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Abstract—Erbium-doped fiber amplifier (EDFA) is an optical
amplifier/repeater device used to boost the intensity of optical sig-
nals being carried through fiber optic communication networks.
A highly accurate EDFA model – to predict the signal gain for
each channel – is required because of its crucial role in optical
network management and optimization. EDFA channel inputs
(i.e. features) either carry signal or are idle, therefore they can
be treated as binary features. However, channel outputs (and
the corresponding signal gains) are continuous values. Labeled
training data is very expensive to collect for EDFA devices,
therefore we devise an active learning strategy suitable for binary
features to overcome this issue. We propose to take advantage
of sparse linear models to simplify the predictive model. This
approach improves signal gain prediction and accelerates active
learning query generation. We show the performance of our
proposed active learning strategies on simulated data and real
EDFA data.

Index Terms—Active learning, binary features, optical net-
works.

I. INTRODUCTION

We start by introducing the Erbium-doped fiber amplifier
(EDFA) device, and subsequently review some of the works
in the literature on active learning.

A. EDFA

With the rising demand for data storage and computation,
there is an increasing adoption of cloud computing networks,
which are heavily dependent on the deployment of fiber-
optic networks and the components that facilitate faster
interconnection in these networks. Optical amplifiers made
it possible to amplify together all the wavelength-division
multiplexing (WDM) channels, their bit rate, modulation format
and protocols, and eliminate the need to regenerate the optical
signals every 80-100 kms. They are used as optical repeaters
over the long distance optical fiber cables that carry much of
the world’s telecommunication links.

A highly accurate EDFA model is crucial for a number
of different reasons, such as: i) to predict the light path
performance, ii) to calculate optical signal to noise ratio
(OSNR) and iii) to improve performance of light path setup,
which in turn facilitate improved performance and better
resource allocation on optical networks. However, collecting
labeled data from EDFA devices – which is required to train an
accurate model – is expensive. It involves an expert technician

in lab environment to set the device inputs and collect and
record the input-output signal levels. This is where active
learning (AL) strategies are utilized to collect data that is more
promising to improve the accuracy of the EDFA model.

An EDFA device receives the input signal at a channel’s
input and the amplified signal leaves the same channel’s output.
A typical EDFA device supports between 40 and 128 channels
depending on the manufacturer and type. Each channel can
carry the optical signal for a different service, but not all
channels carry service signal at all times. Channels carrying
valid service signals are interpreted as on and others are
interpreted as dummy or off channels. Therefore, input signals
can be deemed as binary or x ∈ {−1, 1}. Rather than the
actual strength of the channel output, we are interested in the
channel signal strength change which we refer to as gain:

yc = gainc = 10 log10 (outc/inc)

where inc and outc are channel c’s input and output signal
powers, and c is the channel index, c ∈ {1, . . . , C}, (C is
the number of EDFA channels). Therefore, y is a continuous
random variable.

Here, our objective is to use active learning to improve
performance of a predictive model for a single EDFA channel.
Channel outputs are independent of each other given channel
inputs, so the generalization towards multivariate output is
straightforward.

B. Active Learning

State-of-the-art machine learning (ML) algorithms require
significant amount of data to learn an accurate model. In most
applications, there is either not enough data, or most of the
available data are unlabeled, and labeling them is often time-
consuming and/or expensive. This gives rise to a category of
algorithms called active learning (AL). AL methods start by
training a model on an initial set of labeled data. Then they
utilize the model uncertainty to identify the most promising
(unobserved) subset of data to improve model performance.
The algorithm then requests the labels for this subset, adds
them to the initial labeled set, and re-trains the model. ML
algorithms are capable of achieving better performance if the
learning algorithm is integrated into the data collection process.
This is the main objective of AL methods.

978-3-903176-24-9 c© 2019 IFIP



There is a large body of literature on active learning [5, 2].
Methods using uncertainty sampling [9, 7] query data points
with the highest uncertainty. After observing more points in
the uncertain region, the learning algorithm becomes more
confident about the neighboring subspace of the queried data
point. In [6] authors train a regressor that predicts the expected
error reduction for a candidate data point in a given learning
state. The experience from previous AL outcomes is utilized
to learn strategies for query selection.

