
An Access Control Implementation Targeting
Resource-constrained Environments

Fan Zhang, Bernard Butler, Brendan Jennings
Telecommunications Software & Systems Group, Waterford Institute of Technology, Ireland

Abstract— As more and more services are deployed on devices
near the network edge, security operations (such as authentica-
tion and authorization) need to move with them. Typically, edge
devices have fewer resources than data center servers and so
the security operations need to make more efficient use of what
is available while offering adequate performance. Authorization
adds latency and requires system resources, but the need for
security management with strong authorization at the network
edge is growing. We have released the first open source, high-
performance, resource-efficient, XACML3 standard-compatible
Policy Decision Point (PDP) called Luas (means “speed” in the
Irish language) based on an event-driven architecture and a non-
blocking computational model, using a Bloom Filter for better
performance. We compared its performance, resource usage and
reliability against existing open source PDPs. Like those we
tested, it provides accurate decisions, but Luas offers much faster
security policy evaluation while using fewer system resources,
and provides responses in a reasonable timeframe even when
resources are scarce.

I. INTRODUCTION

Managing network and computational resources for security
operations is a difficult task because their needs are not always
well understood, compared to other operations that draw upon
the same finite resources. With growing regulation and aware-
ness of the risks of poor security hygiene, security operations
are now more important than ever. They address requirements
such as security and privacy. Authentication is usually a one-
off concern per session, but authorization is ongoing and hence
arguably requires more management attention.

Data security concerns are growing. They present a series of
access control challenges that include data privacy breaches,
unintended and/or malicious updates/deletion of data and other
threats to data availability, such as those posed by ransomware.
Increasingly, the network edge is seen as the new security fron-
tier and needs to be managed as such. This management task
is challenging because of high complexity (e.g., composing
and processing many data flows) and low resource availability
(most edge devices are small, battery-powered and dedicated
to other tasks). We address the issue of limited resources for
security operations in this paper.

To ensure access controls are applied consistently, all re-
quests to use resources must be checked against the relevant
access rules. However, this check adds latency to the primary
operations of the system, and so might cause unacceptable
performance bottlenecks. Thus, high-performance, resource-
efficient security operations are essential to ensure adequate
overall system performance and to use as few resources (CPU,
memory, network bandwidth) as possible, so that they are

available for other operations. XACML is one of the most
widely used languages for expressing complex access control
policies [1]. A performance bottleneck might occur when
access requests are sent to a Policy Decision Point (PDP)
at very high rates, particularly where state changes occur
and the decision depends on dynamically changing context.
Meanwhile, the security operations collectively provided by
the PDP, PEP, etc., can require significant resources. Therefore,
there is a need for high performance, scalable and reliable PDP
and supporting server infrastructure, regardless of where the
hardware and software components are placed in the network.

This paper makes two key contributions. First, a standard-
compliant high-performance event-driven XACML PDP im-
plementation is developed and released as open-source. This
implementation is packaged as a JavaScript module and avail-
able in Node Package Manager (NPM). NPM is the package
manager for JavaScript and the world’s largest software reg-
istry. Integrating into the Node.js ecosystem is trivial using
’npm install luas’ so it can be a dependency of another Node.js
application or web applications. Our PDP is not only able to
provide an attractive option for those building systems that
need to meet strong security and privacy guarantees but also
maintains high reliability and accuracy. Second, we proposed
an approach that applies Bloom filters to policy evaluation,
enabling the PDP to match, with low memory usage and
minimal delay, the request against a policy and rule.

Section II describes previous work on PDP performance
improvement. Section III motivates the technological choices
(primarily the paradigm, platform and language) made when
developing Luas. Section IV describes experiments where
Luas was compared against its peers: how these were chosen,
the test framework and scenarios. Section V presents our
results, which indicate that Luas meets its objectives. Finally,
Section VI presents our conclusions and possible future work.

II. RELATED WORK

In order to generate an access decision for a request, the
policy decision point (PDP) needs to parse the corresponding
policy sets and to evaluate the relevant rules that are defined
in the policy set for that request. In previous work [2] we
warned that the PDP could become a performance bottleneck
and built a comprehensive testbed that can be used to carry out
performance experiments while controlling resource usage.

Various approaches were proposed to improve authorization
performance. Jahid et al. [3] convert high-level attribute-
based policies into Access Control Lists for resources in a

978-3-903176-24-9 © 2019 IFIP



database. Their model performed better than the established
SunXACML reference PDP implementation.

