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Abstract—In networked systems engineering, operational data
gathered from sensors or logs can be used to build data-
driven functions for performance prediction, anomaly detection,
and other operational tasks. The number of data sources used
for this purpose determines the dimensionality of the feature
space for learning and can reach millions for medium-sized
systems. Learning on a space with high dimensionality generally
incurs high communication and computational costs for the
learning process. In this work, we apply and compare a range
of methods, including, feature selection, Principle Component
Analysis (PCA), and autoencoders with the objective to reduce
the dimensionality of the feature space while maintaining the
prediction accuracy when compared with learning on the full
space. We conduct the study using traces gathered from a testbed
at KTH that runs a video-on-demand service and a key-value
store under dynamic load. Our results suggest the feasibility of
reducing the dimensionality of the feature space of operational
data significantly, by one to two orders of magnitude in our
scenarios, while maintaining prediction accuracy. The findings
confirm the Manifold Hypothesis in machine learning, which
states that real-world data sets tend to occupy a small subspace
of the full feature space. In addition, we investigate the tradeoff
between prediction accuracy and prediction overhead, which is
crucial for applying the results to operational systems.

Index Terms—Data-driven engineering, Machine learning, ML,
Dimensionality reduction,

I. INTRODUCTION

In networked systems engineering, operational data gathered
from sensors or logs can be used to build data-driven functions
for performance prediction, anomaly detection, and other
operational tasks. The number of data sources or monitored
variables used for this purpose determines the dimensionality
of the feature space for learning: each (univariate) source or
variable defines a dimension in this space. Considering that a
single server can generate several hundred metrics that can be
monitored [1], the total number of metrics can reach millions
for a system with thousands of components.

Learning on a space with high dimensionality generally
incurs high communication and computational costs for the
learning process. The overhead increases at least linearly with
the number of dimensions. To achieve efficient learning in
networked systems, reducing the dimensionality of the feature
space thus becomes crucial.

An obvious approach is to use (human) domain experts that
select, at the design or configuration stage of a system, the
sources and metrics that should be monitored. In fact, almost
all work in performance prediction using machine learning

follows this approach (see, e.g. [2]). Our experience has been
that this strategy becomes increasingly difficult with growing
system complexity and system size, if the goal is to achieve
high prediction accuracy.

We follow a different path in this work. We consider all
possible (or at least a very large number of) data sources for
prediction and automate the reduction of the feature space
through learning algorithms. This approach is motivated by
the so-called Manifold Hypothesis, which states that real data
(as opposed to artificially created data sets) tends to occupy
a small subspace of the total feature space[3]. The hypothesis
has been validated for image and speech data sets, but not (to
our knowledge) for measurements from networked systems. A
classical result in this context is reported in [4] where images
of hand-written digits (MNIST dataset), each represented as
a vector in a 784 dimensional space, are mapped into a 30
dimensional subspace with minimal distortion by using a deep
neural network.

In this work, we apply and compare a range of known
machine-learning methods, including, feature selection, Prin-
ciple Component Analysis (PCA), and autoencoder with the
objective to reduce the dimensionality of the feature space
in such a way that learning on the lower-dimensional space
can achieve the same prediction accuracy than learning on the
full space. We conduct the study using traces gathered from
a testbed at KTH that runs a video-on-demand service and a
key-value store under dynamic load.

The chosen use case for our investigation is the prediction of
end-to-end performance metrics. Using statistical learning, we
measure device-level metrics in the infrastructure and predict
service-level end-to-end metrics (see Figure 2). Specifically,
from measuring metrics like CPU utilization on servers and
packet counters on network devices we predict quality-of-
service parameters like video frame rates and query response
times of the services on the testbed. For details, see our earlier
work in this area [5], [6], [1].

This paper makes the following contributions. First, we
demonstrate, in a systematic way, that it is feasible to automat-
ically and significantly reduce the dimensionality of the feature
space of operational data while maintaining (and sometimes
improving) prediction accuracy. In our case, we reduce the
full features space of some 1500 dimensions by one to two
orders magnitude. Second, by studying the tradeoff between
prediction accuracy and overhead of dimensionality reduction,
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we show how the particular choice of a dimensionality-
reduction technique depends on the particular use case and
the constraints of the target technology.