Motivated with the EDFA application, we develop an AL
algorithm for data with discrete features and a continuous
response. A data point selected to be inquired about its label
is usually referred to as a query, and the entity providing the
label for the queried data point is usually called an oracle.
Oracle can be a human, a database, or a software providing
the label for the query.

II. METHODOLOGY

A typical pool-based AL algorithm has access to a small
pool of labeled dataDL = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where xi ∈ IRp is the predictor and yi ∈ IR is the response.
Also, there is a potentially larger pool of unlabeled data DU =
{xn+1,xn+2, . . . ,xm}. In the EDFA application each x is a set
of p input channels, and y is one of the output channels selected
for modeling. Output channels are conditionally independent,
which allows us to model each output channel independently.

A typical AL algorithm starts by training a model using
the labeled pool DL. Then, at each iteration an AL strategy
selects a promising data point xi from the unlabeled pool DU

and queries its label yi. Once label is retrieved for xi, this
data point (xi, yi) is removed from DU and is added to DL.
The classifier is then trained on the new pool DL, including
the recently added (xi, yi). This process is repeated until a
termination criteria – usually a sampling budget T – is reached.
With a small sampling budget T , the goal of AL is to find the
best sequence of data points to be queried in order to maximize
the test accuracy of the model.

Suppose the response variable is measured with an additive
statistical error ε and the relationship between the response
and the predictors is fully-determined by a linear function

y = Xβ + ε, (1)

where yn×1 is the vector of observed response, Xn×p is row-
wise stacked matrix of predictors, βp×1 is the p-dimensional
vector of coefficients, and εn×1 is white noise with zero mean
and a constant variance σ2. There is a strong reason to start
with a linear model. A linear model with interactions fully
describes any complicated model built over discrete features,
suitable for the EDFA data setting. The coefficients β are
unknown in practice, and are estimated using least squares,
β̂ = (X>X)−1X>y.

In ultra high-dimensional settings (p � n) where most
feature selection methods fail computationally, it is suggested
to order the features with a simple measure of dependence
like Pearson correlation and select some of relevant features.

This simplifies the ultra high-dimensional setting to a high-
dimensional setting [4] where p ∼ n and feature selection
methods are computationally feasible. In AL, ultimately, a
query is generated with an estimated model dimension m� p.

A. Feature ordering
In active learning for EDFA, model building starts with

small number of observations n, say n ≈ 20. If the feature
dimension p� 40, least squares estimate of coefficients β̂ are
ill conditioned, because X>X is rank-deficient. Regularization,
feature selection, dimension reduction, are common solutions
to this. Here we focus on sparse estimation of the coefficients
often implemented by L1 regularization or lasso [11].

However, L1 regularization is still computationally expensive
for large p� n. [4] recommends sure screening to pre-select
a subset of features with large absolute correlation (with the
response), and then to run L1 regularization on this subset.
This dimensionality reduction is fast and requires only O(np)
operations to compute the correlations, and O(n log n) to order
them. The total computation complexity of sure is O(pn log n).
B. Feature selection

In a linear model with p covariates, there are 2p candidate
models. The lar (least angle regression) algorithm [3] computes
the lasso with minor modifications, however its implementation
is significantly faster. Choosing the model dimension and
choosing the L1 regularization constant λ are inter-related.
The lar algorithm efficiently computes the path of β̂(λj) over
a sequence of λj that the parameter dimension changes. The
lar algorithm finds the path of λj and individual estimates
β̂ | λj , j = 1, . . . , p, with the same computational complexity
of a single least square. So one can choose a value λj , and
evaluate the model for the effective dimension imposed by
it. Repeating the same process for all model dimensions and
picking the best model dimension m from the p candidate
models is efficient since it allows to avoid evaluating 2p

candidate models and reduce the search space to only p model
evaluations.

For each λj its corresponding nonzero β̂(λj) are selected to
create a new design matrix Xj with dimension n×m. The best
model is chosen by maximizing the predictive log likelihood
`j . Theorem 1 derives the predictive log likelihood for small
sample sizes inline with the BIC of [8]. It is not difficult to
see this predictive model is asymptotically equivalent to the
BIC. However, in small samples they behave differently.

