
Quantitative Analysis of Dynamically Provisioned
Heterogeneous Network Services

Hadi Razzaghi Kouchaksaraei, Holger Karl
Computer Network Group

Paderborn University, Paderborn, Germany
{hadi.razzaghi, holger.karl}@uni-paderborn.de

Abstract—Services in Network Function Virtualization (NFV)
can have a variety of requirements such as data rates, latencies,
and cost that can change during the lifecycle of services. To meet
these requirements, various hardware and software resources
are suggested for implementing Virtualized Network Functions
(VNFs). However, meeting all service requirements using one
implementation option is not always possible. For example, to
improve the performance of VNFs, using acceleration hardware
is proposed. Although acceleration hardware can improve the
performance of a network function, as they are expensive
appliances, they increase the cost of services; this might not
be desirable for a particular service user or load that can be
handled by cheaper resources. Dynamically provisioning services
can solve this problem in which different implementations of
VNFs are switched on the fly as service requirements change.
In this paper, we analyse this service provisioning approach
in terms of performance, cost, and management overhead by
experimenting an example VNF.

I. INTRODUCTION

Network Function Virtualization (NFV) services can have
a variety of requirements that can change during the lifecycle
of services. These requirements can be, for example, different
data rates, latencies, and cost. To meet these requirements,
various hardware resources or software structures are sug-
gested [1] [2] [3]. Usually, however, there are trade-offs be-
tween different hardware resources or software structures to re-
alise a service, and there is no one single solution that can meet
all requirements. For example, to improve the performance
of compute- and network-intensive NFs, using acceleration
hardware such as Graphics Processing Unit (GPU) or Field-
Programmable Gate Array (FPGA) is proposed [4] [1].

Although acceleration hardware can improve the perfor-
mance of network functions, as they are expensive appliances,
they increase the cost of services; this might not be desirable
for a particular service user or load that can be handled by
cheaper resources. This problem can be solved by dynamically
provisioning network services: we switch to a different service
implementation on the fly as service requirements change.
This can provide service performance most suitable to the
given requirements. For example, consider two versions of
a Deep Packet Inspection (DPI) NF: v1 is a CPU-based, v2
an FPGA-based implementation. On one hand, deploying v1
would perform well and be cheap when the input data rate
is low but it would not perform well for high data rates. On
the other hand, v2 performs better at high data rate but is too
expensive at low data rates [1]. To make a trade-off between

these two DPI versions, a service package consisting of both
versions can be used that allows us to deploy the right version
and then switch between them on the fly as the input data rate
changes. We call this type of services multi-version services,
a concept that is proposed in our previous work [5]. While the
idea looks promising in theory, an experimental evaluation of
such a service provisioning approach is still missing.

In this paper, we contribute to the dynamic provisioning of
network services that are realised on heterogeneous resources
based on different requirements. To this end, we analyze this
approach in terms of performance, cost, and management
overhead. We considered a virtual transcoder (vTC) as a case
study and implemented a COTS-based and a GPU-assisted
virtual transcoder. We evaluated these vTC versions by metrics
such as resource utilization and processing time. Based on this
evaluation, we analysed the cost of vTCs running on cloud-
based COTS and acceleration resources. We, further, evaluated
the management overhead of dynamic service deployment by
measuring the deployment time of vTCs.

The rest of the paper is structured as follows. In Section II,
we review related work. Dynamic service provisioning is
evaluated in Section III, and, finally, we conclude the paper
in Section IV.

II. RELATED WORK

Studies in the context of dynamic service provisioning
and multi-version services can be categorised into (i) studies
related to evaluating Virtualized Network Functions (VNFs)
realised with different implementation options and (ii) studies
related to analysing the dynamic deployment of multi-version
services. The former category supports the idea of the multi-
version services as it can prove that there are trade-offs
between using different implementation options of VNFs. This
validates the idea of having multi-version services in a system
as without such trade-offs, there would not be any need to
have multiple versions of a service, but simply scaling a
single version of service up and down would be all that is
needed for optimal performance. The latter category analyses
the overhead generated by dynamically service provisioning
which is more associated with management and orchestration
of these services.