The remainder of this paper is organized as follows. Section
II formalizes the problem and describes the models we use and
the concepts we apply for dimensionality reduction. Section
III details our testbed, the experiments we are conducting, the
metrics we are collecting during experiments and the traces
we generate from this data. Sections IV, V, and VI evaluate
three dimensionality-reduction methods applied on the testbed
traces. Section VII surveys related work. Finally, Section VIII
presents conclusions and future work.

II. PROBLEM SETTING AND MACHINE LEARNING
METHODS USED IN THIS WORK

This section formalizes the problem of learning on low-
dimensional subspaces and describes the models we use and
the concepts we apply for mapping the original input space
onto a lower-dimensional subspace. The discussion and for-
malism we use are informed by three classical textbooks on
machine learning: Vapnik [7], Bishop [8], and Goodfellow et
al. [3].

First, we set the context. We map low-level infrastructure
statistics x ∈ X to service-level metrics y ∈ Y using
supervised learning. The infrastructure statistics x include
measurements from a server cluster and a network. In this
work, the service-level metrics y refer to performance indi-
cators on a client, for example, frame rate or response time.
Details regarding the composition of X and Y are given in
Section III-B.

The metrics x and y evolve over time, influenced, e.g., by
the load on the servers, operating system dynamics, network
traffic, and the number of active clients that access the service.
Assuming a global clock that can be read on the machines in
the server cluster, the network devices, and the clients, we
model the combined evolution of the metrics x and y as a
time series {(x(t), y(t))}.

We predict the estimated value of the service-level metric y
conditioned on the infrastructure metric x. Using the frame-
work of statistical learning [7], we model x and y as ran-
dom variables. We assume that the measurements (x(t), y(t))
are i.i.d. samples drawn from the joint hidden distribution
pdata(x, y). Further, we assume x(t) ∈ Rd. (In the context of
this work, d is in the order of thousands.) Lastly, we assume
y(t) ∈ R, i.e., y(t) is one-dimensional (or univariate), which
simplifies the formal description.

We now find a model (or function) f(θ) : x → ŷ with
parameter θ so that ŷ closely approximates y for all x ∈ X ,
given the samples (x(t), y(t)) with t = 1, ...,m. This is
achieved by minimizing a loss function L({f(θ, x(t), y(t)})
with respect to θ.

In this work, we use random forest as our model for
prediction, since it provides accurate prediction in our testbed
environment [1], [5].

Our objective is to map X to a new space X ′ with much
smaller dimensionality, i.e., dim(X ′) � dim(X), while

maintaining the prediction accuracy. In other words, learning a
function f ′(θ′) : x′ → ŷ should result in the same prediction
accuracy than learning the function f(θ) : x → ŷ whereby
x′(t) is the result of mapping x(t) from X to X ′. With ”the
same prediction accuracy” we mean L({f ′(θ′, x′(t)), y(t)}) '
L({f(θ, x(t)), y(t)}). Figure 1 illustrates our approach.

Fig. 1. Instead of learning on the feature space X to predict Y , this work
proposes to learn on the low-dimensional subspace X′ by first mapping the
observations x(t) into X′ using a dimensionality reduction method.

There are a range of techniques and methods that can be ap-
plied to decrease the dimensionality of the X space (or feature
space). In this work we investigate the effectiveness of three
methods, namely, tree-based feature selection, Principle Com-
ponent Analysis (PCA), and autoencoder. These three methods
produce increasingly general mappings in the following sense.
Feature selection reduces the feature space through projection,
PCA achieves this through a general linear mapping, and
autoencoder through a general nonlinear mapping.

We use regression tree as the basis for our feature selection
method [9]. This method ranks all features based on their re-
lationship with the target variable. Regression tree recursively
partitions the feature space, which produces the ranking of the
features. The method is an example of a supervised feature
selection method, since it requires (x, y) samples (instead of
(x) samples) to reduce the X space. (In our earlier work, we
used a semantic feature selection method where we compared
learning from the complete set of the infrastructure features to
learning from networking features alone [5] (see Figure III).
The results show that end-to-end service-level performance
statistics can sometimes be predicted from network features
alone with almost the same accuracy than from the complete
set of infrastructure features.)

