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Abstract—Analysing software and networks can be done using
established tools, such as debuggers and packet analysers, but
using established tools to analyse network software is difficult
and impractical because of the sheer detail the tools present and
the performance overheads they typically impose. This makes it
difficult to precisely diagnose performance anomalies in network
software to identify their causes (is it a DoS attack or a bug?)
and determine what needs to be fixed.

We present Flowdar: a practical tool for analysing software
traces to produce intuitive summaries of network software
behaviour by abstracting unimportant details and demultiplex-
ing traces into different sessions’ subtraces. Flowdar can use
existing state-of-the-art tracing tools for lower overhead during
trace gathering for offline analysis. Using Flowdar we can drill
down when diagnosing performance anomalies without getting
overwhelmed in detail or burdening the system being observed.

We show that Flowdar can be applied to existing real-world
software and can digest complex behaviour into an intuitive
visualisation.

Index Terms—trace analysis, network servers, denial-of-service

I. INTRODUCTION

Network software, such as servers and protocol implemen-
tations, provide the bedrock on which widely-used services
are built. Such software typically needs to securely manage
resources to provide a rich array of features to large numbers
of users and is architected to make efficient use of system
resources. This tends to make network software complex —
for example Apache and Nginx, the two most widely-used
web servers, are both in excess of 100KLOC.

Because of the importance of network software, it is
important to precisely diagnose performance anomalies in
network software, identify their causes and fix them. To begin
with, is the network to blame or is it the software? And
is the performance anomaly caused by a malicious attack,
an accidental misconfiguration, a bug in the software or its
dependencies, or a combination of causes? Reproducing the
conditions of an observed performance anomaly can be very
challenging, and usually relies heavily on human ingenuity [7].

Despite its importance, network software remains challeng-
ing to analyse for its performance and behaviour. Estab-
lished techniques for analysing software, such as attaching
debuggers or running profilers, are not feasible in production
deployments. Application performance management (APM,
see Table I) is feasible in production but has restricted lan-
guage, platform or visibility support — for instance it typically
excludes external libraries from its monitoring.

Another technique, software tracing [9], [20], [26], [28]
produces information that can be analysed online or offline.
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This technique is not only feasible in production but can also
provide a detailed understanding of deployment workloads.
Traces can contain a configurable amount of data, such as
function parameters, and explain the software’s execution.

Unfortunately, there is little support available to process
traces, and nothing that specifically assists with network soft-
ware. This is because systematising application-trace analysis
is challenging: (a) It is hard to make a general facility for a
class of software and for a wide range of details that could
be included in traces. For example, Apache and Nginx are
both web servers but their internals are completely different
and their code-bases are disjoint. Which function calls can be
elided in the trace, and how to distinguish different clients’ ses-
sions, differs for each implementation — possibly even across
different versions of the same software. (b) This is an inter-
disciplinary problem involving the application domain, data
management and understanding low-level internals; (¢) Traces
might require significant pre-processing before analysis. For
instance, if an application is event-based then its trace is highly
dependent on the sequence of data it is operating on.

To address this problem we present Flowdar: a practical tool
for analysing software traces to produce intuitive summaries of
network software behaviour by abstracting unimportant details
and demultiplexing traces into different sessions’ subtraces.

To reduce the problem’s complexity we formulate analysis
primitives to systematise trace analysis. We make Flowdar
freely available as open source.! Flowdar can use existing
state-of-the-art tracing tools for lower overhead during trace
gathering for offline analysis. Using Flowdar, we can drill
down when diagnosing performance anomalies without getting
overwhelmed in detail or burdening the system being observed.

Flowdar can work with traces from any kind of software,
but one of the benefits it brings to network software is the
ability to compare traces gathered from different connections,
sessions, or workload types. We used this feature to analyse the
dynamics of application-level denial-of-service (DoS), which
is very difficult to analyse using other tools.