Theorem 1: Suppose X>X is positive definite and

y ∼ N (Xβ, σ2I),

β ∼ N (β̂, nσ2(X>X)−1).

The predictive log likelihood

`j = log

∫ ∞
∞
· · ·
∫ ∞
∞

f(y | β,X)dF (β | X)

simplifies to `j = `(β̂) − 0.5 log(n + 1), where β̂ is the
maximum likelihood estimate of β and `(.) is the log like-
lihood function. Refer to the arXiv version of the paper at
https://arxiv.org/abs/1902.01923 for the proof.



C. Linear query generation

Linear models are attractive because the class of linear
models including main effects with interactions cover any
complex function on discrete features. We start with a linear
model with main effects only (and no interaction) to create an
extremely fast query generation method, called query-by-sign.
Then generalize it to a linear model with main effects and pair-
wise (i.e. 2nd order) interactions to trade off some computation
for improved accuracy. We call this method query-by-variance.
To allow for models with higher order interactions we utilize
bagged trees to produce query-by-bagging.

In AL context, the objective is to request a new observation
that most improves the model performance. There are two major
paradigms to interpret model performance; i) smaller variance
of prediction ŷ, and ii) smaller variance of estimators β̂.
Here we choose the former approach, and focus on improving
prediction accuracy as the objective.

In an AL setting, at each iteration, a new data point x1×p
is queried, and after observing its response variable y(x) the
training set is updated. Therefore, we use the notation β̂(x) to
emphasize that this new β̂ is estimated after adding this new
observation to the previously observed design matrix Xn×p.

The new design matrix, after adding the new observation is

X(n+1)×p =

[
Xn×p
x1×p

]
,

Note that the prediction variance is a function of the new
observation x only. To improve prediction accuracy, we query
a new observation x under which the model prediction has
the largest uncertainty V{ŷ(x)}. From conditional variance
theorem [10]

V{ŷ(x)} = Ex[V{ŷ(x) | x}] + Vx[E{ŷ(x) | x}].

Since x is a query and under our control, this simplifies to

V{ŷ(x)} = V{ŷ(x) | x}.

From linear model assumption the response variance
V{y(x) | x} is constant σ2.

To maximize the prediction variance V{ŷ(x) | x} one needs
to keep the maximizer scale-invariant, otherwise any direction
x with a large scale c is a solution because V(cx) = c2V(x).
Suppose x is of a fixed norm to avoid scaling, therefore

argmax
x

V{x>β̂} = argmax
x

σ2x>(X>X)−1x, (2)

where σ2 is a constant and can be ignored in maximization.
Equation (2) is key to active learning for linear models.

Suppose the model dimension is estimated properly m < p,
and x is continuous, x ∈ IRm. The scale-invariant solution
query generation requires maximizing (2) subject to a bounded
norm x>x = c2 as in Theorem 2.

Theorem 2:

x̂ = argmax x>(X>X)−1x, . (3)
s.t. x>x = c2,

It is easy to show that x̂ = c emin where emin is the
eigenvector associated with the smallest eigenvalue of X>X.
The computational cost of this solution is O(m2), which is
negligible for small m. Refer to the arXiv version for the proof.

The application of (3) is not restricted to continuous feature
space. If feature space is binary, x ∈ {−1,+1}m, then x>x =
m and a relaxed approximate solution is

x̂ = sign(emin). (4)

D. Ensemble-based query generation

In many applications the prediction function is a nonlinear
function. While a linear model helps to identify important
features, they are usually inaccurate for these applications.
As a consequence, an inaccurate prediction model leads to
generating sub-optimal queries for AL. We address both issues
by fitting a flexible ensemble of trees on the sparse features,
and relax the constant variance assumption by computing the
empirical variance of the prediction.

Bagging [1] is a method for fitting an ensemble of learning
algorithms trained on bootstrap replicates of the data in order to
get an aggregated predictor. Suppose that B bootstrap replicates
are sampled from the observed n independent data and for
b = 1, . . . , B, a regression tree Tb is fitted. Therefore the
response prediction is ŷ = B−1

∑
b ŷb, where ŷb = T̂b(x) is

the prediction output of a single tree. Hence, the prediction
variance V{ŷ(x) | x} is estimated by the empirical variance

V̂{ŷ(x) | x} = 1

B − 1

∑
b

{ŷb(x)− ŷ(x)}2.