The second method is Principal Component Analysis
(PCA). PCA is a traditional way of producing a linear mapping
that iteratively finds the directions of largest variance in a
data set and represents data points as coordinates in these
directions. The directions coincide with the eigenvectors of
the covariance matrix of the data set and form an orthogonal
basis. PCA minimizes the distortion between the original and



the transformed data points among all possible linear mappings
[8].

The third method we investigate in this work is autoencoder.
An autoencoder is a specialized deep neural network which
copies an input vector to an output vector with minimal
distortion. Its architecture has two parts: the encoder, which
transforms the input vector to a code vector of lower dimen-
sionality. The second part is decoder, which reconstructs the
input vector from the code vector [3].

III. TESTBED AND TRACES

A. Testbed and services

In this section, we describe the experimental infrastructure
and the structure of the data traces that we create. Further, we
describe the services that run on this infrastructure, namely, a
Video-on-Demand (VoD) service and Key-Value (KV) store.
Lastly, we explain the load patterns we use and the experi-
ments we run to obtain the traces.

Figure 2 outlines our laboratory testbed at KTH. It includes
a server cluster, an emulated OpenFlow network, and a set of
clients. The server cluster is deployed on a rack with ten high-
performance machines interconnected by a Gigabit Ethernet.
Nine machines are Dell PowerEdge R715 2U servers, each
with 64 GB RAM, two 12-core AMD Opteron processors, a
500 GB hard disk, and four 1 Gb network interfaces. The tenth
machine is a Dell PowerEdge R630 2U with 256 GB RAM,
two 12-core Intel Xeon E5-2680 processors, two 1.2 TB hard
disks, and twelve 1 Gb network interfaces. All machines run
Ubuntu Server 14.04 64 bits, and their clocks are synchronized
through NTP [10].

Fig. 2. The testbed at KTH, providing the infrastructure for experiments. In
various scenarios we predict end-to-end service-level metrics from low-level
infrastructure measurements [5].

The VoD service uses VLC media player software [11],
which provides single-representation streaming with varying
frame rate. It is deployed on six PowerEdge R715 machines
—one HTTP load balancer, three web server and transcoding
machines, and two network file storage machines. The load
balancer runs HAProxy version 1.4.24 [12]. Each web server
and transcoding machine runs Apache version 2.4.7 [13] and
ffmpeg version 0.8.16 [14]. The network file storage machines
run GlusterFS version 3.5.2 [15] and are populated with the
ten most-viewed YouTube videos in 2013, which have a length
of between 33 seconds and 5 minutes. The VoD client is
deployed in another PowerEdge R715 machine and runs VLC
[11] version 2.1.6 over HTTP.

The KV store service uses the Voldemort software [16]. It
executes on the same machines as the VoD service. Six of
them act as KV store nodes in a peer-to-peer fashion, running
Voldemort version 1.10.22 [16]. The OpenFlow network in-
cludes 14 switches, which interconnect the server cluster with
clients and load generators. The load generators emulate client
populations.

A more detailed description of the testbed setup is given in
[5].

B. Collected data and traces

We describe the metrics we collect on the testbed, namely,
the input feature sets Xcluster and Xport —the union of which
we refer to as X —as well as the specific service-level metrics
YV oD and YKV .

The Xcluster feature set is extracted from the kernel of
the Linux operating system that runs on the servers executing
the applications. To access the kernel data structures, we use
System Activity Report (SAR), a popular open-source Linux
library [17]. SAR in turn uses procfs [18] and computes
various system statistics over a configurable interval. Examples
of such statistics are CPU core utilization, memory utilization,
and disk I/O. Xcluster includes only numeric features from
SAR, about 1 700 statistics per server.

The Xport feature set is extracted from the OpenFlow
switches at per-port granularity. It includes statistics from all
switches in the network, namely 1) Total number of Bytes
Transmitted per port, 2) Total number of Bytes Received per
port, 3) Total number of Packets Transmitted per port, and 4)
Total number of Packets Received per port.

The YV oD service-level metrics are measured on the client
device. During an experiment, we capture the following met-
rics: 1) Display Frame Rate (frames/sec), i.e., the number
of displayed video frames per second; 2) Audio Buffer Rate
(buffers/sec), i.e., the number of played audio buffers per
second. These metrics are not directly measured, but computed
from VLC events like the display of a video frame at the
client’s display unit. We have instrumented the VLC software
to capture these events and log the metrics every second.

