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Abstract—Software-Defined Networking (SDN) introduces a
centralized network control and management by separating the
data plane from the control plane which facilitates traffic flow
monitoring, security analysis and policy formulation. However,
it is challenging to choose a proper degree of traffic flow
handling granularity while proactively protecting forwarding
devices from getting overloaded. In this paper, we propose a
novel traffic flow matching control framework called Q-DATA
that applies reinforcement learning in order to enhance the
traffic flow monitoring performance in SDN based networks and
prevent traffic forwarding performance degradation. We first
describe and analyse an SDN-based traffic flow matching control
system that applies a reinforcement learning approach based
on Q-learning algorithm in order to maximize the traffic flow
granularity. It also considers the forwarding performance status
of the SDN switches derived from a Support Vector Machine
based algorithm. Next, we outline the Q-DATA framework that
incorporates the optimal traffic flow matching policy derived
from the traffic flow matching control system to efficiently
provide the most detailed traffic flow information that other
mechanisms require. Our novel approach is realized as a REST
SDN application and evaluated in an SDN environment. Through
comprehensive experiments, the results show that—compared
to the default behavior of common SDN controllers and to
our previous DATA mechanism—the new Q-DATA framework
yields a remarkable improvement in terms of traffic forwarding
performance degradation protection of SDN switches while still
providing the most detailed traffic flow information on demand.

Index Terms—Traffic Flow Monitoring, Reinforcement Learn-
ing, Q-learning algorithm, Network Statistics and Software-
Defined Networking.

I. INTRODUCTION

Software Defined Networking (SDN) is a new networking
concept, which provides enormous capabilities for dynamic
network traffic control and management [1]. By detaching the
control plane from the data plane, it removes some restrictions
of legacy networks. A centralized entity called SDN controller
has a global network view that allows for a policy-based
traffic management and a faster and more dynamic response
to network state and traffic variations [1].

Although there are numerous available mechanisms for
traffic analysis, traffic flow management and resilience [2] in
SDN based networks, some significant challenges still remain
to be addressed [3]. In particular, adapting the granularity of
traffic forwarding while protecting forwarding devices from an
overflow situation is one critical issue. As most current traffic
management approaches rely on the default flow matching

strategies of the available SDN controllers, it is difficult
to perform traffic forwarding with variable granularity. For
example, the Open Network Operating System (ONOS) [4] and
OpenDaylight (ODL) [5] SDN controllers, by default, apply
Reactive Forwarding based on layer 2 information, which
uses the MAC address for flow matching only. Therefore, an
incoming packet is matched to a flow entry by just using
its layer 2 destination address. However, security and traffic
monitoring mechanisms require traffic flow handling based
on layer 3 and layer 4 information. A flow matching scheme
that uses MAC and IP (and maybe also TCP/UDP) header
fields requires much expensive TCAM memory for storing
the respective flow rules [6] and in case the incoming traffic
flow pattern is highly dynamic, this might lead to a significant
degradation of the traffic forwarding performance in the data
plane. Besides, the control plane might be affected because of
a large number of packet_in messages [7].

In this paper, we propose a reinforcement learning based
traffic flow matching control framework called Q-DATA, to
enhance the performance of traffic flow monitoring in SDN
based networks and proactively prevent flow-table overflow
in SDN switches. We first describe a traffic flow matching
control mechanism that applies a reinforcement learning based
approach (Q-learning) for optimizing the traffic flow gran-
ularity in the data plane. It also considers the forwarding
performance status of SDN switches derived by a Support
Vector Machine algorithm. Next, we outline the Q-DATA
framework that incorporates the optimal traffic flow matching
policy derived from a Q-learning based Traffic Flow Matching
Policy Creation module to efficiently provide detailed traffic
flow information that other mechanisms, e.g., for traffic en-
gineering, traffic monitoring, and intrusion detection, require.
In particular, a Support Vector Machine algorithm is utilized
to simultaneously analyse the current network traffic and
predict the SDN switch performance degradation. Based on the
prediction result the Q-learning based Traffic Flow Matching
Policy Creation module issues an optimum action on changing
the traffic flow matching scheme. Note that this proposal
partially inherits1 our previous work [8] which is explained
later on.

1We leverage the use of the Support Vector Machine based performance
degradation prediction mechanism and the traffic flow matching scheme
change based on destination hosts from our previous study [8].
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The paper is structured as follows. Section II provides
related work and our previous study. Section III presents our
approach for maximizing the level of traffic flow granularity
based on Q-learning. Section IV explains the Q-DATA frame-
work in detail. Our experiments and results are outlined in
section V and section VI, respectively. Section VII provides a
summary and outlines some ideas for future studies.

