Distributed Middlebox Architecture for IoT Protection

Lionel Metongnon*, Ramin Sadre*, Eugéne C. Ezinf

*ICTEAM, Université catholique de Louvain, Belgium

TIFRI, Université d’ Abomey-Calavi, Benin

Email: lionel.metongnon@uclouvain.be, ramin.sadre @uclouvain.be, eugene.ezin@imsp-uac.org

Abstract—The Internet of Things (IoT) is not one single entity,
but a collection of different devices, communication technolo-
gies, protocols and services. IoT systems can span a large num-
ber of individually managed networks that are interconnected
through the Internet and host the different components of an
IoT application, such as sensor devices, storage servers and
data processing services. Protecting such a complex multi-
party system from abuse becomes a very challenging task.
New difficulties arise everyday when policies are updated or
new collaborations and federations appear between entities.
Moreover, hacked IoT devices can also become the source of
powerful attacks, as the Mirai malware has demonstrated, and
therefore a danger for the other involved parties.

In this paper, we propose an approach to improve the
management and protection of collaborating IoT systems using
distributed intrusion detection and permission-based access
control. Our approach is based on interconnected middleboxes
that monitor the communication between the various IoT
networks and are able to stop incoming as well as outgoing
attacks. We evaluate our approach through experiments with
different types of attacks.

Index Terms—IoT, Federation Network, Security Network,
Distributed mitigation

1. Introduction

The rise of the Internet of Things (IoT) has resulted in
a world-wide deployment of billions of small connected de-
vices. Security-wise, these devices pose a major challenge.
Often, they are too resource constrained to run sophisticated
intrusion prevention software. In addition, by their nature,
these devices are easily ”‘forgotten”’; once deployed, their
firmware is not updated regularly and they do not receive
the same attention by network managers as, for example,
a desktop PC. Their vulnerability and their number make
them an attractive target for attackers since, when hacked
and infected with botnet software, they can be misused for
powerful large DDoS attacks against other Internet partici-
pants [1], [2], [3], [4], [5], as shown by recent DDoS attacks
achieving 600 Gbps [6] and 1.2 Tbps [7]. The state of the art
in defending against such DDoS attacks is attack mitigation
at the target. Companies like Arbor Networks, Renesys,
Cloudflare, or Akamai use CDN networks to filter and
absorb malicious traffic. However, although this approach is

978-3-903176-24-9 (©) 2019 IFIP

effective from the viewpoint of the target, the attack traffic
still consumes resources on the path from the source to the
mitigation point and the mitigation does not prevent a botnet
from attacking other, potentially less protected hosts.

This situation is further complicated by the increasing
complexity of the IoT ecosystem, which does not only
consist of sensor devices but also encompasses intermediate
data handling nodes, servers to store and process data, and
devices hosting the end-user interfaces (e.g. smartphones).
All these components are managed independently and by
different operators and can be combined to build new appli-
cations. For example, an application might need real-time
sensor data from the IoT networks of two Smart Cities A
and B, historical data stored in a datacenter C', and the data
mining capacities of a cloud D. Protecting such a multi-
party environment from abuse becomes a challenging task.
New difficulties arise everyday when policies are updated or
new collaborations and federations appear between entities.
On the other hand, a pragmatic approach where all devices
and services are allowed to mutually access each other with-
out restrictions can have dramatic consequences in the case
an attacker manages to gain control over a sufficient number
of hosts, as demonstrated by the recent DDoS attacks.

To address the above challenges, in this paper we pro-
pose a permission-based system of cooperating middleboxes
that monitor and control the communication between IoT
networks. The middleboxes are interconnected through a
management layer that allows to implement different access
policies and to propagate information on detected attacks.
Since the middleboxes operate on network level they can be
easily deployed in existing IoT networks without requiring
modifications on the end hosts. Traffic monitoring and filter-
ing by the middleboxes is bidirectional and flow based. We
validate our approach by experiments in a virtual environ-
ment where we demonstrate how different types of attacks
can be stopped at the source and effectively mitigated.

2. Related Work

Access control in IoT networks. By default, many
resource-constrained IoT devices only implement a mini-
mum level of access control, for example in the form of a
password request, because complex access control systems
are resource consuming. In addition, the typical activity of
an IoT device, i.e. providing sensor data, is short and sparse
and discourages the use of protocols with a large overhead.