There are multiple studies (e.g., [6], [7], and [1]) in the first
category. Nobach et al. [1] studied the performance and cost
of COTS-based DPI versus FPGA-based DPI. In this work,

978-3-903176-24-9 c© 2019 IFIP



they implemented a DPI that uses COTS resources for all its
tasks and another one that offloads network-intensive tasks
onto FPGA resources. They have evaluated the throughput and
latency of these DPIs having the size of input packets as a
parameter. The results of their evaluation show a clear trade-
off between performance in terms of throughput and latency
and costs. Using FPGA-based DPI for packet sizes up to 512
bytes can improve the throughput up to 124 times. Also, it
can improve the latency up to 6 times. However, in the case
that packet sizes are bigger than 512 bytes, the performance
improvement becomes negligible. With that, we can observe
that the use of FPGA-based DPI is not a proper solution for
large packets as it costs 2.3 times more than COTS-based DPI
without having a significant performance improvement.

For the second category, however, there have not been many
studies. In our previous work [5], we have evaluated dynam-
ically deployment of multi-version services using simulation.
However, an experimental evaluation of multi-version services
along with cost and management overhead analysis is missing.

III. QUANTITATIVE ANALYSIS

We have conducted an experimental evaluation to analyse
dynamically provisioning multi-version services. In this eval-
uation, virtualized Transcoder (vTC) has been used as a case
study as it consists of compute-intensive processes that can
be offloaded to acceleration hardware. A transcoder provides
functionalities such as converting video encoding format and
spatial resolution, video transposing, and video transcasting.
These functionalities are provided to adjust the original video
to the viewer’s network datarate, device resolution, frame rate
and so on. Transcoder is used in both Video On Demand
(VOD) (e.g., Youtube, Netflix) and live-streaming services
to provide high-quality video streaming experience for the
viewers [8]. Employing vTC as an example, we have analysed
performance, cost, and management overhead of multi-version
services, which is discussed in the following.

A. Performance Analysis

To analyse the performance, we have implemented two
versions of a vTC: (v1) a COTS-based vTC that is designed to
only utilise CPU for video processing and (v2) a GPU-assisted
vTC that offloads compute-intensive processes to GPU. Both
versions are based on FFmpeg1, which is a software-based
transcoder providing a wide range of transcoding function-
alities. To emulate the NFV environment, we have deployed
vTCs on KVM-based virtual machines. The test-bed, that is
used for the evalution, consists of four VMs: VM #1 hosts a
packet generator that breaks down videos to Group of Picture
(GOP) [8] and embeds them into Real-time Transport Protocol
(RTP) packet payloads to be sent to vTCs, VM #2 runs the
COTS-based vTC, VM #3 hosts the GPU-assisted vTC, VM #4
receives the transcoded videos from vTCs and display them
using a video player. All VMs were running on a server
equipped with an Intel(R) Xeon(R) W-2123 CPU at 3.60GHz

1https://ffmpeg.org/, accessed May 18, 2019

(8 Processors), 8 GB DDR4 RAM, and an Nvidia GeForce
RTX 2080 GPU.

We have considered two metrics namely the video transcod-
ing processing time for the entire video and CPU/GPU uti-
lization. These two metrics are considered as processing time
can affect the total latency of video streaming services and
CPU/GPU utilization is an indicator of the service cost. Pa-
rameters of the evaluation are the video bitrate and resolution.
For a range of video resolutions, we have experimented the
performance of vTCs. For each video resolution, we ran the
test for a range of input bitrates. Both transcoders convert
the incoming video format to H.264 format. Also, big buck
Bunny2 video have been used as the input video.