Liu et al. [4] proposed XEngine, a new XACML PDP
written in Java, to evaluate policies more efficiently. Their im-
provements include attribute numericalization and normalized
structure. XEngine had much lower request processing time
than the reference SunXACML PDP.

Mourad et al. [5] developed the SBA-XACML PDP using
the PHP language. It uses set-based algebra to match the
policies. SBA-XACML was 3.2 times faster than XEngine and
8 times faster than SunXACML, for single-valued requests.

Pina Ros et al. [6] proposed ‘Graph-Based’ models for
evaluating policies based on ‘Matching Tree’ and ‘Combining
Tree’ structures. Their approach was faster than the SunX-
ACML reference PDP. Ngo et al. [7] noted that XEngine
cannot be used with all policies, e.g., where the attribute condi-
tions are not equalities. Their sne-xacml PDP implementation
is more general than either XEngine or the Pina Ros et al. [6]
PDP, but also has very good performance.

Each of these papers optimised the performance of XACML
policy evaluation. Their approaches are similar because they
improved the performance by adopting a tree, a graph or
similar data structure. However, they support simpler policy
models with reduced semantics, so all fall short of full
compatibility with the XACML 3 standard. The only pub-
licly announced full-XACML PDPs (SunXACML, Enterprise
XACML, Balana and AT&T XACML) all employ full enu-
meration and so are measurably less performant than those
PDPs that sacrifice full XACML semantics for performance.

Earlier performance evaluation efforts such as Butler and
Jennings [8] and Turkmen and Crispo [9] focused on per
request performance: how long does it take each PDP im-
plementation to evaluate a given access request. Furthermore,
[8] provided recommendations relating to design and deploy-
ment strategy, to improve evaluation performance, so that the
resulting security operation is less likely to be CPU-bound.
However, access control evaluation forms part of a larger
system. The arrival pattern is typically bursty, so that even
PDPs with good computational performance can become I/O-
bound; this was not considered directly before. Also, previous
papers comparing PDP performance largely ignored the system
resource requirements for each PDP under test.

III. DESIGN AND IMPLEMENTATION OF LUAS

The current best practice for web server development
favours the use of an Event-Driven programming paradigm
with a non-blocking I/O model, where the execution flow
is determined by the events. We decided to investigate this
approach.

McCune [10] compared three simple file processing pro-
grams in JavaScript, Ruby, and Java. Each was hosted on its
corresponding web server (Node.js, EventMachine, Apache).
A client sent requests to those web servers and the programs
processed files in response. The results showed that the
Node.js server performed better (more requests processed per

second; number of files opened simultaneously) than either of
the other two servers.

A. Platform & Language Selection

We reviewed the existing PDP implementations and iden-
tified the following criteria as being desirable when choosing
a programming language to develop an efficient PDP imple-
mentation

• Able to process high-volume workloads, e.g., when the
system becomes I/O-bound

• High system resource efficiency
• Friction-less, enabling one runtime to serve the PDP and

other applications
• Support for modern development practices
• Large community support
Based on these criteria, we compared C++, Java, Rust and

JavaScript in terms of their development platforms, runtime
environments and libraries. C++ has a steep learning curve
and lacks built-in memory management. Although Java has
been widely used to implement PDPs and Java NIO enables
non-blocking I/O, Java is not asynchronous in spirit and
implementing non-blocking applications with NIO is quite
complex. The Rust version we reviewed did not have non-
blocking I/O, nor a strong ecosystem to support development.
We concluded that the best candidate currently is JavaScript
with the Node.js platform for server-side operation.

B. Policy Evaluation Approach

The PEP constructs a request from its Subject, Resource,
Action and Environment attributes and sends it to the PDP. The
PDP needs to find the rule(s) that best match the attributes in
the request, so it extracts the request attributes and finds one
or more applicable policies based on matching those attributes
to the corresponding elements in the policy Targets (policy or
rule matching). When an applicable Target is found, the PDP
applies the associated rule, which can also include a filtering
Condition expressed as a complex Boolean expression. If the
condition is fulfilled, the Effect (either deny or permit) will
be returned. In cases where more than one policy or rule is
matched, the final access decision depends on the relevant
Combining Algorithm to resolve conflicts among matched
policies or rules.