Researchers have proposed more advanced techniques
for access control. Liu ef al. [8] implement the idea of a reg-
ister authority (RA) to authenticate users and then to control
device accesses inside the IoT network in order to reduce the
impact of vulnerability exploits. Their solution requires that
nodes that are contacted by other hosts first communicate
with the RA to check whether access should be granted.
Cruz-Piris et al. [9] propose to extend the MQTT protocol
by user authentication and access rules. Since MQTT is push
based, the access control is implemented on the servers,
which are, in general, more powerful than the sensor nodes.
No solution is proposed for connection attempts toward the
sensor nodes, as done, for example in pull-based protocols
like CoAP or during management activities. Novo [10]
proposes an architecture using a blockchain to create a
distributed access solution where IoT nodes send their traffic
through management hubs providing access control. In the
opposite direction, i.e. when receiving traffic, a node has
to ask its hub to know if it should answer. In Xu et al
[11], a host has to request a capability token from a Local
Coordinator before it can access other hosts. Policies are
stored in the cloud where the coordinators can access them.

The above approaches require an active participation
of the sending or receiving device in the access control.
This makes them unsuitable for scenarios where the existing
software on the IoT nodes cannot be updated or where nodes
do not have enough resources to implement sophisticated
protocols. For this reason, we propose to enforce access
control in the network without relying on the end nodes.

Another aspect is the management of the access con-
trol itself which can become complex in multi-party and
federated IoT environments. With its architecture of local
coordinators and higher-level management implemented in
the cloud, the previously mentioned publication by Xu et
al. [11] addresses federated systems. We follow a similar
hierarchical design. However, in our system, access control
is implemented in middleboxes that monitor and filter the
network communication between the collaborating systems.
In contrast to [11], the end nodes are not directly involved.

DDoS mitigation. DDoS attacks are currently one of the
most powerful attacks to bring down networked services.
In a DDoS attack, traffic generated by a large number of
hosts and amplified through different techniques floods the
target. In commercially available DDoS protection services,
the mitigation is done at the target side and consists in
redirecting, filtering and absorbing the attack traffic by
proxies and CDNs. The authors of [12] propose the us-
age of network function virtualization (NFV) to allocate
dynamically resources to deal with DDoS traffic. Using a
dispatcher and on-demand agents, they distribute the traffic
to avoid congestion. Mitigation at the target is not a perfect
solution, though, since the attack traffic still traverses the
Internet and the attacker, even if identified, can still attack
other, less protected, hosts.

Although the best position to detect an attack is at the
victim side [13], DDoS attacks should be ideally stopped at
the attacker side, as concluded in surveys [14], [15]. How-

s 2
loT sensors
4 Mz
il & =
loT camera
Local K
__users © o
|
z@ Streaming S~ Public server
server i
Normal @ @
user))) = @
fooocoo(
23
&= L
-]
~
Hacker ‘Q‘*
5 ® &
Violl. ol &
loT windfarm

Figure 1: Collaboration between different IoT networks

ever, this is difficult to achieve due to the highly distributed
nature of the attacks. In [16], the authors propose to miti-
gate DDoS attacks on Internet Service Provider (ISP) level
using moving target defense (MTD) and Software Defined
Networking (SDN) techniques. Their approach requires ISP
to share their networks and to allow modifications of their
routing rules. This level of trusts between the ISP can be
difficult to reach and the effectiveness of the solution will
depend on the number of ISP participating. In our solution,
the mitigation is done at the network border, so the traffic
is directly dropped there when an attack is detected.

3. Distributed Middlebox Architecture

3.1. Motivation

The Internet of Things is a not a single network of
homogeneous devices and services. Its various components,
that is sensors, servers, end-user devices, etc., are hosted
in smaller and larger networks owned and managed by
different organizations. Building complex IoT applications
means to aggregate and process data from different sources
and at different places in the Internet. Thanks to Machine-
to-Machine communication this can happen without human
intervention. However, it requires that the different entities
have agreements on who is allowed to communicate with
whom. An example is depicted in Figure 1, showing various
IoT networks providing different types of data and services
and users wanting to access them. In order to collaborate
in a safe way, security policies have to be carefully defined
and implemented. For example, IoT cameras should send
video streams only to the streaming server.