The video processing time results, illustrated in Fig. 1,
show that the GPU-assisted vTC processes the videos much
faster than the COTS-based vTC when the video has a high
resolution and bitrate. Fig. 1e shows that the processing time
difference can reach up to 40 seconds for videos with 1080p
resolution and 1.6 MB/s Bitrate, which is indeed a remarkable
difference. However, the processing time difference decreases
as the video resolution gets lower. For example, looking at
processing times for videos with 240p resolution (Fig. 1b),
we see that the processing time difference goes down up to
1 second and, for 120p resolution videos (Fig. 1a), the COTS-
based vTC even outperforms the GPU-assisted vTC. This is
because, in the case of GPU-assisted vTC, there is an extra
CPU and GPU communication overhead that does not exist
in the COTS-based vTC. This increases the total processing
time of the GPU-assisted vTCs; however, as this overhead is
very low, it has no significant impact on the processing time
of high-resolution videos.

The CPU utilization evaluation results are depicted in Fig. 2.
As expected, the trend is the same as what we got in the
video processing time evaluation. While the GPU-assisted
vTCs utilizes less CPU for high-resolution videos (Fig. 2e),
COTS-based vTC uses less CPU to process low-resolution
videos. This is because there is no processing associated with
exchanging data between CPU and GPU in the COTS-based
vTC. Looking at the results, the CPU utilization of GPU-
assisted vTC remains between 30 % to 50 % for all video
resolutions, however, COTS-based vTC utilization varies from
20 % for the 120p resolution (Fig. 2a) to 250 % for 1080p
resolution (Fig. 2e). 250 % CPU utilization means 3 CPU cores
are used for the process in which 2 of them are fully utilized
and the other is 50 % utilized.

We have also measured the GPU memory utilization of
GPU-assisted vTC. The results are shown in Fig. 3. Performing
this evaluation, we observed that changing the input bitrate
does not change the GPU utilization and it always remains
constant. However, the GPU utilization increases as the input
video resolution gets larger.

Based on the processing time and resource usage evaluation,
we observe that there is a trade-off between using COTS-based
and GPU-assisted vTCs. Although using GPUs can improve

2http://bbb3d.renderfarming.net/download.html, accessed May 27, 2019



500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

2

4
Pr

oc
es

sin
g 

tim
e 

[s
]

GPU-assisted vTC
COTS-based vTC

(a) Input video with 120p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

2

4

6

Pr
oc

es
sin

g 
tim

e 
[s

]

GPU-assisted vTC
COTS-based vTC

(b) Input video with 240p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

5

10

15

Pr
oc

es
sin

g 
tim

e 
[s

]

GPU-assisted vTC
COTS-based vTC

(c) Input video with 480p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

5

10

15

20
Pr

oc
es

sin
g 

tim
e 

[s
]

GPU-assisted vTC
COTS-based vTC

(d) Input video with 720p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

20

40

Pr
oc

es
sin

g 
tim

e 
[s

]

GPU-assisted vTC
COTS-based vTC

(e) Input video with 1080p resolution

Fig. 1: Transcoding processing time for videos with different resolutions (with 95 % confidence interval - error bars are too
small)

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

25

50

75

100

CP
U 

ut
ilis

at
io

n 
[%

]

GPU-assisted vTC
COTS-based vTC

(a) Input video with 120p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

50

100

CP
U 

ut
ilis

at
io

n 
[%

]

GPU-assisted vTC
COTS-based vTC

(b) Input video with 240p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

100

200

CP
U 

ut
ilis

at
io

n 
[%

]

GPU-assisted vTC
COTS-based vTC

(c) Input video with 480p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

100

200

300

CP
U 

ut
ilis

at
io

n 
[%

]

GPU-assisted vTC
COTS-based vTC

(d) Input video with 720p resolution

500 1000 2000 4000 8000 16000
Bitrate [KB/s]