The YKV service-level metrics are measured on the client
device. During an experiment, we capture the following met-
rics: 1) Read Response Time as the average read latency for
obtaining responses over a set of operations performed per
second; 2) Write Response Time as the average write latency
for obtaining responses over a set of operations performed
per second. These metrics are computed using a benchmark
tool of Voldemort, which we modified for our purposes. The
read and write operations follow the request–reply paradigm,
which allows for tracking the latency of individual operations.
We instrumented the benchmark tool to log the metrics every
second.

Generating the traces: During experiments, X and Y
statistics are collected every second on the testbed. For
each application running on the testbed, the data collec-
tion framework produces a trace in form of a time series
(x(t), y(t)). We interpret this time series as a set of samples



{(x(1), y(1)), ..., (x(m), y(m))}. Assuming that each sample in
the set is drawn uniformly at random from a joint distribution
of (x, y), we obtain predictions models using methods from
statistical learning.

C. Generating load on the testbed

We have built two load generators, one for the VoD ap-
plication and another for the KV application. The VoD load
generator dynamically controls the number of active VoD
sessions, spawning and terminating VLC clients. The KV load
generator controls the rate of KV operations issued per second.
Both generators produce load according to two distinct load
patterns.

1) Periodic-load pattern: the load generator produces re-
quests following a Poisson process whose arrival rate is
modulated by a sinusoidal function with starting load level
PS , amplitude PA, and period of 60 minutes;

2) Flash-crowd load pattern: the load generator produces
requests following a Poisson process whose arrival rate is
modulated by the flash-crowd model described in [19]. The
arrival rate starts at load level FS and peaks at flash events,
which are randomly generated at rate FE events/hour. At each
flash event, the arrival rate increases within a minute to a peak
load FR. It stays at this level for one minute and then decreases
to the initial load within four minutes.

Table I shows the configurations of the load generators
during the experiments reported in Section III-A. We used
a single load generator for the VoD experiments (see [1]) and
three for the KV experiments (see [5]).

All traces we used have been created by stochastic models in
an attempt to approximate real scenarios. The flash-crowd load
pattern, for instance, is based on a model from the research
literature and produces arrival patterns that are quite hard to
predict. We plan to use in future work traces from operational
environments in addition to synthetic traces.

TABLE I
CONFIGURATION PARAMETERS OF VOD AND KV LOAD GENERATORS.

Application Load Periodic-load Flash-crowd-load
Generator PS PA FS FE FR

VoD 1 70 50 10 10 120

KV 1 1 000 800 200 10 1 800
2, 3 350 150 200 3 500

D. The scenarios chosen for this paper

The prediction method proposed in this paper has been
evaluated using data from four experiments. Two of them
involve running the VoD service and two the KV service.

1) VoD periodic: In this experiment, we run the VoD
service and generate a periodic load pattern on the
testbed. Load generator and client are directly connected
to the server cluster, and the testbed does not include the
network (see Figure 2). Data is collected every second
over a period of 50 000 seconds. The X feature set
contains 4 984 features. After cleaning the dataset, 1 409
features remain for processing. Using tree-based feature

selection [20], the input space is further reduced to the
top 30 features. From the service metrics Y only the
video frame rate is used in this investigation. For model
training, we use the first 21 600 samples of the trace.
More details about the experiment are given in [1], and
the trace is available at [21].

2) VoD flash-crowd: This experiment relies on the same
setup as VoD periodic, except that the testbed is loaded
using the flash-crowd pattern. We use the first 3 600
samples of the trace to train the model. We process the
trace the same way as described above and the given
references contain more information.

3) KV periodic: In this experiment, we run the KV service
to generate a periodic load pattern on the testbed. Unlike
the VoD periodic experiment, we connect load genera-
tor and clients to the server cluster via an OpenFlow
network (seeIII-A). Measurements are collected every
second over a period of 28 962 seconds. The X cluster
feature set contains 10 374 features. After cleaning the
data set, 1 649 features remain for the processing. We
use univariate feature selection [20] to decrease number
of features to the 200 top features. (The fact that we use
two different methods for feature selection in different
scenarios has historical, not methodological reasons. We
could have used a single method throughout. ) The
X port feature set contains 176 features, and after
cleaning 134 features remain. From the service metrics
Y only the response time for read operations is used
in this work. For model training, we use the first 3 600
samples of the trace. More details about the experiment
are given in [5], and the trace is available at [22].