Implementing such policies on all sites is cumbersome
and error prone. Small mistakes can take months to be
detected and will expose the affected subsystems to attacks.
Although similar problems exist in other types of networked
systems, they are particularly serious in the context of IoT
with its billions of poorly managed devices. Sometimes,
network administrators or end users might not be even aware

e
= =
loT sensors
topbox & o
o =
= - =
= ==
SR [0\box lowbox R

rearbox rearbox

— B Zonebox =

loT windfarm
loT Camera

e © ¢
Figure 2: System overview

that vulnerable devices exist in their networks. It is realistic
to assume that sooner or later an attacker will gain control
over them and use them to perform attacks against other
parts of the system.

The goal of this paper is to provide a security system
that helps collaborating IoT networks to communicate and
exchange information without exposing them to attacks.
Based on the above observations, we define the following
requirements to such a security system:

1) It should allow to define and enforce access control
between all participating networks.

2) It should operate on network level since we cannot expect
that all vulnerable devices are known in advance and that
their vulnerabilities can be fixed.

3) It should be independent of the concrete communication
protocols used between IoT components.

4) It should allow to detect DDoS and similar attacks.

5) Once an attack is detected, the system should stop it
at the source in order to prevent that the attack traffic
strains the Internet and that other collaborating networks
are attacked.

3.2. System overview

Our security system consists of middleboxes deployed
inside or at the border of networks hosting IoT components
(Figure 2). These boxes are placed such that they can moni-
tor and filter the traffic between the network and the Internet.
In larger IoT networks consisting of several subnetworks,
more middleboxes can be also deployed in front of the
individual subnetworks. A middlebox has two tasks:

1) When a host in a network tries to access a host in
another network, the middlebox of the target’s network
checks whether the source host is authorized to access the
target host. If not, the traffic is blocked. Similarly, other
policies, such as limitations on the number of messages,
can be enforced.

2) The middlebox looks for signs of attack traffic entering
or leaving the network. Since the box only monitors
network traffic, our focus in this paper is on attacks that

can be detected by flow-based intrusion detection, such
as DoS and DDoS attacks, etc.

To achieve both tasks, middleboxes are forming the lower
layer of a hierarchical structure of security devices. This
structure allows to easily implement security policies be-
tween all collaborating (or federating) networks. General
security policies are defined in form of rules by the net-
work administrators. They determine which and how much
communication is allowed between the IoT components
hosted by the different networks, in this way guaranteeing on
one hand a smooth operation of legitimate IoT application
and preventing, on the other hand, unauthorized accesses
attempted by hacked devices.

The hierarchical structure also allows middleboxes to
exchange information on identified threats. Concretely, if a
middlebox detects attack traffic directed to the network it is
responsible for, it will block the traffic and then check if the
source of the attack is located in one of the collaborating
networks. If this is the case, it will notify the middlebox of
the source, which will then filter the attack traffic right in
front of the attack source before it can leave the source net-
work. We explain how the middleboxes work in Section 3.3.
The higher part of the hierarchical security structure, which
we call management layer, is described in Section 3.4.

3.3. The middleboxes

To protect an IoT network, there is at least one box (the
rearbox) needed at the network border. Depending on the
size of the network, its topology and the security policies
the owner of the network wants to enforce there could be
one or more lowboxes deployed inside the network. Only
the rearbox communicates with the outside world and it is
in charge of configuring the lowboxes.

The middleboxes implement permission-based access
policies on network flow level. When a source host S
sends a packet to a destination host D, the middlebox of
the source network first checks its list of permissions if
it has a permission matching the flow identifier! of the
packet. If there is no such permission and there exists a
middlebox which is responsible for D, the middlebox of S
requests a permission from D’s middlebox. If the destination
middlebox declines the request the traffic is blocked at the
source. Similarly, the destination middlebox will block flows
for which no permission has been requested beforehand.
Note that permissions have a (configurable) time-to-live.