0

100

200

300

CP
U 

ut
ilis

at
io

n 
[%

]

GPU-assisted vTC
COTS-based vTC

(e) Input video with 1080p resolution

Fig. 2: Transcoding CPU utilization for videos with different resolutions (with 95 % confidence interval)

120 240 480 720 1080
Video resolution [p]

0

20

40

60

80

100

120

140

160

GP
U 

ut
iliz

at
io

n 
[M

iB
]

Fig. 3: Memory usage of GPU-assisted vTC for videos with
different resolutions (with 95 % confidence interval - error bars
are too small)

the processing time of vTC in some cases, in some other
cases it is not a suitable implementation option as it increases
the resource usage while not providing any performance
improvement. This backs up the idea of multi-version services
and dynamical service provisioning as using the right vTC
version for the given input video can significantly improve
performance and reduce resource usage.

B. Cost Analysis

We have also analysed the cost of running COTS-based and
GPU-assisted vTCs. In the performance analysis, we observed
how much CPU core and GPU memory are needed to run
COTS-based and GPU-assisted vTCs, respectively. Having
these data, we have looked at Amazon’s EC2 price list3 to see
how much it costs to provide these resources in a virtualized
cloud environment. In our analysis, Amazon’s general-purpose

3https://aws.amazon.com/ec2/pricing/on-demand/, accessed May 20, 2019



“t2” instances are considered as possible instances to provide
required resources for vTCs. For the GPU case, we consider
the price of elastic graphics instances “eg1”4 that allows GPU
to be attached to EC2 instances.

The results of the cost analysis are illustrated in Fig. 3. It
shows the cost of providing resources for different versions
of the vTC for one hour. While the costs of GPU-assisted
vTC remains constant for all video resolutions, the cost of
COTS-based vTC shows an increasing trend as the video
resolution increases. These results show that the use of COTS-
based vTC for video with 1080p resolutions is inefficient
both performance-wise and cost-wise. The same holds true
for using GPU-assisted vTC to process videos with 120p
and 240p resolutions. For the video with 480p and 720p
resolutions, although GPU-based vTC performs better, it costs
more compared to COTS-based vTC.

120 240 480 720 1080
Video resolution [p]

0.00

0.05

0.10

0.15

0.20

Co
st

 [$
]

COTS-based vTC
GPU-assisted vTC

Fig. 4: Cost of running different versions of vTC on AWS
resources for one hour

C. Management Overhead Analysis

Management overhead of multi-version services also needs
to be considered. One of the main factors in multi-version
service management is the service deployment time. In a
static service deployment, deployment time does not play an
important role as the service is deployed only once and the
service usage is started once the service is deployed. But in
the dynamic deployment scenario, we switch between different
versions multiple times during the lifecycle of the service.
In this situation, it is important to know how much delay
version switching adds to the total latency of the service.
To this end, we have also measured the deployment time
of vTCs. We performed the measurement for two types of
vTCs: (1) a Container-based vTC and (2) a VM-based vTC.
A MANO framework called Pishahang [9] [10] has been
utilized for this evaluation. Pishahang is an NFV multi-domain
orchestrator that supports orchestration of VM- and Container-
based services.

As shown in Fig.5, there is a significant deployment time
difference between VM-based and Container-based vTCs.

4https://aws.amazon.com/ec2/elastic-graphics/, accessed May 20, 2019

While for CN-based vTC, it takes 2.57 seconds to get de-
ployed, VM-based vTC takes more than one minute to get
to the operational stage. Most of the deployment time for
both container and VM is taken by the Virtual Infrastructure
Manager (VIM) that spins up the VM or the container. The
image downloading time is excluded from this time. From
these results, we observe that in the case of using VM-based
vTC, starting VM from scratch is not time-efficient and other
solutions such as cold, warm, and live migrations [11] should
be considered. We also observed that, form the deployment
time point of view, CN-based vTCs are significantly better
solutions for dynamic service deployment as they have negli-
gible deployment time compared to VM-based vTC.