In AL context, the query-by-bagging suggests x̂ that maxi-
mizes the empirical variance such as

x̂ = argmax
x

V̂{ŷ(x) | x}. (5)

III. EXPERIMENTAL ANALYSIS

We evaluate our methods on two sets of data; synthetic
simulated data, and real-world EDFA data.

A. Simulations

We conduct a simulation study to assess the performance
of the three proposed active learning methods: query-by-sign,
query-by-variance and query-by-bagging. Each method has its
associated fitted model; a linear model using main effects only
for query-by-sign, a linear model using main effects and 2nd

order interaction terms for query-by-variance, and an ensemble
of bagged trees for query-by-bagging. We compare the three
different query generation strategies against random sampling.
We evaluate the performance of these methods by varying the
complexity of the simulated data.

We synthetically generate two simulated data sets; in the first
scenario data is simulated by a linear model using main effects
and 2nd order interactions, and the second scenario uses main
effects, 2nd and 3rd order interactions. In the first scenario query-
by-sign fails because the fitted model only incorporates main
effects, and therefore is not an accurate approximation of the
data. Query-by-variance and query-by-bagging AL strategies



outperform the random sampling strategy and eventually find
the “true” model as the sampling budget increases, however,
query-by-bagging finds the “true” model more smoothly.

In the second scenario the 3rd order interaction terms are
added to the data simulation model. As shown in Figure 1,
query-by-variance (left panel) fails compared to the random
sampling strategy. This suggests that query-by-variance needs to
be adjusted if significant 3rd order interactions are present in the
model. However, query-by-bagging (right panel), outperforms
the random sampling.

Fig. 1. Validation RMSE on data simulated by a linear model with main
effects, 2nd and 3rd order interactions using two different AL strategies; query-
by-variance (left) and query-by-bagging (right).

For a comprehensive experimental analysis on simulated
data please refer to the arXiv version of the paper.

B. Application

We apply our query generation methods to the data collected
from the optical amplifier equipment (EDFA). Our data set
contains about 9000 observations for an EDFA device with 40
channels. We divide the data set into training, validation, and
test sets with 50%, 25% and 25% splits. We further divide
the training set into a labeled pool of 100 observations and an
unlabeled pool with the rest. Sampling budget is 1000.

Allowing a large number of features in the model renders
query generation computationally expensive, and forces a
less frequent feature selection updates. However, keeping the
maximum number of features in the model small, allows faster
query generation, and updates the features selection more
frequently. Therefore a fine balance should be maintained
between maximum number of features allowed in the bagging
model and the update frequency of feature selection.

Allowing up to 18 features in the ensemble trees reduces the
final validation RMSE to 0.085 (Figure 2) which is enough to
save multiple hours of engineers’ time for collecting labeled
data. On the right side of this figure we can further observe
the increasing model size as more and more observations are
queried by AL. Although the model can add more useful
features or drop less useful ones at each model update step (as
can be seen from the oscillating model size graph), the model
using the AL strategy takes better advantage of this freedom
compared to the random sampling strategy, and reaches the
maximum number of features allowed to index for modeling
and query generation (i.e. 18.) The performance of AL strategy
increases as model size upper bound increases to 20 or higher,
but this comes with a computational cost.

Fig. 2. Validation RMSE on EDFA data using query-by-bagging (left). The
estimated model size as the number of samples increases (right).

IV. CONCLUSION

Active learning helps make better use of limited labeling
budget by integrating data collection process into the learning
algorithm. We proposed three different active learning strategies
with different computational costs and running times. The
simplest strategy, query-by-sign, only considers main effects
of a linear model for query generation. Query-by-variance
takes advantage of 2nd order interactions, and query-by-bagging
considers high-order interactions by using an ensemble of trees
to model data and generate the queries. We simulated data
using models with 2nd and 3rd order interactions, and compared
the three different active learning strategies. We then applied
our findings to EDFA data, a very small and highly complex
data set. We observed that query-by-bagging, when tuned
properly, improves the model prediction performance and saves
engineers’ data collection time. Also, the simpler sampling
strategy, query-by-variance, displays interesting results, but on
data sets with lower-order main effect interactions.
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