We found that existing standard-compliant PDP implemen-
tations spend most of their time matching attributes, given
large policies. We believe their use of brute-force search is one
of the reasons: existing PDPs iterate through all the attribute
categories in a Target, so they undertake more work than
is strictly needed. We propose a rapid and memory-efficient
policy and rule searching technique that uses Bloom Filters.

The Bloom filter [11] is a probabilistic query data structure,
which is designed to test the existence of an element in a
data set rapidly and space-efficiently. Its data structure is a
Bit Vector B with m elements, with an initial value of zero
for each element. The Bloom Filter requires k independent
hashing functions, {hj}; j = 1, . . . , k, each hash function
having the range {1, . . . ,m}.



As an example, suppose we have a set X = {xi} with n
elements, and a possible element of that set y, and we wish
to test whether y ∈ X . To compute the bit vector B(X), we
generate {hj(xi)} for i ∈ {1, . . . ,m} and j ∈ {1, . . . , k},
then the bits in B at positions hj(xi) in B are set to 1 for
all xi ∈ X and j ∈ {1, . . . , k}. Note that a bit bi can be set
to 1 multiple times, if more than one of those hash functions
evaluates to bi. Similarly, we can compute B(y). If B(X) has
1 in every position where B(y) has 1, which is equivalent to
asking whether B(X)∧B(y) = B(y), then return True (there
is probably a match), otherwise return False (there is certainly
no match).

Because hash functions are used, collisions can occur, so
the Bloom Filter is approximate: we can be certain if no
match occurs, but there is a small probability (approximately(
1− e−kn/m

)k
of a false positive (i.e., of deciding y ∈ X

when it is not). The false positive rate increases with n (the
size of X) and decreases as both k (the number of hash
functions) and m (the length of the bit vector B) increase.
For better performance, we used the non-cryptographic FNV

hash functions. To get better accuracy, k = 16 hash functions
are used. Therefore, with n = 256, m = 32n = 8192 and
k = 16, the false positive error rate is much less than 0.01.

The Bloom filter has been widely adopted for applications in
other domains such as name lookup, spam detection and web
caching. Wang et al. [12] implemented an approach for name
look up in Named Data Networking called NameFilter which
is a two-stage Bloom filter based scheme. Their experiments
show that when the Bloom Filter is enabled, the memory
consumption of their search scheme is reduced by 80% and
the speed of name searching is 18 times faster than the
traditional approach. Another benefit of using Bloom filters is
reduced power usage. [11] proposed a low power Bloom filter
architecture for network applications and the results showed
that the architecture reduced the power consumption by 30%.

Therefore, we sought to improve the matching procedure
by using a high speed and low computational resource con-
sumption matching algorithm. Instead of matching each rule
in a policy, or policy in a policy set, a highly efficient filtering
mechanism can be added to filter out the policy fragments that
do not satisfy the request, so that attention can focus on the
remainder. Algorithm 1 shows how and where we integrate
Bloom Filtering into the policy evaluation process. Note that
applying the filter does not change the decision, because if
the Bloom filter does not find a match, we are certain that no
match exists. If it finds a possible match, we check anyway
using the existing search algorithm.

IV. EXPERIMENTAL EVALUATION

A. Comparative PDP Selection
For our experimental evaluation, two PDP implementations

were selected for the XACML 3.0 PDP comparative resource
usage evaluation against Luas. The ATT-XACML and the
Balana PDP implementations were selected as each complies
with the XACML 3.0 standard and passed all conformance
tests.

Algorithm 1 EvaluatePolicyTarget(X, S)
Input: Index X of the Policy in a PolicySet. A set of At-

tributes(S) in the Request. The set of Bloom Filters (B) for
the PolicySet, each B covers all Attributes in a given Target.