Contributions. (i) We formulate five general primitives for
analysing the traces of software, catering to the needs of
network software. (ii) We develop an intuitive visualisation
for traces based on UML sequence diagrams [18]. (iii)) We
develop Flowdar, an open source tool that implements the
primitives and visualisation described in this paper, and show
how Flowdar can be applied to existing real-world software to
digest complex behaviour into an intuitive visualisation.

Uhttps://gitlab.com/DeDos/flowdar



Trace
execution’s progress.

Describes control/data-flow through software (and possibly its dependencies). This usually consists of a stream of updates about the

Metrics  Tuples of values made available by the OS to describe resource usage (e.g., RAM, CPU load, storage, etc), and by applications in an ad
hoc way. Metrics are usually captured in regular snapshots.
Logs Consist of time-stamped reports of system activity, and are usually streamed to an analyser or storage.
Alerts  Special messages from a system, indicating exceptional circumstances — e.g., running out of resources. Alerts are usually sent to a listener
for handling.
APM  Application Performance Management is a class of services offered by cloud and third-party providers to monitor software running in a
cloud. Cloud-provided offerings tend to be specific to a provider, and risk lock-in. Third-party offerings tend to be language-specific, use
a vendor-specific API, and risk a different sort of lock-in.
TABLE T
SOURCES FOR INFORMATION ON SOFTWARE’S RUNTIME BEHAVIOUR.
> main:3e ngx_strerror_init:0 into the kernel, while system-supported tracing does. Dy-
< main:3e ngx_strerror_init:0 namic instrumentation could better eliminate the overhead of
> main:64 ngx_get_options:0 sometimes-enabled probles. System-supported methods try to
< main:64 ngx_get_options:0 provide safe writing of actions, and separate between providers
and users of probes, while compiler-supported tracing is more
i ] ) ad hoc.
Fig. 1. This example shows a function call trace from when Nginx

starts up, and shows the memory offsets within main where it calls
ngx_strerror_initother functions which then return control.
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Fig. 2. Trace information flows through these stages: @ an application is
enabled for tracing (e.g., through recompilation or through OS services), @ a
trigger is stimulated by an input to take a tracing action, @ trace information
is emitted, then @ this information might be lightly processed before it is
stored ®. We reserve as much processing as possible to run offline.

II. BACKGROUND AND RELATED WORK

Traces help developers to relate the program’s behaviour
back to the source code, and help focus debugging and opti-
misation efforts. They are used for performance analysis [11],
[29], automated testing [12], and system comprehension [15].
Traces can be configured to trade overhead for detail — for
example by including function parameters, return values, or
part of the call stack. Fig. 1 shows an example raw trace from
our experiments.

Support for tracing exists in three forms. The first is
compiler-supported tracing, making use of special hooks pro-
vided by compiler frameworks like GCC and Clang, or imple-
menting transformations at the source, intermediate represen-
tation, or at link-time. This is the approach used by Google’s
XRay system, for example [10]. The second form is system-
supported, involving tools such as DTrace [11], eBPF [3],
LTTng [4], and SystemTap [6], to insert and activate probes.
The third is based on dynamic instrumentation and involves
dynamic binary patching using systems such as Pin [24]
or DynamoRIO as in instant profiling [25] and DEP [33].
Compiler-supported tracing usually does not have visibility

Tracing is organised into the stages shown in Fig. 2, after
which traces are analysed. Trace analysis has been researched
for trace summarisation [19], [21], visualisation [14], [26],
comparison [8], factoring [16] and compression [17]. In com-
parison, Flowdar is designed around trace primitives derived
from the pattern of needs we found in network software.

III. GENERALISING TRACE ANALYSIS

The limit of current practice is reached at the point where
trace information is produced: then one must either use front-
end tools that are limited to producing specific reports [2], or
craft analysis scripts to consume the traces.

The lack of a general trace analysis framework is surprising.
In comparison, log analysis has received much interest over
the years, for anomaly detection for example [31]. Trace
analysis bears a resemblence to log analysis [23], [27] both
conceptually and also practically — for example systems like
Pensieve [32] rely on logs to reproduce software faults.

As outlined in Table I, traces offer richer information about
an application, and give a clearer picture of control and data
flow. Logs usually contain summary information, whereas
traces can contain a causal account of why the log entry was
emitted.