4) KV flash-crowd: This experiment relies on the same
setup as KV periodic, except that the testbed is loaded
using the flash-crowd pattern. We process the trace the
same way as described above and the given references
contain more information.

E. Evaluation metrics for mean estimates

To evaluate the model accuracy in predicting mean values
we use two metrics. The first is Normalized Mean Absolute
Error (NMAE) which is defined as 1

ȳ ( 1
m

m∑
i=1

|yi − ŷi|)

where ŷi is the mean value of the target variable, ȳ is the
average value of the target variable, and m is the number
of samples. NMAE is an intuitive and useful measure in the
application domain.

The second metric is the Coefficient of Determination (R2),

which is defined as 1− (

m∑
i=1

(yi−ŷi)
2

m∑
i=1

(yi−ȳ)2
). R2 provides theoretical

insight: R2 = 1 means perfect prediction, R2 = 0 is the
accuracy of a naı̈ve estimator that predicts the sample mean.
R2 takes values in (−∞, 1].



IV. DIMENSIONALITY REDUCTION THROUGH FEATURE
SELECTION

In this section we apply a (supervised) feature selection
method to reduce the dimensionality of the feature space (see
section II). Specifically, we use a regression tree model that
produces as output a ranked list of all features according to
their relative importance with respect to the target. This means
that the first k features of this list are the k features with most
affinity to the target.

Feature selection allows us to create subspaces of the
original feature space X (Figure 1). The top k features span the
subspace with k dimensions. This way, we generate subspaces
for k = 1, 2, 3, ..., 1409. (1409 is the dimensionality of X .)
Then we predict the target Y on each of these subspaces using
random forest regression.

In this investigation, we answer two questions.
Question 1: How does prediction accuracy depend on k?
Figure 3 shows the evaluation results for all four scenarios.

Throughout this paper, we use blue curves for the scenario
VoD periodic load, red for VoD flash-crowd load, green for KV
periodic load, and yellow for KV flash-crowd load. Prediction
accuracy is measured in NMAE and R2 (see section III-E).
One point on a curve represents the average value from ten-
fold cross validation. The vertical bar represents the standard
deviation. In most cases, the standard deviation is small and
barely visible.

The curves in Figure 3(b) follow our expectation: when
the number of dimensions increases, the prediction error falls
monotonically (at least up to k=256). In contrast, Figure 3(a)
shows that, for the VoD service, the prediction error can be
significantly lower for small values of k than for the full
feature space X where k = 1409. This is surprising and
suggests that many features do not contribute to an accurate
prediction of the frame rate and actually reduce accuracy. For
VoD, the optimal value of k with the smallest prediction error
is between 8 and 16, while for KV the optimal k is around
256.

Figure 3 demonstrates that the effect of feature selection
differs among services, which is reflected in the fact that the
top k feature sets for both services have minimal overlap. At
the same time, we observe that, for the same service, the curves
for different load patterns show very similar derivatives and
thus have minima and maxima for very similar values of k.

Figures 3(c) and 3(d) contain the results of the same
evaluation than Figures 3(a) and 3(b), but for the error metric
R2 instead of NMAE. The observations we can draw from
Figures 3(c) and 3(d) are analogous and the conclusions are the
same as above. One advantage of using R2 is that the error
values are in the same range for both services. In contrast,
the NMAE values for both services are very different. We
generally work with NMAE as an error measure, because it is
better interpretable by network engineers. In the following we
provide the plots with the popular R2 metric for information
purposes, but we do not further comment on them.

Question 2: What is the tradeoff between prediction
accuracy and overhead for learning the prediction model?

(a) NMAE vs k for VoD service (b) NMAE vs k for KV service

(c) R2 vs k for VoD service (d) R2 vs k for KV service

Fig. 3. Feature selection: Frame rate and response time prediction on the
subspace spanned by the top k features. Vertical axis is accuracy, horizontal
axis is dimensionality of subspace.