II. RELATED WORK

A. Existing Methods for Flow Rule Control and Management
in Software Defined Networks

Many studies already addressed issues related to flow rule
installation and management in SDN switches - a topic that
is of high interest in the SDN research community [9]–
[16]. There exist several approaches for controlling TCAM
utilization with the primary target of flow rule compression
or aggregation.

The authors in [9] propose an online routing scheme that
constrains flow-table resources in SDN switches. Similarly, in
[10] the objective is to maximize the number of flow entries
in the data plane considering the limited flow-table space in
SDN switches. Nonetheless, these methods do not address
the problem of protecting the network infrastructure when a
sudden traffic increase is happening.

The studies in [11]–[13] deal with TCAM resource man-
agement. In particular, [11] outlines a solution for flow-table
size reduction based on three criteria including Consistency2,
Absoluteness3 and Accuracy4. An incoming packet classifica-
tion approach is presented in [12] which exploits the temporal
locality of network traffic to predict the flow of incoming
packets. If the prediction is correct the forwarding latency and
power consumption can be reduced trough avoiding the full
flow-table lookup process in the TCAM. Rifai et al. introduce
a framework called MINNIE [13] for flow-table compression
using wildcard rules. Furthermore, the authors in [14] argue
that for storing simple packet forwarding rules based on MAC
addresses or VLAN IDs cheap SRAM memory is sufficient,
while more complex matching rules (with more matching
fields) might require the use of fast but expensive TCAM
memory. Considering this, the amount of TCAM memory
in SDN switches can be significantly reduced. The solution
outlined in [15] applies the concept of flow rule aggregation
by restructuring the matching fields. By that, the number of
flow rules can be significantly reduced. Another approach for
dynamic flow matching is proposed in [16] where a flow
matching policy considering the DSCP values of different
traffic types is applied.

The mentioned solutions only focus on flow-table size
reduction and on enhancing the data plane forwarding per-
formance. Contrary to our solution they do not consider the
possibility of adaptively changing the traffic flow matching
scheme depending on the current network state and the level

2All the flows must be allotted with the same actions after the reduction.
3All the manually added rules must be executed in the highest priority.
4The statistics data must be accurate all the time.

of detail of traffic flow information that other mechanisms, for
e.g., traffic engineering and monitoring, require.

B. Destination-aware Adaptive Traffic Flow Rule Aggregation

In our previous work, we proposed a destination-aware
adaptive traffic flow rule aggregation solution named DATA
[8] for adapting the number of flow entries in SDN switches
according to the level of detail of traffic flow information that
other mechanisms require and at the same time preventing
SDN switch performance degradation.

We analyzed common SDN flow matching strategies of the
ONOS [4] and ODL [5] SDN controllers and their implica-
tions. We denoted the MAC Matching Only Scheme as MMOS
strategy and the Full Matching Scheme as FMS strategy. Using
MMOS the ability to track and monitor network traffic for
security or forensic analysis is limited, whereas applying the
FMS strategy can result in significant degradation of the
forwarding performance or even to an SDN switch outage
in case the maximum number of flow entries is reached.
To solve this problem, we applied a 2-dimensional Support
Vector Machine (SVM) algorithm [17] to anticipate the switch
performance degradation well before it occurs and to trigger
the flow matching scheme change in time. After analyzing
the SDN switch performance and if a potential forwarding
performance degradation is figured out, the Analyzer applies
Algorithm 3 (see appendix section) to find some destination
hosts whose associated flows are most critical regarding the
forwarding performance of the SDN switch, i.e., have the
most flow entries. Afterwards the Analyzer co-operates with
the built-in forwarding application of the SDN controller to
conduct the traffic flow matching scheme changes5 for these
destination hosts. These actions can be either to change to
MMOS if a sudden increase or an overflow of the flow-table
space in an SDN switch is expected or to return to FMS in
case there is no overflow risk (see Algorithm 4 in appendix
section).

Our DATA approach outperforms legacy flow rule matching
schemes in terms of the number of flow entries in the SDN
switches, the average packet_in rate in the SDN control plane
and the number of errors and exceptions.

Although, the DATA method has many advantages in com-
parison to legacy approaches, some issues still should be
addressed for further improvement - e.g., the limited number
of only two flow matching schemes (MMOS and FMS) and
the lack of feedback about the impact of the respective flow
matching scheme on the network performance. Therefore, in
this paper, we propose a novel traffic flow matching control
mechanism that can flexibly switch between many different
flow matching schemes based on the current network state.
The novel scheme provides a much higher level of detail of
traffic flow information even in case of high traffic load, while

5In order to perform a traffic flow matching scheme change for a destination
host, the built-in forwarding application firstly deletes all flow entries related
to the destination host in the switch, then it installs a flow entry with a new
match field combination in the switch.
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Fig. 1. Reinforcement learning-based model of a traffic flow matching control
system in SDN based networks

effectively preventing flow-table overflow and degradation of
the data plane forwarding performance.