Various trace analyses are described in the literature [8],
[14]-[17], [19], [21], [26]. Our goal is to design more generic
facilities for consuming tracing information, specialised to the
needs of network software.

IV. TRACE ANALYSIS PRIMITIVES

While iterating through the development of Flowdar— de-
scribed in the next section — we extracted general operations
on traces. Due to their generality and simplicity we call these
operations primitives.

We list 5 primitives in this section, some of which take
others parameters in addition to traces. For example, the com-
parator primitive accepts a function parameter that implements
the comparison.



a) Demultiplexing: Traces might consist of composites
of several traces. This primitive splits a composite trace out
into its separate constituents. The splitting is done based
on a function parameter that inspects individual entries or
sequences of trace entries. For example, in our experiments
with Apache, we used a thread ID to split the trace emitted
by an Apache process into a trace for each thread. But for
Nginx, which is event-based, we looked for short signatures
of trace sequences that indicate that control is being passed to
a different event handler, and found unique session identifiers
to demultiplex the original trace.

b) Summarising: Traces often contain information that
can easily be summarised by factoring repeated behaviour.
This behaviour can consist of repeated patterns of function
calls. We noticed this most often for recursive functions. If
a function recurses /N times, then we could shorten the trace
by N — 1 steps by indicating this recursion and omitting the
information about each call. We also summarise non-recursive
function call sequences, and developed two algorithms to do
this: the first simply slides a window along the trace and looks
for patterns, while the second tries harder by iteratively varying
the size of the window.

c) Coarsening: As with summarising traces, coarsening
traces loses information in order to simplify downstream anal-
ysis. This primitive is intended to shed redundant information.
When tracing function calls, coarsening consists of ignoring
calls beyond a given depth. As with phase-ordering in com-
pilers [13], these primitives can affect each other according to
the order in which they are applied. By losing information, it
makes traces similar to each other, so we apply it carefully.

d) Comparison: Network software is perhaps the richest
source of traces for comparative analysis, since the software’s
behaviour induced by each user, session, and connection could
be compared against each other. The comparison primitive
accepts two similar traces — they might have been made similar
by being coarsened or summarised, using the primitives de-
scribed above. These traces are then compared using a custom
comparator. In our experiments we used this primitive to detect
abnormal behaviour through traces. This abnormal behaviour
consisted of misbehaving clients who were stalling our web
server. This primitive can also accepts other parameters, such
as a threshold value, to avoid making the comparison too
sensitive.

e) Alignment: The comparison primitive, described
above, compares traces emitted by the same code, more or
less. The alignment primitive is intended to compare traces
that are emitted by different code. Specifically, we found the
need for this primitive when we traced different software
that was working together: specifically an SSL proxy and
an HTTP server. The SSL proxy terminated SSL connections
and decrypted the incoming bytestream into cleartext queries,
which were then forwarded to the HTTP server. Responses
followed the opposite direction.
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Fig. 3. Sequence diagram generated by Flowdar showing function calls

and their durations from traces of Apache 2.4.26. A worker thread pops
an item from the work queue, after which a chain of functions are called
beginning with process_socket. The “Major divergence” box is a manual
mark-up to indicate the point at which behaviour diverges between a normal
and a misbehaving client, where we observed this function’s duration to
increase over X400 on average. This point was located automatically through
a horizontal analysis (§V). Here APR refers to a support library Apache uses
for portability, which we included in the tracing.

V. FLOWDAR

Flowdar is a trace analyser we built from the primitives
described in the previous section. It consists of around 2500
lines of Python, and 1500 lines of C and C++. The latter
provide tracing-support tools, such as for in-memory buffering
and offline validation of traces, to check that a trace is well-
formed.

In Flowdar we implemented all the stages shown in Fig. 2,
as well as a conversion of trace format used by the Google
XRay tracing system. We use compiler-supported tracing (§1I)
for stage @, using GCC’s function-call hooks as actions in
stage ©. We implemented a simple and lightweight binary
format that is streamed to another process for storage in @,
and can optionally filter it eagerly in @. In stage ® we store the
trace in binary format. We later expand traces into an ASCII
format offline, for ease of inspection and debugging.