This two-party authorization allows implementing dy-
namic access control. For example, a destination network
that is experiencing heavy load can decide to temporarily
decline new permission requests or issue permissions with
a short time-to-live. On the other hand, permissions with
a long duration reduce the communication overhead and
the latency introduced by the verification process when
a new permission is requested from a remote middlebox.
Network administrators might also decide to permanently

1. We define the flow identifier as the classic five-touple (source address,
destination address, source port, destination port, protocol).

install permissions on a middlebox to make it accept traffic
from networks that do not have a middlebox.
A middlebox has four different lists updated in real time:

1) The permission list contains all permissions granted or
denied. A permission contains the flow identifier (the
five-tuple), the duration of this permission and finally
the time when the permission was issued.

2) The policy list represents the policies that the owner of
the network protected by middlebox wants to enforce for
the individual devices inside the network.

3) The flow list contains information on all flows currently
active, such as size in bytes, the number of packets,
and the duration. This list is scanned by the detection
methods (see below) for attack patterns.

4) The alert list contains the list of flows that have been
identified as suspicious. Each entry contains the flow
identifier of the affected flow and the type of offense
detected for that flow.

Entries in the permission list, the flow list and the alert list
have a duration after which they expire and are removed.

The policies in the policy list contain the following
information for the individual devices:

o Information that is used when the middlebox has to de-
cide whether a permission request should be accepted.
For example, the network owner could define that only
incoming connections towards port 80 are allowed for
device 1.2.3.4 or that device 1.2.3.5 does not accept more
than 10 simultaneous connections.

o Information used when sending a permission request to
another middlebox. For example, the policy could specify
that a device 1.2.3.4 needs permissions of 15 seconds
when communicating with other hosts.

e What to do with flows from/to the device that are on
the alert list, i.e. identified as suspicious. For example,
the policy could define that suspicious flows should be
blocked or rate limited.

There is also a default policy that is used when no specific
policy exists for a device or when devices are communi-
cating with a network without a middlebox. Policies are
installed by the network administrator on the rearbox which
duplicates it on the lowbox it manages.

For every outgoing packet, the box of the source network
first checks if it is part of a new flow, i.e. no permission
exists yet. If this is the case, a request is sent to the
middlebox responsible for the destination host (if no box
is present at the destination, the default policy is applied).
The obtained permission is then recorded. If the flow already
has a permission we check whether it is still valid to decide
whether the packet can be forwarded or must be dropped.

For incoming packets, the box first checks whether the
flow the packet belongs to was already granted permission.
If not, we raise an alert and drop the packet. In addition,
an entry is added to the permission list to block further
packets from that flow for a specific duration configured in
the policies and the source middlebox is notified. Packets
with a permission are treated as usual. The default policy is
applied if the packet comes from an unmanaged network.

In addition to managing and enforcing permissions, a
middlebox performs two other tasks on every flow:

1) Intrusion detection: Traffic is analyzed for attack pat-
terns. If a flow with suspicious behavior is identified by
the target middlebox, it is added to the alert list and the
source middlebox is notified, so it can add the flow to
its alert list, too.

2) Attack mitigation: Flows on the alert list are subject to
mitigation actions. This can mean to complete block the
flow or to follow a softer approach, such as a rate limi-
tation. The latter prevents that false positives completely
block the normal functioning of an IoT application.

3.4. The management layer

Middleboxes must be able to find and communicate with
each other. We propose a hierarchical design inspired by
DNS for scalability. Rearboxes connect to a zonebox which
operates on country, ISP or AS level. The registration of
a rearbox to its zonebox is mandatory. During registration,
the rearbox provides a list of IP addresses it is responsible
for. The communication between the boxes is encrypted,
and the keys are exchanged during the registration. The
zoneboxes are managed by the country or AS they protect.
If needed, another level can be added to the hierarchy
which interconnects the zoneboxes (indicated as topbox).
The boxes in the management layer serve two purposes:

o To provide information about other middleboxes to a
middlebox: A middlebox who needs to find the middle-
box responsible for a target or source address contacts
its zonebox which might, similar to DNS, forward the
request to the topbox.

o To provide mitigation on large scale: If mitigation
at a rearbox fails or cannot be done because the at-
tack source is in a network without a middlebox, the
zonebox can try to find another box that is on the
path between the attacker and the victim and that could
block the attack traffic. Such boxes could be deployed
by the ISPs inside their backbone or at PoPs.