III. MAXIMIZING THE TRAFFIC FLOW GRANULARITY
APPLYING A Q-LEARNING ALGORITHM

Fig. 1 shows a traffic flow matching control mechanism
based on reinforcement learning. The traffic flow matching
control mechanism is realized as an SDN application and the
environment is represented by the devices in the data plane,
i.e., the SDN switches. In the following, we have a look
at a single SDN switch i representing the environment and
investigate the traffic flow matching control mechanism. We
assume that a state st of the SDN switch i at a time t is
represented by a tuple including the total number of current
flow entries ( fi) and the number of flow entry changes (∆ fi)
between two consecutive observations; the long-term goal of
the control system is to maximize the traffic flow granularity
in state st of SDN switch i while protecting the switch from
forwarding performance degradation.

Regarding the system operation, in a given state st the
control mechanism initiates an action at to change the traffic
flow matching scheme in SDN switch i. Afterwards, a new
state st+1 is observed and a reward Rt is calculated as soon as
the change of the traffic flow matching scheme is executed.
Then the next action at+1 is applied to the environment in
order to achieve the long-term goal. The traffic flow matching
control mechanism based on reinforcement learning operates
via agent-environment interaction and can be modeled as a
Markov Decision Process (MDP) [18]. In the following, the
MDP model is outlined in detail.

1) State Space: The state space of SDN switch i is defined
as follows:

Si , {( fi,∆ fi) : 0 < fi ≤ fcapi ;− fcapi ≤ ∆ fi ≤ fcapi }, (1)

where fi is the current total number of flow entries in switch
i, ∆ fi is the number of flow entry changes between two

consecutive observations and fcapi is the maximum number
of flow entries in switch i. The state of SDN switch i is
defined as tuple s = ( fi,∆ fi) ∈ Si . In our previous study
[8] we already discussed the reasons for choosing the tuple
( fi ,∆ fi) as the representative for the state of an SDN switch.
The reasons can be summarized as follows: the effort for
flow entry searching and matching in an SDN switch is
proportional to the number of matching fields and an SDN
switch has a maximum capacity ( fcap) for storing the flow
entries. Accordingly, the change of the number of flow entries
indicates the control plane load (wrt. of_mod and of_removed
messages sent between SDN controller and switch) affecting
both the SDN switch and the controller performance.

2) Action Space: F = {g1,g2, ...,gm} denotes a list of all
feasible match field combinations, e.g., gm = <"matchTcpUdp-
Ports", "matchIpv4Address", "matchVlanId",...> in case of the
ONOS controller [4]. The action space for changing the traffic
flow matching scheme in the SDN switch i is defined by

Ai , {a : a ∈ F }, (2)

where a represents a traffic flow matching scheme change
related to a destination host (as discussed in section II-B) in
SDN switch i.

3) Immediate Reward Function: On the one hand, when-
ever, through executing an action, the total number of current
flow entries in the SDN switch i reaches the limit fcapi (which
then leads to a performance degradation), the traffic flow
matching control system should not get any reward for this
action. On the other hand, the more matching fields a flow
entry contains, the more detailed information is available for
that flow. Hence, we determine the immediate reward as the
average number of matching fields of all flow entries in the
SDN switch i:

Ri(s,a) =

{ ∑ fi
x=1Θx

fi
, 0 < fi < fcapi ,

0, fi = fcapi ,
(3)

where fi is the current total number of flow entries in the
switch i, Θx is an integer number representing the number of
enabled match fields in flow entry x.

4) Optimization Formulation: We define an optimization
problem to acquire the optimal policy applicable in state s,
denoted by π∗(s), that maximizes the long-term reward, i.e.,
the traffic flow granularity in the SDN switch i while protect-
ing it from forwarding performance degradation. In particular,
in state s, the agent issues an optimal action a to get close to
or reach the long-term reward. The MDP under consideration
is finite and the state space Si contains at maximum 2 fcap2

i
states. The optimization problem is formulated as follows:

max
π

{R(π)i =

2 fcap
2
i∑

t=1
E(Ri(st, π(st ))) : Ri ∈ R; st ∈ Si;

π(st ) ∈ Ai}

subject to SV M(st ) = Good,∀st ∈ Si,

(4)



where R(π)i is the cumulative reward for SDN switch i under
a policy π, Ri(st, π(st )) is the immediate reward associated
with policy π for a switch i at iteration t, and SVM(st ) is
the result of the Support Vector Machine algorithm predicting
the forwarding performance of the SDN switch. A "Good"
result of the SVM algorithm means that the switch can handle
the current number of flow entries without any forwarding
performance problems.

