimate vt for
the trajectory, and subsequently update the policy parameters
using gradient ascent with: θ ← θ+α

∑
t∇θ log πθ(st, at)vt,

where α is the gradient ascent step size. This results in the
REINFORCE algorithm [9], which we used for learning. The
pseudo-code of the implemented training algorithm is shown
in Section III.

III. PROPOSED MODELS

This section presents models for allocating bandwidth and
Virtual Machines (VM) to network slices. We formulate the
resource allocation problem, and describe it in RL settings for
two service types: service upon arrival and batch service.

A. Service upon arrival

For service upon arrival, consider a network that receives
resource requirements for bandwidth and VMs from K classes
during the time horizon T . It is assumed that requests for
bandwidth and VMs have the same arrival process for each
class. However, the quantities of the resource requests have
different and independent distributions. We assume that we
have infinite buffers for both resources to hold received
requests. The controller determines resource allocations for
each class (slice) for the whole network at any arrival of each
set of requests.

A set of bandwidth and VM requests for each class has a
arrival process ρi(t), i ∈ K, t ∈ T . Each arrival has different
amounts of arriving requests for bandwidth and VMs for
each class. For bandwidth we have amounts of the requests,
xi(t) ∼ Mi(t)|ρi(t) and buffer levels βi(t), i ∈ K, t ∈ T ,
where Mi is the distribution of the amounts for bandwidth
requests. The buffer level can be computed by βi(t) =
xi(t) + βi(t − 1) − bi(t − 1). Similarly, for VMs, we have
amounts of the requests, yi(t) ∼ Ni(t)|ρi(t) and buffer levels
δi(t), i ∈ K, t ∈ T , where Ni is the distribution of the amounts
for VM requests. Furthermore, we have resource allocations by
a controller, bi(t)|x(t), β(t) and vi(t)|y(t), δ(t), i ∈ K, t ∈ T
for bandwidth and computing resources.

Our goal is to maximize the Quality of Service (QoS) with
respect to bandwidth and VM requests and minimize resource
costs, where QoS is defined as request processing delay; we
solve the following optimization problem:

minimize E
[ T∑

t=0

γtL(b(t),x(t),β(t),v(t),y(t), δ(t))
]

(1)

where L = LQoS(β, δ) + wLRes(b,v), and LQoS integrates
delays in processing bandwidth and VM requests measuring
buffer levels, LRes is a cost for bandwidth and computing
resources, and γ and w are discount and balance factors. This
optimization problem is solved with RL algorithms. TABLE I
shows the state, action and reward for the RL formulation.

Deep neural networks are introduced as a policy agent for
determining the policy π(s, a). A separate agent is assigned
for each resource, namely CPU and bandwidth. The neural



1: Initialize θb, θv
2: for episode = 1 to all episodes do
3: for t = 1 to T − 1 do
4: if

∑|K|
i=1 b

t
i ≤ Bt then

5: bti ←
bti∑|K|
i=1 b

t
i

Bt

6: end if
7: θb ← θb − α∇θbJt
8: if

∑|K|
i=1 v

t
i ≤ Ct then

9: vti ←
vti∑|K|
i=1 v

t
i

Ct

10: end if
11: θv ← θv − α∇θvJt
12: end for
13: end for

Fig. 1: REINFORCE [10] Algorithm for Network Slicing

network agents feed the input feature vector: < R,B,A >,
where R is the amount of received resource requests, B is
the buffer level, and A is the last request arrival time, and
computes the slice resource allocation as the output. The
RL models are solved by applying a class of RL algorithms
(known as REINFORCE [10]) using policy gradient methods
that learn by performing gradient-descent on the policy param-
eters [8]. In the algorithm, J denotes the objective function,
which is the expected cumulative discounted loss as shown in
Eq. 1, and θb, θv are learning parameters of policy agents for
each resource. Each neural agent consists of multiple hidden
layers and one output layer. The leaky ReLU is adopted as an
activation function at hidden and output layers with a small
constant a.

h(x) =

{
x, if x > 0

ax, otherwise

The leaky ReLU is selected as it produces positive allocations,
and resolves a difficulty of ReLU when units are not active
by allowing a small, positive gradient [11].