Output: A Boolean value to indicate if the policy is applica-
ble to the request
p← B[K] {assign the Bloom Filter for policy X to p}
for a ∈ S do
positions← hashk(a, k){hashk function computes the
attribute a with number k of hash functions and returns
a set of integers of positions at the Bloom Filter p}
for i = 0→ k − 1 do

if p[positions[i]]=0 then
return false

end if
end for

end for
Continue on the standard target evaluation procedure

We also considered other PDP implementations that claimed
high efficiency. XEngine has not been updated to support
XACML 3.0 and supports only a very restricted subset of
XACML 2.0, particularly “attribute = value” Target clauses
and Rule Conditions only [6]. XACML 3.0 has been standard-
ised since January 2013 and is widely deployed, so our perfor-
mance experiment focuses only on implementations that are
XACML 3.0 compliant. We considered SBA-XACML [5], but
it does not provide the correct decisions for all valid XACML
3.0 policies and requests; we discounted sne-xacml [7] for
the same reason. Therefore, we compared the only (open
source) XACML 3.0 PDPs we could find that offer a complete
implementation of the XACML 3.0 standard: ATT-XACML,
Balana and Luas.

B. Evaluation Testbed

In order to learn the performance of PDP implementations in
different circumstances, the experiment is designed to evaluate
different high traffic workloads. Our testbed emulates real-
world scenarios to evaluate PDP implementations. Each PDP
is deployed in a Docker container. Each container is self-
contained so the environment it presents to the user is specific
to the deployment, but it uses the operating system level
functions of the host and therefore is much lighter than a
Virtual Machine that includes its own guest operating system.
Docker provides a convenient platform for starting, stopping
and for configuring containers and the applications therein.

System resources such as number of CPUs and the amount
of memory allocated to each container can be easily controlled
using the dockerd daemon. Since each container is segregated
from the others, and dockerd starts each running instance
with specific resources, it is easy to control the experimental
conditions. The host is a commodity server with the following
specifications: CPU has 4 cores, 16GB memory, Operating
System is Ubuntu 18.04.1 LTS (64-bit) and Docker Version is
18.09.6. However, in order to emulate a resource-constrained



Security
Policies

ATT BALANA Luas

Docker Resource
Usage Monitor

Access Control
Evaluation Server

Access
Requests

Access
Decision

Access Control
Evaluation Client

Load Testing Toolkit

Test
Scenario

Test
Scenario

Test
Scenario

Resource Usage
Dashboard

Export

Reliability & Latency
Report

Export
(a) (b)

(c) (d)

Fig. 1. System Diagram for XACML Evaluation Testbed. (a) is the access
control client for sending access requests based based pre-defined test sce-
narios. (b) is the access control server which serves each PDP access control
server via Docker. (c) is the aggregated report of reliability and latency, which
is generated from (a). (d) is the dashboard to visualise matrices collected from
(b)

device, we scale down the resources allocated to each con-
tainer, so that it has 1 core with 512MB memory. The docker
images built for the experiment are available on Docker Hub.

Figure 1 shows there are three major components in the
testbed. The Access Control evaluation server runs the compar-
ative PDP containers, each of which is pre-loaded with access
requests. A docker resource usage monitor runs on the host
and collects the real-time resource usage data for each running
PDP container. The access control evaluation client reads the
test scenario scripts for each run and tells the load testing
toolkit to trigger a burst of requests in each container based
on the pre-defined conditions. The triggered requests depend
on evaluation parameters such as the number of active users
and the number of requests that each user will send. The load
testing toolkit we used for this evaluation is an open source
application called artillery.io, which is able to simulate users or
devices to send requests at high rates. This toolkit generates
an evaluation report at the end of each test, which includes
measurements such as request completion rates (relative to a
given timeout limit), request processing time and failure rates.
The resource usage data collected for each PDP container is
exported to the resource usage dashboard where the data can
be visualised. Each usage graph can be exported as an image
or PDF, as desired.

C. Implementation and Validation

To increase its ability to process large numbers of requests,
Luas follows the Event-Driven paradigm, so all the high
I/O consumption features are designed to be asynchronous,
otherwise the benefits of the underlying (asynchronous) event-
driven approach are lost. For instance, the mechanism for
reading policies uses an asynchronous readable stream. Com-
paring to the standard method to read a file, the asynchronous
readable stream approach is more memory efficient and fast,
because it reads the policy file one chunk at a time [13]. Luas
also benefits from the modularization provided by JavaScript
which improves its scalability and easy of use. Luas is

TABLE I
PDP RELIABILITY: NUMBER OF REQUESTS COMPLETED VS NUMBER OF

REQUESTS SENT FOR IOT

Sent Requests AT&T Balana Luas

500 500 (100%) 500 (100%) 500 (100%)
1000 610 (61%) 1000 (100%) 1000 (100%)
1500 795 (53%) 1500 (100%) 1500 (100%)
2000 1020 (51%) 2000 (100%) 2000 (100%)

packaged and released to NPM, which facilitates integration
for developers.