In order to solve the optimization problem, we apply the Q-
learning algorithm [18] which uses a Q-table to represent all
possible state-action pairs within the environment as shown in
Fig. 1. The Q-learning agent can learn from its own decisions
at each iteration, and the algorithm will converge to the
optimal policy π∗ after a certain number of iterations [18].
The expected return of state s under policy π is denoted as
ϑπ(s) : Si −→ R. It is expressed as follows:

ϑπ(s) = Eπ


2 fcap

2
i∑

t=0
γRi(st,at )|st = s

 = Eπ[Ri(st,at )

+γϑπ(st+1)|st = s],∀s ∈ Si,

(5)

where γ ∈[0, 1) is a discount factor that indicates the impor-
tance of the long-term reward [18]. The optimal policy π∗ in
state s represents an action a that yields the maximum value
of the expected return ϑ∗(s):

ϑ∗(s) =max
a
{Eπ [Ri(st,at )+γϑπ(st+1)|st = s]} ,∀s ∈ Si . (6)

Thus, for all state-action (s,a) pairs, the optimal Q-functions
are

Q∗(s,a) , Ri(st,at )+γEπ [ϑπ(st+1)],∀s ∈ Si . (7)

Hence ϑ∗(s) can be expressed as ϑ∗(s) =maxa {Q∗(s,a)}. By
conducting different actions a to the environment the optimal
Q-function value, i.e., Q∗(s,a), for all state-action (s,a) pairs
is figured out. In particular, the Q-function is updated at each
iteration as follows:

Qt+1(st,at ) = Qt (st,at )+α[Ri(st,at )+γmax
a
Qt (st+1,a)

−Qt (st,at )],
(8)

where st ∈ Si , at ∈ Ai . Qt (st,at ) is the Q-value for a state-
action pair (st,at ), Ri(st,at ) is the immediate reward for the
SDN switch i at an iteration t, γ ∈[0, 1] is the discount factor
and α ∈[0,1] is the learning rate. Moreover, to mitigate the
exploration and exploitation dilemma that has direct impact on
the convergence rate of any learning algorithms, the ε-greedy
algorithm [18] is applied. Instead of always taking the best
action according to the network state, the Q-learning agent
will take some random actions, where the probability of a
random decision is determined by the value of epsilon, ε . In
its learning phase, the Q-learning agent first of all arbitrarily
initializes the Q-table for all state-action pairs and afterwards
updates it by using Equation 8. Accordingly, the agent acquires
a trained or converged Q-table.

In summary, the Q-learning agent generates the optimal
policy π∗(s) for a state s representing an action a that needs to
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be taken to maximize the value of the Q∗(s,a) function, i.e.,
π∗(s) = argmaxaQ∗(s,a). Algorithm 1 provides implementa-
tion details of the Q-learning algorithm.

Algorithm 1 Optimal traffic flow matching policy creation
with Q-learning algorithm

1: Inputs: F ; for a state-action pair (s,a) ∀s ∈ Si , a ∈ Ai ,
initialize a Q-table entry arbitrarily; initialize values of α,
γ, and ε , respectively.

2: loop
3: Current state st .
4: Execute action at according to an exploratory policy

(ε).
5: Obtain a new state st+1 and an immediate reward Ri .
6: Update the Q-table entry for Q(st ,at ) using Equation 8.
7: Update st ←− st+1.
8: end loop
9: Outputs π∗(s) = argmaxaQ∗(s,a).

IV. Q-DATA FRAMEWORK

In this section, the design and operation of the Q-DATA
framework for enhanced traffic flow monitoring and proac-
tively prevention of forwarding performance degradation in
SDN based networks is outlined.

A. Q-DATA Framework Architecture

Fig. 2 shows the Q-DATA framework architecture consisting
of the Built-in Forwarding application located in the control
plane and the REST Q-DATA application residing in the SDN
application plane.

1) Built-in forwarding application: Most of the well-known
SDN controllers [4], [5] provide basic forwarding functionality
by running a built-in forwarding application to create flow
rules which are then downloaded to the SDN switches. We
propose to add a REST API interface to the built-in forward-
ing application to securely communicate with the Q-DATA
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application. Initially, the Q-DATA App instructs the built-in
forwarding application to apply the Full Matching Scheme
(FMS) strategy.