TABLE I: State, action and reward

Service upon arrival Batch service
State Resource requests arrivals,

and buffer levels since last
arrival time

Resource requests arrivals,
and buffer levels since last
service time

Action Resource allocation per slice Resource allocation per slice
Reward -(Request processing delay

and resource use costs)
-(Request processing delay
and resource use costs)

B. Batch service

Next we formulate the resource allocation problem for
batch service, where requests are held in buffers, and the
slice orchestrator periodically processes all the requests in the
queue. The arrival process and assumptions are similar to the
service upon arrival formulation; and the same optimization
problem is solved. The MDP formulation is shown in Table I,
however, a different neural network structure is proposed for
a policy agent in the batch mode. For this mode, each deep
neural network agent per class uses statistical measures (mean,

max and standard deviation) of R (the amount of received
resource requests), B (the buffer level), and A (the request
arrival time) computed from the requests in a single batch. This
allows the batch service to capture the dependencies among the
requests in each batch, and prevents the allocation to simply
sum up per request allocations. The hidden and output layers
for the neural network agents in this model are similar to the
service upon arrival model.

We compare our proposed algorithms to an ES policy which
fairly divides the resources among each slice. Such a policy
only makes sense when there is a finite budget for resources.
Thus in our RL algorithms, we also impose budget constraints
for each resource type to make a fair comparison, however
our proposed algorithms are generic and can also work when
there is no bound on resource capacity. We introduce budget
constraints to Equation (1) as:

∑|K|
i=1 bi ≤ B, and

∑|K|
i=1 vi ≤

C, where B and C are the budgets for bandwidth and compute
resources respectively.

To implement budget constraints, we project obtained al-
locations from neural agents proportionally when the sum
of the allocations exceeds the budgets, that is, bi ←

bi∑|K|
i=1 bi

B and vi ← vi∑|K|
i=1 vi

C.

IV. PERFORMANCE EVALUATION

We present the scenarios for experimentation and the re-
sults obtained. Though we experimented with simulated and
real data, only the results for real data are shown due to
space constraints. All model implementations are done in
Python TensorFlow using the GeForce GTX 1080 and Intel(R)
Core(TM) i7-6850K CPU @ 3.60GHz.

A. Data for Models

Two workload traces for CPU and bandwidth requests
were used for algorithm evaluation. For job arrival times
and job sizes (input bytes) we utilize the SWIM [12] work-
load suite for Facebook map-reduce cluster traces using
3 different traces for each slice. Each workload is for 1
hour of production cluster usage. For bandwidth data we
use a 4G LTE trace from [13] by sampling the bandwidth
at specific instances. The CPU and bandwidth traces are
combined as follows: for each arrival time in the Facebook
trace, we take the maximum bandwidth value in the interval
[current job arrival time − previous job arrival time].

B. Scenarios

For analysis, we create scenarios with 4 levels of the
resource budget: smaller, small, large, and larger. Each arriving
request requires two resources: bandwidth and compute (num-
ber of VMs). The budget size is determined using the mean
and standard deviations of the resource request distributions.
For service upon arrival, B =

∑|K|
i=1 µi + c σi, and C =∑|K|

i=1 νi + c ηi, where (µi, σi) and (νi, ηi) for class i are the
mean and standard deviation respectively of request distribu-
tions for the bandwidth and VMs. c is set as 0, 1, 2, and
3 for scenarios of smaller, small, large, and larger resource
budgets respectively. Batch service requires a larger budget



since arriving requests wait in the buffer till the next batch
service time. Thus, we multiply the service time interval and
the request arrival rate to the budget of the service upon arrival
such that Bbatch service =

∑|K|
i=1 τiλi (µi+cσi) where, for class

i, τi is the service time and λi is the arrival rate.

C. Real Data

The models are validated by conducting trace driven experi-
ments using the data described in Section IV-A. For bandwidth
requests, it is assumed that the maximum size of the request
amounts since the last arrival should be serviced. Given the
limited number of traces we assume that the requests are recur-
rent. To prevent divergence during training, we appropriately
scaled down the original values for compute and bandwidth
in the traces. The traces are split into training (90%) and
test sets (10%). For the hyper-parameters, different settings
were tested: learning rates from 0.1 to 0.001, the number of
layers from 1 to 3, and 500 and 1000 units per layer. Based
on the results the following settings were chosen. For service
upon arrival, we generate 1000 and 100 episodes for training
and test respectively. For batch service, we generate 5000 and
100 episodes for training and test respectively. The service
time interval is set at 10 for batch service. We put the same
weights on delays and resource use costs, w = 1. In both cases,
each neural agent has 3 hidden layers with 1,000 units. The
Adam optimizer [14], an algorithm for first-order gradient-
based optimization of stochastic objective functions, is used
for the gradient optimization using a learning rate of 0.001.