Figure 4 provides the evaluation results. The k value indi-
cates the monitoring overhead, and the training time indicates
the computational overhead. The answer to the question de-
pends on two aspects: first, on the constraints on monitoring
and computing overhead for a particular use case, and second,
on the accuracy objective. Considering the KV service, we
observe that there is only a marginal gain in accuracy when
increasing k beyond 32 or 64. Limiting k to such a number
incurs a gain in computing time of more than an order of
magnitude. In the case of the VoD service, the value for k
should be chosen between 8 and 16 if the constraints permit
this. The computing time given in the Figure was measured
on the ”tenth machine” described in Section III.

Table II shows the value of k that we chose for our
testbed environment, together with accuracy, training time for
computing the prediction model (random forest), and the time
for computing the dimensionality reduction (feature selection
for all values of k). Following the argument given above, we
chose one value of k for the VoD service, and another value
for the KV service.

For reference and comparison, Table III gives accuracy and
training time for prediction on the full feature space X . The
training time in this table is same as the reduction time in Table
II since the feature selection method we use in this work is
based on the same algorithm (see Section II).

If we compare the information in Table II with the infor-
mation in Table III, we can see that it is possible to achieve
a reduction in prediction error by applying feature reduction
before learning the prediction model. As we have seen before,
the reduction in prediction error is larger for the VoD service
than for the KV service. When comparing the computational
overhead, we have to compare the sum of the model training
time and the dimensionality reduction time in Table II with
the model training time in Table III. For the VoD service, the



computational overhead is comparable, for the KV service, the
overhead is twice as much, if we choose feature selection than
if we perform model computation on the full feature set. For
both services, the monitoring overhead is significantly reduced
if feature selection is applied.

(a) VoD (b) KV

Fig. 4. Feature selection: Tradeoff between accuracy and overhead in learning
the prediction model. Vertical axis is prediction error (NMAE), horizontal axis
is computing time. Labels on the curves indicate subspace dimensionality k.

TABLE II
FEATURE SELECTION: VALUE OF K CHOSEN FOR OUR TESTBED,

TOGETHER WITH ACCURACY AND TRAINING TIME, FOR ALL SCENARIOS.
K WAS CHOSEN THROUGH FEATURE SELECTION.

Trace k Error Model train Dim reduce
NMAE R2 time [sec] time [sec]

VoD periodic 16 0.08 0.62 0.79 37
VoD flash-crowd 16 0.05 0.71 1.24 41

KV periodic 256 0.02 0.72 19.18 21
KV flash-crowd 256 0.018 0.72 15.12 17

TABLE III
ACCURACY AND TRAINING TIME FOR PREDICTING FRAME RATE AND

RESPONSE TIME ON THE FULL FEATURE SPACE X .

Trace Error Model train
NMAE R2 time [sec]

VoD periodic 0.12 0.43 36.6
VoD flash-crowd 0.08 0.56 41.2

KV periodic 0.022 0.68 20.9
KV flash-crowd 0.02 0.67 17.4

V. DIMENSIONAL REDUCTION THROUGH PRINCIPAL
COMPONENT ANALYSIS (PCA)

In this section we apply PCA to reduce the dimensionality
of the feature space (see section II) and learn the prediction
model on the lower dimensional space. For computation, we
use the PCA class of the Scikit library. The class is based on
the LAPACK implementation of full SVD or a randomized
truncated SVD, depending on the input data and the value of
k [23].

Question 1: How does prediction accuracy depend on k?
Figure 5 gives the result. When comparing this figure to

Figure 3, we observe that the curves in both figures are very
similar: the VoD service and the KV service exhibit very
different performance properties; for the KV service, the error
monotonically decreases with increasing k; in contrast, for the
VoD service, there is small k which provides better accuracy

(a) NMAE of VoD (b) NMAE of KV

(c) R2 VoD (d) R2 KV

Fig. 5. PCA: Frame rate and response time prediction on the subspace
spanned by the top k features. Vertical axis is accuracy, horizontal axis is
dimensionality of subspace.

than the full feature set; for different load patterns of the same
service, the curves show similar derivatives.

Question 2: What is the tradeoff between prediction
accuracy and overhead for learning the prediction model?

Figure 6 provides the results, which show the same qualita-
tive behavior for PCA as we observed for feature selection (see
Figure 4). Table IV gives the values of k which we consider
suitable for our testbed. Compared to the results from feature
selection (Table II), we observe a small decrease in accuracy,
which we explain by the fact that our feature selection method
explicitly considers the target, while PCA does not.