2) Q-DATA App: In Q-DATA a Statistics Collector period-
ically gets raw information about all traffic flows traversing
the SDN switches from the SDN controller via the REST
APIs [4], [5]. The collected statistical data of the SDN
switch i is forwarded to a Statistics Extractor and Distributor
for extracting and distributing flow statistics information to
other modules, i.e., the SVM based Performance Degradation
Prediction module, the MAC Matching Only Scheme Control
module, the Overflow Control module and the Q-learning
based Traffic Flow Matching Policy Creation module. The
SVM based Performance Degradation Prediction module is
designed to anticipate the performance degradation of the SDN
switch i well before it occurs [8] and to provide the prediction
result to the Q-learning based Traffic Flow Matching Pol-
icy Creation module and the MAC Matching Only Scheme
Control module. The Overflow Control module acts as an
immediate reaction mechanism against a flow-table overflow
situation, e.g., in case the network is under a Denial-of-Service
attack. The MAC Matching Only Scheme Control module
monitors and checks conditions for a traffic flow matching
scheme change to FMS in the SDN switch i. The Q-learning
based Traffic Flow Matching Policy Creation module relies
as discussed above on a converged Q-table to choose the
most appropriate traffic flow matching scheme for a given
state of the SDN switch i. Finally, the Traffic Flow Matching
Policy Formulation module formulates policies received from
the Overflow Control, the MAC Matching Only Scheme Con-
trol and the Q-learning based Traffic Flow Matching Policy
Creation modules and sends them to the Built-in Forwarding
application for implementation in the SDN switch i.

B. Operational Workflow

Initially, the Statistics Collector sends a request to the SDN
controller to ask for network topology information. Then, it
launches a monitor thread swi for each SDN switch i - see
Fig. 2. In regular time intervals (observation period), the

monitor thread swi gathers raw traffic flow statistics from
the SDN switch i and passes them to the Statistics Extractor
and Distributor where the tuple ( fi ,∆ fi)—the total number of
current flows and the flow number changes—is determined.
Afterwards, this data is forwarded to the Overflow Control
module, the SVM based Performance Degradation Prediction
module and the MAC Matching Only Scheme Control module.

Fig. 3 shows the detailed operational workflow of the Q-
DATA framework. Firstly the Statistics Extractor and Distribu-
tor module compares fi to fcapi and if the current total number
of flow entries in a switch i reaches its upper limit, then it
is denoted as an overflow situation. In this case, the Over-
flow Control module has to find an appropriate traffic flow
matching change policy for some destination hosts Hi (derived
from Algorithm 3) which have most flow entries in switch i,
so that the overflow situation is mitigated. We suppose that
a source-destination node pair (having a unique pair of IP
addresses), that transfers traffic through switch i, puts z flow
entries (z ≥ 1.0) on average in the switch i (e.g., either request
or response flows). Nipi denotes the total number of unique IP
address pairs in the flow-table of the switch i. In case of a non-
saturation attack the number of hosts (represented by their IP
addresses6) sending traffic through the SDN switch i is usually
much less than the maximum number flow entries fcapi . Thus,
if Nipi ≥

fcapi

z , there are some destination hosts Hi serving
a lot of incoming requests from other hosts or being under
saturation attacks (e.g., Denial-of-Service attacks). Hence, it
is reasonable to match incoming traffic flows related to these
destination hosts using only MAC address information. This
avoids a sudden overflow situation of switch i. Otherwise, the
Overflow Control module handovers to the Q-learning based
Traffic Flow Matching Policy Creation module to issue an
optimal traffic flow matching policy for the Hi destination
hosts via Algorithm 2.

In case the current total number of flow entries fi is less
than the switch’s upper limit fcapi , the SVM based Perfor-
mance Degradation Prediction module checks for a potential
performance degradation of the SDN switch i based on the
tuple ( fi ,∆ fi), and forwards its prediction result to the MAC
Matching Only Scheme Control module and the Q-learning
based Traffic Flow Matching Policy Creation module. If the
switch state is predicted as Good, the MAC Matching Only
Scheme Control module checks whether there exists a MMOS
flow matching policy for any of the destination hosts. If
a MMOS flow matching policy is found, then Algorithm
4 is applied to check the conditions for a change to the
FMS strategy. In case a possible performance degradation is
detected for switch i, and if the total number of flow entries
is increasing (∆ fi>0), then the Q-learning based Traffic Flow
Matching Policy Creation module executes Algorithm 2 to
apply the most appropriate traffic flow matching policy for
destination hosts (derived from Algorithm 3) in the switch i.

6Initially the Built-in Forwarding application applies the FMS scheme,
hence IP address information is available before an overflow problem appears
in the switch i.