Table II shows the results of the proposed models (NN)
compared with the ES strategy (ES), in terms of the expected
rewards for each class and resource. The winners are shown
in bold. The results show that our models perform better
in almost all the scenarios as compared to the ES strategy.
Though the NN models may have less rewards in individual
cases, in total the NN models earn larger rewards. For example,
in the small budget scenario for service upon arrival our model
has a greater loss for BW allocations in classes 1 and 3 as
compared to the ES strategy, however, it achieves a smaller
total loss due to the savings in class 2. This can be explained
by looking at the training phase shown in Figure 2, in that our
models learn the request amount distributions of all classes
and then allocate resources accordingly. During training, our
models allocate resources differently to each class, and buffer
levels also decrease. Based on experimental results we can
conclude that our models can learn efficient resource allocation
policies for the network slicing dynamic resource allocation
problem and outperform the baseline strategy.

V. CONCLUSIONS

There is considerable literature on network resource allo-
cation problems including network slicing using RL and deep
RL approaches; these are categorized in Table III. The work in
[15] is closest to our work — it formulates the network slicing
problem with deep RL for two resource management scenar-
ios: radio resource slicing for a base station, and priority-based
core network slicing. However, our work is different from [15]

TABLE II: Real data: Loss (-reward) and winners

Service upon arrival
Class C1 C2 C3 Total

Small
budget

BW NN 4.585E+02 1.878E+03 6.056E+02 2.942E+03
ES 2.387E+01 1.318E+05 1.793E+01 1.319E+05

VM NN 9.702E+01 9.266E+01 5.609E+02 7.506E+02
ES 1.718E+02 1.719E+02 9.897E+02 1.333E+03

Larger
budget

BW NN 7.521E+00 1.321E+01 7.910E+00 2.864E+01
ES 9.548E+00 4.866E+01 9.548E+00 6.775E+01

VM NN 8.966E+01 1.095E+02 1.271E+03 1.470E+03
ES 4.757E+02 4.757E+02 7.341E+02 1.685E+03

Batch service
Class C1 C2 C3 Total

Small
budget

BW NN 1.283E+04 1.594E+04 9.770E+03 3.854E+04
ES 1.108E+04 2.081E+04 6.741E+03 3.862E+04

VM NN 8.109E+02 6.816E+02 2.009E+03 3.501E+03
ES 1.163E+03 1.163E+03 1.342E+03 3.669E+03

Larger
budget

BW NN 3.229E+03 5.697E+03 2.654E+03 1.158E+04
ES 2.109E+03 1.169E+04 7.079E+01 1.387E+04

VM NN 2.670E+03 2.145E+03 4.919E+03 9.734E+03
ES 3.245E+03 3.245E+03 3.252E+03 9.741E+03

(a) Resource allocation: Class 1 (b) Buffer level: Class 1

(c) Resource allocation: Class 2 (d) Buffer level: Class 2

(e) Resource allocation: Class 3 (f) Buffer level: Class 3

Fig. 2: Real data: Mean resource allocations, and buffer levels
of three classes (large budget, service upon arrival, VM)

in several critical aspects — we address the issue of allocating
multiple resources simultaneously, solve constrained problems
by introducing buffers, consider both service upon arrival and
batch service, and validate model performance with simulated
and real data.

TABLE III: Current approaches for resource allocation

Resource Allocation Network Slicing

RL
Bandwidth Allocation
[16], [17], [18], [19], [20]
Compute Allocation [21], [22]

Q-learning [23]
Genetic optimization
[24]

Deep
RL

Cognitive radio networks [25]
Cloud radio access networks [26]
Vehicular ad hoc networks [27]

Deep RL for network
slicing [15]

To summarize, we have proposed a new deep RL framework
for network slicing with heterogeneous resource requirements
and finite capacity which can deal with dynamic traffic de-
mands from network users. Simulation and real trace experi-
ments show that our system outperforms the baseline.
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