To ensure Luas makes correct decisions, per the published
XACML standard [14], we used the XACML 3.0 Conformance
Test suite [15] and ensured that Luas gave the right answers.
However, we did not use this set of policies and requests for
performance and resource testing. Instead, we used the well-
known Continue set [16] and, to ensure that the responses are
“correct”, we checked that the access decisions of all 3 PDPs
matched for all access requests, which they did.

D. Experiment Design

In order to understand the efficiency of each selected PDP,
we designed four different scenarios to evaluate the PDP
implementations to simulate real-world heavy load. Each PDP
starts with the continue set policy, translated to XACML 3.0.
This policy was chosen because it is widely used in PDP
evaluation, e.g Liu et al. [4] used this set to test XEngine,
Griffin et al. [17] also used the continue set for the same
purpose. More recently, Morriset et al. [18] used continue as
one of their test sets. The total number of rules in the continue
set policy is 298. The load testing toolkit follows the scenario
scripts we designed to simulate users sending access requests.
In each scenario, 100 virtual users are simulated. In the first
scenario, the load testing toolkit simulates 100 users issuing 5
requests per user; in the second scenario, 10 requests are sent
from each user. Subsequent scenarios send 15 and 20 requests
per user, respectively.

V. EXPERIMENTAL RESULTS

A. Reliability and Worst Scenario Analysis

The reliability metric is the ratio of the number of responses
received by the client within a given time period after the time
that request was issued by the client, relative to the number of
requests sent by the client. For the experiment summarised in
Table I, the requests are batched in bursts that are sent every
second for Tsend = 5 seconds. This is done by creating u = 20
users per second, each of which sends n/(uTsend) requests per
second, where n is the total number of requests sent and Tsend

is the duration, in seconds, of the period when those requests
are sent. Therefore, for this experiment, the number of requests
per user per second is n/100.

We also note that reliability depends on a response timeout,
which is set to Tresponse = 120 seconds in all cases except
AT&T with n = {1500, 2000}, when Tresponse is increased to
400 seconds, otherwise its reliability would be extremely low.



TABLE II
(95%, 99%) EVALUATION LATENCIES (IN MILLISECONDS SINCE ARRIVAL)

PER PDP TYPE FOR IOT

Sent Requests AT&T Balana Luas
(ms) (ms) (ms)

500 (59201.7, 81051.1) (8.2, 15.1) (4.9, 8.6)
1000 (63351.2, 88927.3) (10.1, 19.4) (4.8, 7.9)
1500 (66105.9, 330922.3) (69.7, 88.1) (5.5, 9.1)
2000 (90780.7, 368400.5) (133.1, 229.9) (6.4, 10.6)

It is an open question whether Tresponse = 400 is acceptable
in terms of quality of experience; even Tresponse = 120 is
probably unacceptable for interactive applications.

Table I shows that the AT&T PDP implementation has the
worst reliability compared to the other two PDPs. For example,
even with a longer response timeout than its peers, it can
process only 51% of the 2000 requests it received, because it
spends so long on each evaluation that its extended response
timeout of Tresponse = 400 seconds is exceeded. As seen
by the client, 49% of the requests appear to have failed (in
the sense that no response has arrived before the timeout).
Therefore, we say that the AT&T PDP has a reliability score
of 51% for this particular use case. The table also suggests that
Balana and Luas are equally reliable because both succeed
in providing responses to all arriving requests within the
Tresponse = 120 seconds response timeout period.

Table II shows the request latency for each scenario in
percentiles instead of the average. This is because users that
are experiencing long access delays and those for whom access
decisions are made quickly do not have the average experience.
Anjum et al. [19] stated that using average as a performance
indicator can be misleading since it is influenced by outliers,
but performance percentiles provide a better sense for quality
of experience (QoE).

Table II helps to explain the reliability scores. Even with
500 requests, the AT&T PDP has 95- and 99- percentiles of
PDP service times that are approximately 60 and 80 seconds,
respectively. Thus its worst case latencies are nearly 4 orders
of magnitude greater than the equivalents for Balana and
Luas. Hence it is not surprising that the AT&T reliability
scores are not as good as those of Balana and Luas. However,
it is also clear that Luas has more “performance headroom”
than Balana, because its 95- and 99-percentiles are almost
constant with respect to number of requests. By contrast, the
percentiles for Balana grow super-linearly with the number of
requests, indicating scalability problems ahead for Balana but
not for Luas.