Algorithm 2 Q-learning based traffic flow matching policy
creation for the SDN switch i

Input: A tuple ( fi,∆ fi) at iteration t; Ri; Hi .
begin

Utilize a converged Q-table from Algorithm 1.
st ← ( fi,∆ fi).
Drive optimal action at = π∗(st ) from the Q-table.
Apply at for Hi derived from Algorithm 3.
Update st ← st+1 {see Fig. 3}.
Get reward Ri using Equation 3.
Update Q-table using Equation 8.

end

V. EXPERIMENTS

A. Example SDN Network Scenario

In order to evaluate the performance of the Q-DATA frame-
work, we leverage the MaxiNet framework [19] to emulate a
simple SDN based network consisting of 3 Web servers (S1-
S3) (using Apache Web server images) and 5 hosts (H1-H5)
which are all connected to a single SDN switch (implemented
as OpenvSwitch). The emulated SDN network runs within one
Linux machine and is controlled by a remote ONOS SDN
controller running on another physical machine. For ease of
deployment, we place both the Q-DATA App and the ONOS
SDN controller on the same Linux machine.

B. Training Q-learning and SVM Algorithms

Initially, for training the Q-learning agent we use the Hping3
tool [20] installed in hosts (H1-H5) to randomly generate
traffic between hosts and Web servers. The Q-learning agent
depends on the collected data for making decisions about
changing the traffic flow matching scheme, and for updating
its Q-table accordingly. In particular, we set the ε value to 0.8
in order to have 80% of random actions in a set of 9 match
field combinations, and the state observation time is set to 10.0
seconds. For training the SVM algorithm, we apply the same
traffic generation strategy as for the Q-learning agent training
phase and initially apply the FMS scheme. Afterwards, we
monitor any errors or exceptions indicating that the switch
cannot handle new flow requests, and set sign = -1 as a label
for the associated tuple ( fi ,∆ fi). Otherwise, we set sign = +1.
These labelled samples are then used for training the SVM
algorithm.

We observe that the switch starts getting overflowed or
cannot handle new flow rules if the current total number of
flows is around 3000 ( fcapi ) [6], [8]. Setting the idle_timeout
value (after which the flow entries are removed) to 10 seconds,
the safety threshold for the packet rate the switch can handle
is 300 packets per second assuming that each packet belongs
to a different traffic flow rule (worst case assumption). There-
fore, for traffic generation, we apply three levels: low load
(R1=100), medium load (R2=200) and high load (R3=300).

C. Experiment Setup

We conduct several experiments with different flow match-
ing strategies: MMOS only, FMS only, the novel Q-DATA
framework (with ε = 0.0, ε = 0.2, ε = 0.8) and the DATA
scheme [8]. The built-in forwarding application of the ONOS
SDN controller applies Reactive Forwarding.

In order to show the performance enhancement in traffic
flow monitoring in SDN based networks with the Q-DATA
framework, we implement a SOM-based IDS application (Self
Organizing Map algorithm [21]) to detect abnormal traffic
on top of the ONOS controller. We consider some common
attacks, which can make the SDN switch become overflowed,
comprising TCP SYN flood [22], Port scanning [22], Low and
Slow Denial-of-Service [6]. The attack traffic is stemmed from
hosts and it is directed to Web servers in our setup.

For the performance analysis, traffic from the 5 hosts to-
wards the 3 servers is generated randomly with three different
load levels (R1, R2, R3). During the experiments we trace the
total number of flow entries in the SDN switch, the average
number of packet_in messages per second to the ONOS
controller, errors and exceptions in the ONOS controller, the
frequency of traffic flow matching policy changes, the CPU
utilization of the controller machine and the attack detection
performance of the SOM-based IDS.

VI. RESULTS

A. Network related Performance Results

1) Total number of traffic flow entries in the SDN switch:
As can be seen in Fig. 4, the MMOS scheme accounts for a
very low amount of traffic flow entries in all scenarios. For the
low and medium load cases, FMS, Q-DATA (ε = 0.0, ε = 0.2
and ε = 0.8) and DATA are supposed to have the same amount
of traffic flow entries in the switch since the total number of
flow entries is always below the critical level ( fcapi). Note,
that there are some minor variations for Q-DATA with ε =
0.2 and ε = 0.8 because the Q-learning based Traffic Flow
Matching Policy Creation module is allowed to take random
actions that leads to a Good state of the SDN switch with a
high immediate reward value (average number of match fields
of a flow entry) and to no further flow entry changes in the
remaining time.

In the high load scenario, the FMS scheme leads to errors
and exceptions after a short period of time causing a massive
reduction in the number of flow entries because the SDN
switch and the ONOS controller suspend their operation. In
case of DATA, after reaching the switch’s flow-table entry
upper limit ( fcapi), the flow matching scheme is changed to
MMOS for some destination hosts leading to a very small
amount of flow entries in the remaining time. In contrast,
the Q-DATA framework maintains a significant number of
flow rules by applying appropriate traffic flow matching
policies, e.g., a layer 2 & layer 3 matching scheme which
provides a higher traffic flow matching granularity and avoids
the performance degradation of the switch. Besides, the Q-
learning based Traffic Flow Matching Policy Creation module
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Fig. 4. Total number of flow entries in the SDN switch for three different traffic loads: (a) Low Load R1=100, (b) Medium Load R2=200 and (c) High
Load R3=300

depends on future states, i.e., st+1, and tries to maximize the
traffic flow matching granularity by changing to other schemes
which provide more traffic flow information details. Therefore
we observe some changes in the number of flow entries during
our experiments.