The above requires algorithms to find the optimal mitigation
point, agreements between the operators of 10T networks
and their ISPs, etc. Due to space restrictions, we will not
discuss this aspect further in this paper. It should be noted
that such a setup is only required for large scale treatment of
attacks. If IoT networks want to collaborate on small scale,
only middleboxes and a zonebox are needed. The latter is
the scenario that we will evaluate in the next sections.

4. Experimental methodology

We validate our approach on a network topology emu-
lated with mininet (http://www.mininet.org). The topology
contains three [oT networks that are interconnected through
a central router representing the Internet:

e Network 1 contains 20 nodes representing an IoT net-
work consisting of two subnetworks;
o Network 2: like Network 1, but with only 10 nodes;

e Network 3 hosts two nodes representing a data storage
or processing server and a malicious node, respectively;

The hosts in Network 1 and Network 2 represent resource-
constrained IoT devices with a wireless connection. To
simulate the latter, we set a packet loss rate of 2%, a
bandwidth of 100 Mb/s and 5 ms delay. For the server and
the attacker in Network 3, we choose the same bandwidth
but a delay of 2 ms. We do not simulate a topbox since our
main goal is to show the advantage of the mitigation at the
attack source in the following. The rearboxes are emulated
by programmable switches at the borders of each of the
three networks controlled with the Pox controller [17].

Background traffic represents normal interactions be-
tween the different networks. The IoT devices in the two
networks emulate IoT services that send respectively reply
to messages sent on UDP. For simplicity the same policy is
applied to all the nodes inside the system. The policy treats
all the nodes as equal in term of priority, i.e. it does not
impose limitations on the amount of data they are allowed
to exchange nor on the number of connections. By default,
permissions of a duration of 10 s are requested.

We perform experiments with different types of attacks.
In the next section, we describe for each experiment the
concrete background traffic used in that experiment, the na-
ture of the attack, and the method used by the middleboxes
to detect it. The controller scans the alert list, i.e. the list of
flows marked as suspicious by the detection method, every
500 ms and executes for each alert the mitigation action
depending on the offense type indicated in the alert. In our
experiments, the default policy is to block the flow. It should
be remembered that the detection and mitigation procedures
run on all middleboxes, i.e. an attack flow can be potentially
detected and mitigated by the middlebox of the source as
well as by the middlebox of the destination according to
their policies. If the destination middlebox detects the attack
it will send an alert to the source box.

5. Experimental validation

Scenario 1: DoS attack. In our first experiment, the mali-
cious host in Network 3 sends UDP packets of 500 bytes
with an inter-packet time of 3 s against a set of 15 random
nodes of Network 1. This simulates a generic DoS attack
where an attacker tries, for example, different messages to
exploit a vulnerability. For the background traffic, 10 nodes
in Network 1 send UDP packets of 20 bytes to random
nodes in Network 2 with an inter-packet time of 5 s. The
nodes in Network 1 reply with a UDP packet to each
incoming packet. We record the traffic before the victims’
middlebox, before the attacker’s box and on the attacker
node itself. The system is configured to detect a DoS attack
when a node exchanges at least 5 packets with a destination
and fEeel Lo~ 100,

Figure 3 shows the number of packets per second ob-
served at the different vantage points. The background traffic
is mostly constant, except for a few losses caused by the
configured packet loss rate (the emulated IoT application

does not resend lost packets). The attack starts at time 9 s
and is mitigated when the detection conditions are reached
at around time 27 s. To better illustrate the functioning of the
system, we first let only the middlebox of Network 1 run
the detection and mitigation process as show in Figure 3a.
As can be seen, the traffic observed at the attacker side drops
from around 10 packets per second to 5 packets/s since the
middlebox of Network 1 stops the attack packets before
they can reach the IoT nodes. The legitimate background
traffic is not affected. This represents the normal behaviour
of today solution using firewall and IDS to stop the mali-
cious traffic when identify.

For Figure 3b, the middlebox on the attacker side is
enabled, too. Once the attack is detected, the middlebox
blocks the attack traffic at the source for an infinite duration,
hence the drop to O packet/s after mitigation.

We have not included the management messages (per-
missions and alerts) in the packet statistics in Figure 3a
and Figure 3b. Figure 3c shows the number of management
messages exchanged. Note the periodic peeks caused by
the limited life time of permissions and mitigation actions.
In practice, the traffic overhead caused by the management
messages is relatively low since multiple management mes-
sages can be aggregated into one packet.