When comparing Table IV with Table III, we find an
increase in accuracy, but no gain in computational overhead,
similar to what we observed for the feature selection method
(see section IV).

(a) VoD (b) KV

Fig. 6. PCA: Tradeoff between accuracy and overhead in learning the
prediction model. Vertical axis is a prediction error (NMAE), horizontal axis
is computing time. Labels on the curves indicate subspace dimensionality k.

VI. DIMENSIONALITY REDUCTION THROUGH
AUTOENCODER

The third method we apply for dimensionality reduction is
autoencoder (See section II). We use the Keras library to im-
plement an autoencoder neural network [24]. The architecture
of this neural network is simple: it includes a sequence of



TABLE IV
PCA: VALUE OF k CHOSEN FOR OUR TESTBED, TOGETHER WITH

ACCURACY AND TRAINING TIME, FOR ALL SCENARIOS. k WAS CHOSEN
THROUGH FEATURE SELECTION.

Trace k
Error Model train Dim reduce

NMAE R2 time [sec] time [sec]
VoD periodic 16 0.10 0.56 13.56 11

VoD flash-crowd 16 0.06 0.68 12.48 12
KV periodic 256 0.022 0.66 59.15 8

KV flash-crowd 256 0.019 0.66 53.35 6

layers, namely, input layer, hidden layer, code layer, hidden
layer, and output layer. All five layers are fully connected.
The size of the input and output layers corresponds to the
dimensionality of the feature space X , and the size of code
layer is k. The size of the hidden layer is 16 nodes for the
VoD service and 256 nodes for KV service. The activation
function of the code layer and second hidden layers is tanh,
and the activation function for the first hidden layer and the
output layer is linear. We initialize the weights of the first
and last layer with the computed transformation matrix from
the PCA method. During the experiments, we vary the size of
code layer k = 1, 2, ..., dim(X), where dim(X) denotes the
dimensionality of X space. As part of this work, we inves-
tigated various architectures for autoencoders, different types
of activation functions and several methods for initialization.
All these alternatives produced very similar results than those
given in the figures and tables below.

Question 1: How does prediction accuracy depend on k?
Figure 7 shows the accuracy of predicting the frame rate and

the response time for different values of k. The figure shows
a monotonic decline of the prediction error when k increases,
for both the VoD and the KV service. This behavior suggests
that increasing dimensionality improves the knowledge of
the prediction model and thus improves accuracy. Keep in
mind that autoencoders produce nonlinear mappings which
can describe a larger class of systems than linear mappings
can.

Question 2: What is the tradeoff between prediction
accuracy and overhead for learning the prediction model?

Figure 8 shows the graphs of accuracy versus training time
of the prediction model. We observe that increasing k causes
the training time to grow significantly for both services. An
increase of k beyond 8 or 16 results in a very small gain in
accuracy and incurs a significant increase in computation time.

Table V contains the value of k that is suitable for our
testbed. Comparing the results of the prediction accuracy of
these models with those of the feature selection and PCA
methods, we find that the latter two methods are more accurate.
The reason for this is the fact that autoencoders are known to
be hard to train [4].

VII. RELATED WORK

As we mentioned before, dimensionality reduction tech-
niques have been intensively studied in the fields of machine
learning and data science, and their application is well under-
stood for cognitive processes like image recognition, natural

(a) NMAE of VoD (b) NMAE of KV

(c) R2 VoD (d) R2 KV

Fig. 7. Autoencoder: Frame rate and response time prediction on the subspace
spanned by the top k features. Vertical axis is accuracy, horizontal axis is
dimensionality of subspace.

(a) VoD (b) KV

Fig. 8. Autoencoder: Tradeoff between accuracy and overhead in learning the
prediction model. Vertical axis is prediction error (NMAE), horizontal axis is
computing time. Labels on the curves indicate subspace dimensionality k.

TABLE V
AUTOENCODER: VALUE OF k CHOSEN FOR OUR TESTBED, TOGETHER
WITH ACCURACY AND TRAINING TIME, FOR ALL SCENARIOS. k WAS

CHOSEN THROUGH FEATURE SELECTION.