2) Average packet_in message rate to the ONOS controller:
Fig. 5 (a) illustrates the average number of packet_in messages
per second arriving at the Built-in Forwarding application.
Contrary to the FMS and DATA schemes, for all traffic
loads, the Q-DATA framework with the optimal traffic flow
matching policy (ε = 0.0) allows the ONOS controller to
process an acceptable packet_in rate. This significantly reduces
the workload of the Built-in Forwarding application because
of less new flow installation queries. The results for the Q-
DATA scheme with ε = 0.2 and ε = 0.8 are expected to be
better for a longer experiment duration.

3) Errors and exceptions: Another key criterion for the
performance evaluation of the Q-DATA solution is the time
until an error or exception (observed by the ONOS terminal)
occurs due to a degraded SDN switch. Our measurements
show that the FMS scheme causes disconnected channels er-
rors and FlowRuleManager exceptions in the ONOS controller
after 7 to 10 seconds since the high traffic load is generated.
For the other traffic load cases, no errors and exceptions are
observed.

4) Frequency of changing flow matching policy: We record
the total number of traffic flow matching scheme changes
of the proposed Q-DATA framework and the DATA scheme.
As shown in Fig. 5 (b), the DATA scheme tries to keep the
SDN switch in a Good state as long as possible—therefore no
changes in the traffic flow matching scheme occur for low and
medium load scenarios, but some changes happen in the high
load case (i.e., a change from FMS to MMOS). Contrary, Q-
DATA performs some changes depending on newly incoming
traffic flows in the switch. In particular, in the high load
case, Q-DATA with ε = 0.0 performs several flow matching
scheme changes, e.g., between layer 2 & layer 3 matching and
FMS, to provide more traffic flow information details while
guaranteeing that the SDN switch forwarding performance
does not degrade.

TABLE I
ANOMALY DETECTION PERFORMANCE OF DIFFERENT TRAFFIC FLOW

MATCHING SOLUTIONS AND TRAFFIC LOADS

TCP SYN flood attack detection performance (%)
MMOS FMS Q-DATA Q-DATA Q-DATA DATA

ε = 0.0 ε = 0.2 ε = 0.8
R1 0.0 98.02 97.05 96.04 96.53 97.52
R2 0.0 97.64 96.53 97.37 96.06 98.05
R3 0.0 0.0 85.20 81.20 82.00 0.0

Port scanning attack detection performance (%)
MMOS FMS Q-DATA Q-DATA Q-DATA DATA

ε = 0.0 ε = 0.2 ε = 0.8
R1 0.0 96.53 97.45 96.00 96.33 97.30
R2 0.0 98.22 96.43 97.01 96.62 97.22
R3 0.0 0.0 84.34 84.10 82.56 0.0

Low and Slow DoS attack detection performance (%)
MMOS FMS Q-DATA Q-DATA Q-DATA DATA

ε = 0.0 ε = 0.2 ε = 0.8
R1 0.0 96.32 96.25 95.70 97.12 95.78
R2 0.0 96.34 97.36 96.54 96.21 95.92
R3 0.0 0.0 88.24 85.32 85.45 0.0

5) Computational overhead: Fig. 5 (c) shows measure-
ments of the CPU utilization of the controller machine. It
can be seen that the three Q-DATA scheme variants (ε = 0.0,
ε = 0.2, ε = 0.8) consume more CPU resources for all traffic
loads. This is due to the fact that the Q-DATA App actively
monitors and analyzes the network traffic, especially in the
case of high traffic load. It tries to maximize the traffic flow
matching granularity and to avoid any performance degrada-
tion of the switch. Nonetheless, this computational overhead is
acceptable considering the benefits of the Q-DATA Scheme.

B. Anomaly Detection Performance Results

In order to show the enhancement of the traffic flow
monitoring capability provided by the Q-DATA framework,
we evaluate the anomaly detection performance of the SOM-
based IDS application for three attack types, i.e., TCP SYN
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Fig. 5. (a) Average packet_in rate (pkts/s) to the ONOS controller for different traffic flow matching schemes and traffic loads, (b) Total number of traffic
flow matching scheme changes (during 500 seconds experiment duration) for different loads, (c) Average CPU utilization of the controller machine (during
500 seconds experiment duration)

flood7, Port scanning8 and Low and Slow Denial-of-Service9.
For the evaluation we apply the following fitness function:

Fanomaly =WDr Dr +WAc Ac +WFa e−Fa, (9)

where Dr represents the Detection rate, Ac Accuracy, Fa False
alarm rate and WDr ,WAc and WFa are weight values which
are equally set to 1/3 in our evaluation.