Scenario 2: DDoS attack. In the second experiment, 10
nodes in Network 1 and 10 nodes in Network 2 send
UDP packet packets of 50 bytes every seconds to the server
in Network 3. The nodes in Network 2 start 10 s after
the nodes in the first network. The goal is to simulate a
small DDoS attack against the server. We are using the same
background traffic as in the first experiment with the DoS
attack. The middleboxes detect a DDoS attack when a host
receives more than 5 kBytes and 4/5 of the incoming flows
exceed a duration of 15 s. Instead of completely blocking
the attack source like in the DoS attack, we implement a
less aggressive mitigation policy on the target middlebox
that still allows to provide a basic service to legitimate
requests coming from the source even when under attack:
The mitigation consists in blocking one third of the flows
every time the threshold is reached at the target box level.
This is repeated until the attack traffic falls below the
detection threshold.

Figure 4a and Figure 4b show the results when the
traffic is only mitigated by the victim side (we do not
show the background traffic separately in order to keep
the figure readable). After mitigation, traffic is still sent
from Network 1 and 2, but it does not reach the tar-
get. In contrast, no attack traffic leaves Network 1 and
Network 2 if the source middleboxes participate in the
mitigation (Figure 4c). We omit the similarly looking plot
for the management messages due to space restrictions.

The experiment demonstrates how network administra-
tors can reach very specific goals in terms of quality of
service by adapting the mitigation policy. For example, the
system on the victim side could also apply a mitigation
policy that is aggressive at the beginning (block everything
when the attack is detected) and rolled back once the

—e— Background traffic before network 1 box 10

Background traffic before network 2 box
—&— Background traffic before network 3 box
< Atk traffic at attacker side

—e— Background traffic before network 1 box

Background traffic before network 2 box
—A— Background traffic before network 3 box
< Atk traffic at attacker side

—o— Network 1 box
Network 2 box
4— Network 3 box

Pkts/s

Messages/s

[N © ®

Seconds.

RO T SR CRNY [

(a) Only target middlebox

® O a0 0
Seconds

(b) With source middlebox

° 20 0 «® ® ® 0

Seconds

(c¢) With source middlebox: management
messages

Figure 3: DoS attack with different mitigation strategies

—e— Traffic before network 1 box
Traffic before network 2 box

—&— Traffic before network 3 box

—< Traffic at server side

Messages/s

—e— Network 1 box
Network 2 box 40
—A— Network 3 box

—e— Traffic before network 1 box

Traffic before network 2 box
—A— Traffic before network 3 box
< Traffic at server side

D e e B e e e e B]

O ® @
0% 0% ©® a® 0® % xS n®
Seconds

(a) Only target middlebox messages

(b) Only target middlebox: management

LN R Y 0

Seconds 40 ° 20 2 EN

Seconds

(c) With source middlebox

Figure 4: DDoS attack with different mitigation strategies

| —e— Background traffic before network 1 box
Atk traffic before network 1 box
—A— Atk traffic before network 2 box
| < Atk traffic at attacker side

|
o "

2 |

Pkts/s

[RAN © @ ® O 0 0 @

Seconds.

Figure 5: Reflection attack

source middleboxes confirm that they have activated their
mitigation procedures.

Scenario 3: Reflection attack. In our last experiment,
a malicious user in Network 3 spoofs IP addresses of
random nodes of Network 2 and tries to attack them with
an amplified reflection attack by sending messages to the
devices in Network 1 with an inter-packet time of 3 s.
We also have background traffic from random nodes of
Network 2 that send packets to nodes in Network 1.
Figure 5 shows that the reflection attack traffic doesn’t
pass the middlebox of Network 3 because the latter did
not receive permission requests from the middlebox of
Network 1 for that traffic. In fact, the attacker tried to re-
quest permissions on behalf of Network 1 but was rejected
by the authentication procedure. The legitimate background
traffic is not affected. Although an attacker could guess the

IP addresses and port numbers of an existing permitted UDP
flow and successfully pass the middlebox in this way, the
other rules specified by the network administrator in the
policies (permission duration, limitation of packet rate etc.)
would still apply.