Trace k
Error Model train Dim reduce

NMAE R2 time [sec] time [sec]
VoD periodic 16 0.10 0.57 13.27 538

VoD flash-crowd 16 0.07 0.67 12.82 511
KV periodic 256 0.025 0.53 76.38 507

KV flash-crowd 256 0.021 0.53 72.19 332

language processing, etc. The manifold hypothesis brought
up in the introduction section reflects this understanding.
In networked systems engineering however, these techniques
have rarely been used to date. However, we expect they
will become more prominent as network functions, driven
by operational data and machine-learning techniques, will be
gradually introduced.

Tao et al. predict a quality-of-experience metric from net-
work statistics for a video service [25]. The feature space
they consider has 89 metrics. On this space, they perform
(supervised) feature selection using a heuristic search method
on the graph of all subsets of the complete feature set. The



stated reason for feature selection is to eliminate redundancy of
information and non-relevant features. Their method is shown
to be effective regarding accurate target prediction. Compared
to our work however, they do not investigate the tradeoff
between prediction accuracy and overhead. Also, they do not
investigate the relationship between prediction accuracy and
the dimensionality of the subspace.

In [26] the authors propose an unsupervised feature se-
lection method called REC-FSA for predicting the end-to-
end performance of a network path from network features
in a multi-hop wireless sensor network. The features relate
to physical and MAC layer measurements, the path length,
the temperature of the originating node, etc. The feature
reduction method is based on computing the representation
entropy of the feature matrix and on clustering and has a
complexity of O(m3) where m is the number of features.
They evaluate the method using small deployments in a rural
and an industrial environment. They show that their method
can achieve a reduction of from the original feature set of
17 to a reduced set of 3-5 features, while still maintaining
good prediction accuracy. Compared to our work, the authors
do not systematically investigate the relationship between the
dimensionality of the reduced feature space and the achievable
prediction accuracy.

PCA methods have been successfully used for detecting traf-
fic anomalies in networked systems (see e.g., [27]). In contrast
to our paper, the goal of these works was not dimensionality
reduction, but the identification of patterns in subspaces of low
rank.

In addition to autoencoders, there is a range of techniques
available that provide non-linear mappings to a smaller feature
space for various error objectives. A solid overview is provided
in [28].

VIII. CONCLUSIONS AND FUTURE WORK

Figure 9 illustrates well some of the insights we gained
from the work reported in this paper. First, we find that we
can perform more accurate prediction of service-level metrics
from (low-level) infrastructure measurements if we learn on
a significantly smaller subspace than on the original feature
space X . This applies to both services, all scenarios, and
all dimensionality reduction methods we investigated. (Figure
9 includes only the curves for VoD periodic, but the three
other scenarios support this observation.) Second, due to the
capability to learn general non-linear mappings, autoencoder
allows for more accurate prediction than feature selection or
PCA (for k ≥ 32). The exception is k < 32 where our
autoencoder configuration leads to worse prediction. As we
discussed in Section VI, the reason for bad performance in this
instance stems from the well-known difficulty to configure and
train autoencoders [4]. We expect that additional efforts by us
and others will eventually produce autoencoder configurations
that perform better than PCA across all values of k. Third, the
computational overhead for dimensionality reduction is highest
for autoencoder, namely, some ten times larger than PCA or
feature selection in our case. While PCA and feature selection

incur comparable overhead, note though that feature selection
relates to a specific target and PCA is target-independent. As
a consequence, in a use case where the targets are not known
at design time or are numerous, PCA should be preferred over
(supervised) feature selection.

Fig. 9. Comparing prediction accuracy for different dimensionality reduction
methods. Curves relate to VoD service and periodic load pattern. Vertical axis
shows prediction error (NMAE).

Future work will include additional efforts in studying and
refining dimensionality-reduction techniques which improve
on the performance reported in this paper and which prove
suitable for networked systems.

More importantly, our future work will take into considera-
tion the architecture for computing prediction models and for
performing real-time predictions, as well as the constraints
of the the specific use case. Such an architecture may be
centralized in a cloud-computing case, a one-level hierarchy
in an edge computing scenario, or completely decentralized in
the case of an urban sensor network. The potential benefits of
automated dimensionality reduction for data-driven network
functions have been shown in this paper, but the choice
of a specific technique and its integration into a learning
architecture will depend on the particular use case and requires
thorough investigation.
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