B. Resource Usage Analysis

In order to generate more accurate and precise results,
docker is used to segregate each PDP run-time environment
from its host. Each container includes a bare-minimum en-
vironment to serve the PDP via a web service. The docker
image size of each PDP is: AT&T (668MB), Balana (660MB)
and Luas (194MB). The bundle size of each PDP is: AT&T

0 100 200 300 400 500 600 700
time (seconds)

0

10

20

30

40

50

M
em

or
y 

us
ag

e 
(%

)

PDP comparison: Memory usage

AT&T
BALANA
LUAS

Fig. 2. Memory Usage % using data every 2 seconds from the Testbed
Dashboard, for the 3 PDPs. Luas uses less memory during the experiment.

0 100 200 300 400 500 600 700
time (seconds)

0

20

40

60

80

100
CP

U 
us

ag
e 

(%
)

PDP comparison: CPU usage

AT&T
BALANA
LUAS

Fig. 3. CPU Usage % using data every 2 seconds from the Testbed Dashboard,
for the 3 PDPs. Luas uses much less CPU during the experiment.

(329KB) Balana (485KB) and Luas(101KB). When deploy-
ing to resource-constrained devices at the network edge, Luas
is more attractive than the other options because it requires less
than a third of their (docker image) disk space.

Figure 2 and Figure 3 were generated using data from the
evaluation dashboard from the fourth experimental run, in
which 2000 access requests were sent to each access control
server. The independent axis represents time since the start of
that run, so Luas and Balana finish their runs at approximately
180 seconds (3 minutes), which is why their profiles appear to
be truncated relative to that of AT&T which is still processing
requests more than 10 minutes after the experiment started.

Figure 2 indicates that Luas uses about 30% less memory
than Balana and 50% less than AT&T when evaluating access
requests against the same policy.

Figure 3 shows that the CPU consumption for Luas is



dramatically less than that of the other two PDPs. This is partly
because Node.js, its underlying runtime environment, is built
with an event-driven model to provide a lightweight runtime
environment. Greater CPU usage generally results in shorter
battery life, which is a major consideration for devices at the
network edge. Therefore, Luas is a more attractive candidate
PDP for ubiquitous access control at the network edge than
either of the other two PDPs.

These lower resource requirements (for Luas) are not
achieved at the expense of evaluation accuracy, since all 3
PDPs in our comparison (eventually) return the same access
decision when given the same access request.

VI. CONCLUSIONS

This paper evaluates the resource usage and performance
of a new event-driven XACML implementation by comparing
it against more traditional (blocking) implementations. From
the above results it is clear that Luas achieves higher re-
source efficiency, better performance and greater reliability
in a resource-constrained environment. Notably, Luas with
its Bloom filter performs and scales better when it processes
relatively high frequency requests sent from a large number
of active users in contrast to other implementations using
plain brute-force search, so it can help to solve the bottleneck
in existing access control systems. Indeed, it manages to
achieve greater performance and scalability while using fewer
resources. Therefore, as a server component, it can be used as a
drop-in replacement (offering the same API and responses) for
Balana, say, while using fewer resources and offering higher
performance.

The contributions identified in Section I were shown in
Section III. Luas is open sourced and available via the
Node Package Manager registry. Luas also has the advantage,
relative to Balana, of using more modern web engineering and
so has greater development potential.

These improvements are significant in practice, so it is
now feasible to introduce robust security operations near the
network edge, greatly enhancing the ability to manage security
threats in domains where this was not considered possible
before. There is no longer an excuse, in terms of additional
latency, for not adding strong access controls to devices and
operations in the Internet of Things.

We note that Bloom filters introduce trade-offs so we plan to
investigate how best to configure them, balancing the Bloom
filter’s complexity against its accuracy to see how it affects
performance and resource usage. We also wish to investigate
how to integrate Luas into an actual device such as the MXE-
100i Series IoT Gateway, since such devices offer a natural
deployment target for Luas.

ACKNOWLEDGMENT

This work has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) and is
co-funded under the European Regional Development Fund
under Grant Number 13/RC/2077.