6. Conclusion

We have presented a distributed approach for the pro-
tection of collaborating IoT networks. Our system consists
of middleboxes that are deployed on network borders and
that enforce security policies. Communication between the
networks is monitored and controlled by a permission-based
policy system implemented on flow level. In addition, the
middleboxes detect attack patterns and automatically exe-
cute mitigation actions. Attacks originating from collaborat-
ing networks are stopped at the attack side or near it thanks
to the ability of the middleboxes to exchange information
on detected threats and access policies. Default policies
regulate the communication with unmanaged networks. We
show in our experiments that different types of attacks can
be completely mitigated with our approach, often without
disruption of regular traffic. A key characteristic of our
approach is that it is purely network based and, therefore,
does not require modifications on existing IoT end hosts nor
their active participation in the protection scheme.

As future work, we plan to study alternatives to the tree-
like organization of the boxes and their potential impact on
the reliability and reaction time of the system.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo
Spognardi. Analysis of ddos-capable iot malwares. In 2017 Federated
Conference on Computer Science and Information Systems (FedCSIS),
pages 807-816. IEEE, 2017.

Georgios Kambourakis, Constantinos Kolias, and Angelos Stavrou.
The mirai botnet and the iot zombie armies. In MILCOM 2017-2017
IEEE Military Communications Conference (MILCOM), pages 267—
272. IEEE, 2017.

O. Gayer, O. Wilder, and I. Zeifman. Cctv ddos bot-
net in our own back yard. https://www.incapsula.com/blog/
cctv-ddos-botnet-back-yard.html. Accessed: 2018-02-11.

L. Constantin. Thousands of hacked cctv devices used in
ddos attacks. http://www.pcworld.com/article/3089346/security/
thousands-of-hacked-cctv-devices-used-in-ddos-attacks.html, 2016.
Accessed: 2018-02-11.

D. Cid. Large cctv botnet leveraged in ddos attacks. https://blog.
sucuri.net/2016/06/1arge-cctv-botnet-leveraged-ddos-attacks.html,
2016. Accessed: 2018-02-11.

Elisa Bertino and Nayeem Islam. Botnets and internet of things
security. Computer, 50(2):76-79, 2017.

Scott Hilton. Dyn analysis summary of friday october 21 attack. https:
//dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/,
Accessed: 2018-02-11.

Jing Liu, Yang Xiao, and CL Philip Chen. Authentication and access
control in the internet of things. In 2012 32nd International Confer-
ence on Distributed Computing Systems Workshops, pages 588-592.
IEEE, 2012.

Luis Cruz-Piris, Diego Rivera, Ivan Marsa-Maestre, Enrique
De La Hoz, and Juan Velasco. Access control mechanism for
iot environments based on modelling communication procedures as
resources. Sensors, 18(3):917, 2018.

Oscar Novo. Blockchain meets iot: An architecture for scalable access
management in iot. IEEE Internet of Things Journal, 5(2):1184-1195,
2018.

Ronghua Xu, Yu Chen, Erik Blasch, and Genshe Chen. A federated
capability-based access control mechanism for internet of things
(iots). In Sensors and Systems for Space Applications XI, volume
10641, page 106410U. International Society for Optics and Photonics,
2018.

AHM Jakaria, Bahman Rashidi, M Ashiqur Rahman, Carol Fung, and
Wei Yang. Dynamic ddos defense resource allocation using network
function virtualization. In Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network
Function Virtualization, pages 37-42. ACM, 2017.

Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of
defense mechanisms against distributed denial of service (ddos) flood-
ing attacks. IEEE communications surveys & tutorials, 15(4):2046—
2069, 2013.

Christos Douligeris and Aikaterini Mitrokotsa. Ddos attacks and
defense mechanisms: classification and state-of-the-art. Computer
Networks, 44(5):643-666, 2004.

Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey
of network-based defense mechanisms countering the dos and ddos
problems. ACM Computing Surveys (CSUR), 39(1):3, 2007.

Jessica Steinberger, Benjamin Kuhnert, Christian Dietz, Lisa Ball,
Anna Sperotto, Harald Baier, Aiko Pras, and Gabi Dreo. Ddos
defense using mtd and sdn. In NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium, pages 1-9. IEEE, 2018.

Pox controller. https://openflow.stanford.edu/display/ONL/POX+
Wiki. Accessed: 2018-12-07.