As shown in Table I, no alert is raised in case of the MMOS
scheme for all attack types and traffic loads because the traffic
towards the Web servers is grouped into flow entries in the
switch that makes it for the IDS impossible to detect any
attacks. In the low and medium load scenarios, for the FMS,
Q-DATA (ε = 0.0, ε = 0.2, ε = 0.8) and DATA schemes, three
attacks are detected by the IDS with similar levels of attack
detection performance.

In the high traffic load case, for FMS, the operation of
the SDN controller and the switch are suspended. This makes
the IDS application unable to gather traffic information from
the SDN controller and to detect the attacks. For the DATA
scheme the SDN switch stays operational, however traffic
flows targeting to the servers are aggregated to some MMOS
flows in the SDN switch. Hence there is no chance10 to
recognize malicious traffic flows towards the Web servers
for all three attack types. Contrary, Q-DATA, by frequently
changing between different flow matching schemes, provides
more detailed traffic flow information and enables the IDS
application to recognize the attack presence. However, because
of the variation of statistics information caused by the traffic

7Attackers try to send as fast as possible TCP segments with different
spoofed source IP addresses and TCP ports to the Web servers leading to a
large number of new flow entries in the SDN switch in a short time period.

8Attackers try to send as many as possible TCP segments with different
destination ports to the Web servers and wait for response packets.

9Attackers periodically send requests as slow as possible with little re-
sources and try to keep all installed flow entries in the SDN switch alive as
long as possible, which renders the victim inaccessible.

10Nevertheless, for a larger scale network that comprises several switches
(like the enterprise network in our previous study [8]), the SOM-based IDS is
expected to achieve a good attack detection performance as some switches
carry attack traffic flows and still stay operational (i.e., are in a Good
forwarding performance state).

flow matching scheme change in the switch, the attack detec-
tion performance in case of high traffic load is lower than for
low and medium traffic loads.

VII. CONCLUSION

In this paper, we present a traffic flow matching control
framework based on reinforcement learning called Q-DATA
which improves traffic flow monitoring in SDN based net-
works and proactively prevents performance degradation of
SDN switches. We conduct a comprehensive performance
analysis of the Q-DATA framework. Our results show that—
compared to the default behavior of common SDN controllers
and to our previous DATA scheme—the new Q-DATA frame-
work by applying always the optimal traffic flow matching
policy yields remarkable performance benefits. In our future
work, we intend to focus on an optimized integration of traffic
flow matching control and traffic anomaly detection.
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APPENDIX A
ALGORITHMS FROM OUR PREVIOUS WORK [8]

Algorithm 3 Identification of the destination hosts whose
flows are most critical to the performance of SDN switch i

Input: Si =
{
(host1, f low1), (host2, f low2), ..., (hostχ, f lowχ)

}
:

set of destination hosts and respective number of flow
entries associated with these hosts in switch i; fi =

∑χ
c=1

f lowc: total number of current flow entries in switch i;
index = 1: first index. Output: Hi = {}: set of destination
hosts.
begin
Sort Si in descending order of the current flow f lowc (from
highest to lowest numbers).
loop

Hi .append(Si[index])
fremaining = 1 +

∑χ
c=index+1 f lowc {One MMOS flow

entry is installed in switch i}.
∆ fi = fi- fremaining {Delete ∆ f flow entries in switch i}.
sign = SV M( fremaining,∆ fi)
if sign = +1 then

break {Switch i can handle fremaining entries}.
else

index = index+1 {Switch i cannot handle fremaining

entries}.
end if

end loop
return Hi .

Algorithm 4 Identification of the MMOS flows/destination
hosts related to SDN switch i for which changing back to
FMS is feasible

Input: Si =
{
(host1,Rpkt1 ), (host2,Rpkt2 ), ..., (hostχ,Rpktχ )

}
:

set of destination hosts and respective packet rate of MMOS
flows associated with these hosts in switch i; ( fi , fcapi ):
total number of current flow entries and maximum number
of flow entries in switch i; fextra: number of flow entries
that might be added in switch i. Output: Hi = {}: set of
destination hosts.
begin
for index = 1; index ≤ z; index++ do

fextra = idle_timeout*Rpktindex
{Worst case assumption:

each packet is associated with a new entry in switch i}.
if ( fextra + fi ) < fcapi then

Hi .append[hindex].
else

continue
end if

end for
return Hi .