REFERENCES

[1] H. Wei, J. Salvachua Rodriguez, and A. Tapiador, “Enhance OpenStack
Access Control via Policy Enforcement Based on XACML,” in Pro-
ceedings of the 16th International Conference on Enterprise Information
Systems - Volume 2, ser. ICEIS 2014. Portugal: SCITEPRESS - Science
and Technology Publications, Lda, 2014, pp. 283–289.

[2] B. Butler, B. Jennings, and D. Botvich, “An experimental testbed to
predict the performance of XACML Policy Decision Points,” in 12th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2011) and Workshops, May 2011, pp. 353–360.

[3] S. Jahid, C. A. Gunter, I. Hoque, and H. Okhravi, “MyABDAC:
compiling XACML policies for attribute-based database access control,”
in First ACM Conference on Data and Application Security and Pri-
vacy, CODASPY 2011, San Antonio, TX, USA, February 21-23, 2011,
Proceedings, 2011, pp. 97–108.

[4] A. X. Liu, F. Chen, J. Hwang, and T. Xie, “XEngine: a Fast and Scalable
XACML Policy Evaluation Engine,” in Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS 2008, Annapolis, MD, USA, June
2-6, 2008, 2008, pp. 265–276.

[5] A. Mourad and H. Jebbaoui, “Towards efficient evaluation of XACML
policies,” in 2014 Twelfth Annual International Conference on Privacy,
Security and Trust, July 2014, pp. 164–171.

[6] S. Pina Ros, M. Lischka, and F. Gómez Mármol, “Graph-based XACML
Evaluation,” in Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, ser. SACMAT ’12. New York, NY,
USA: ACM, 2012, pp. 83–92.

[7] C. Ngo, M. X. Makkes, Y. Demchenko, and C. de Laat, “Multi-data-
types interval decision diagrams for XACML evaluation engine,” in 2013
Eleventh Annual Conference on Privacy, Security and Trust, July 2013,
pp. 257–266.

[8] B. Butler and B. Jennings, “Measurement and Prediction of Access Con-
trol Policy Evaluation Performance,” Network and Service Management,
IEEE Transactions on, vol. 12, no. 4, pp. 526–539, 2015.

[9] F. Turkmen and B. Crispo, “Performance evaluation of XACML PDP
implementations,” in Proc. 2008 ACM workshop on Secure Web Services
(SWS ’08). ACM, 2008, pp. 37–44.

[10] R. R. McCune, “Node.js paradigms and benchmarks,” 2011.
[11] M. Arun and A. Krishnan, “Multi Hashing Low Power Bloom Filter Ar-

chitectures for Network Applications,” in 2010 International Conference
on Advances in Computer Engineering, June 2010, pp. 1–5.

[12] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and
Q. Dong, “NameFilter: Achieving fast name lookup with low memory
cost via applying two-stage Bloom filters,” in 2013 Proceedings IEEE
INFOCOM, April 2013, pp. 95–99.

[13] D. Grant, “fs.readFile vs streams to read text files in node.js,” 2017,
posted 22-August-2017.

[14] OASIS XACML-TC, “eXtensible Access Control Markup Language
(XACML) Version 3.0,” OASIS Standard, 2011.

[15] C. Dangerville, “XACML 3.0 Conformance Tests,” 2017.
[16] S. Krishnamurthi, “The CONTINUE Server (or, How I Administered

PADL 2002 and 2003),” in Proc. Symposium on the Practical Aspects
of Declarative Languages (PADL 03), ser. Lecture Notes in Computer
Science 2562., Verónica Dahl and Philip Wadler, Ed. Springer, 2003,
pp. 2–16.

[17] L. Griffin, K. Ryan, E. de Leastar, and D. Botvich, “Scaling Instant
Messaging communication services: A comparison of blocking and non-
blocking techniques,” in 2011 IEEE Symposium on Computers and
Communications (ISCC), June 2011, pp. 550–557.

[18] C. Morisset, T. A. C. Willemse, and N. Zannone, “Efficient Extended
ABAC Evaluation,” in Proceedings of the 23Nd ACM on Symposium
on Access Control Models and Technologies, ser. SACMAT ’18. New
York, NY, USA: ACM, 2018, pp. 149–160.

[19] B. Anjum and H. Perros, “Adding Percentiles of Erlangian Distribu-
tions,” IEEE Communications Letters, vol. 15, no. 3, pp. 346–348, March
2011.