Our analysis code is all implemented in Python, and we
arranged the analyses into two categories: vertical analyses are
applied to single traces, and horizontal analyses are applied
to sets of traces. Our vertical analyses exploit opportunities
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Fig. 4.  We modified Apache to split worker threads into a front-half and

back-half, with both halves communicating over a queue. This visualisation
shows this new architecture. The value in green is the memory reference
that is pushed onto the queue by worker_thread and then popped by
backend_worker_thread. This value is obtained from the traces, which
had included extra information for simple memory tracing in this case.

to shorten traces, and rely on the Coarsening and Summary
primitives from the previous section. These analyses usually
contribute towards preprocessing, summarisation, and visual-
isation. Our horizontal analysis partitions traces according to
their similarity, or if pre-partitioned — by separating traces that
were generated from known “good” and “bad” workloads —
seeks to find what distinguishes the classes.

Flowdar consists of a collection of tools, several of which
implement analysis primitives, and other tools that use prim-
itives to build larger analyses. It also relies on heuristics that
are specific to an application’s traces. These heuristics receive
application-specific parameters via the command line. We run
analysis offline since it can be performance-intensive.

Horizontal analysis uses most of the analyses we imple-
mented, and is therefore the most complex overall. It is
structured into two complementary phases: first the structural
analyser seeks to minimise unimportant differences between
traces from two sets in order to magnify important ones. This
minimisation is done by iterative coarsening and summari-
sation, either fully automatically or with user involvement.
Control is then passed to the femporal analyser which is based
on the Comparison primitive from §IV. It checks if the two
traces exhibit very different time behaviour beyond a threshold
parameter.

VI. EVALUATION

We evaluated Flowdar on two examples of real-world open-
source software: Apache and Nginx. We generated visualisa-
tions to fulfill two objectives: (i) understanding the dynamics
of a DoS attack; (ii) checking the functioning of a non-trivial
modification of Apache.

Apache and Nginx use different execution models: we used
Apache in thread-based mode, and Nginx is event-based.
Supporting an application with a different execution model
requires a one-time manual inspection of trace samples from
each application to extract markers for use by the demulti-
plexor primitive (§IV).

a) Understanding a DoS attack: We compared normal
requests to Apache against requests from the Slowloris HTTP
DoS attack, which attempts to stall connections to prevent the
HTTP server from serving other clients.

Fig. 3 shows the results of summarisation, visualisation
and also anomaly detection. Our visualisations also show the
duration of functions: we can see that this thread spends 32ms
waiting for work to become available, and later spends 10ms
servicing the request. Each red dot indicates the passage of
500us, and after 4 dots the elapsed time is shown in blue.
The timings are inflated by overhead introduced by tracing but
nonetheless allow us to compare a normal workload against
an abnormal one.

b) Observing behaviour of modified Apache: In earlier
work [30] we modified Apache to experiment with having
different clients sent to different worker thread pools, to
measure whether the effects of a DoS attack can be contained
in a single pool. We used Flowdar to observe the hand-over
between threads in successive pools along this pipeline, and
the result is shown in Fig. 4.

VII. CONCLUSIONS AND FUTURE WORK

A general trace analysis facility can serve our persistent
need to better understand complex system behaviour. This is
especially true for network software, which involves complex
processing over resources shared by different sessions or users.
We design a general trace analysis facility by extracting trace-
analysis primitives, and show that it can digest the behaviour
of real-world software into intuitive visualisations.

Future work can extend these primitives and investigate a
notion of completeness for such primitives, based on which
extensions to Flowdar can be built and evaluated. Second, our
work can be extended to work with more kinds of tracing
systems from §II and other formats such as CTF [1], FTA [22]
or OTF [5]. And finally, Flowdar could be used or adapted to
analyse traces from other domains. This would involve reusing
our analysis primitives and possibly integrate them with new
domain-specific features.
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