MANO VIM
0

10

20

30

40

50

60

Ti
m

e 
[s

]

CN-based vTC
VM-based vTC

Fig. 5: The deployment time of different vTC versions (with
95 % confidence interval - error bars are too small)

IV. CONCLUSION

In this work, we observe that there are many VNFs that
can benefit from dynamic deployment and that having such an
approach can be used to improve the performance while guar-
anteeing the cheapest price for a particular service. Using vTC
as a case study, we observe that using GPUs can accelerate
the performance of vTC for high-quality videos while low-
quality videos can be handled better by COTS-based vTCs
and be cheaper at the same time. Our management overhead
analysis shows that using VMs are not the best virtualization
option when it comes to switching service versions on the
fly as it generates a significant delay. On the other hand,
containers seem to be a better virtualization environment as
the deployment time of these resources is quite low.

ACKNOWLEDGMENT

This work has been partially supported by the 5G-PICTURE project,
funded by the European Commission under Grant number 762057 through the
Horizon 2020 and 5G-PPP programs and the German Research Foundation
in the Collaborative Research Centre On-The-Fly Computing (SFB 901).

REFERENCES

[1] L. Nobach, B. Rudolph, and D. Hausheer, “Benefits of conditional fpga
provisioning for virtualized network functions,” in 2017 International
Conference on Networked Systems (NetSys), March 2017, pp. 1–6.

[2] N. Ghrada, M. F. Zhani, and Y. Elkhatib, “Price and performance of
cloud-hosted virtual network functions: Analysis and future challenges,”
in 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), June 2018, pp. 482–487.



[3] L. Nobach and D. Hausheer, “Open, elastic provisioning of hardware
acceleration in nfv environments,” in 2015 International Conference and
Workshops on Networked Systems (NetSys), March 2015, pp. 1–5.

[4] D. Thambawita, R. Ragel, and D. Elkaduwe, “To use or not to use:
Graphics processing units (gpus) for pattern matching algorithms,”
in 7th International Conference on Information and Automation for
Sustainability. IEEE, 2014, pp. 1–4.

[5] S. Dräxler and H. Karl, “SPRING: scaling, placement, and routing of
heterogeneous services with flexible structures,” in 2019 IEEE Confer-
ence on Network Softwarization (NetSoft), 2019.

[6] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 195–206, 2011.

[7] I. M. Araújo, C. Natalino, Á. L. Santana, and D. L. Cardoso, “Ac-
celerating vnf-based deep packet inspection with the use of gpus,” in
2018 20th International Conference on Transparent Optical Networks
(ICTON). IEEE, 2018, pp. 1–4.

[8] X. Li, M. A. Salehi, Y. Joshi, M. Darwich, B. Landreneau, and
M. Bayoumi, “Performance analysis and modeling of video transcoding
using heterogeneous cloud services,” CoRR, vol. abs/1809.06529, 2018.
[Online]. Available: http://arxiv.org/abs/1809.06529

[9] H. R. Kouchaksaraei, T. Dierich, and H. Karl, “Pishahang: Joint orches-
tration of network function chains and distributed cloud applications,” in
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), June 2018, pp. 344–346.

[10] H. R. Kouchaksaraei and H. Karl, “Service function chaining across
openstack and kubernetes domains,” in Proceedings of the 13th ACM
International Conference on Distributed and Event-based Systems, ser.
DEBS ’19. New York, NY, USA: ACM, 2019, pp. 240–243. [Online].
Available: http://doi.acm.org/10.1145/3328905.3332505

[11] S. Thamarai Selvi, C. Valliyammai, G. P. Sindhu, and S. Sameer Basha,
“Dynamic resource management in cloud,” in 2014 Sixth International
Conference on Advanced Computing (ICoAC), Dec 2014, pp. 287–291.


