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Abstract— Traffic classification solutions are widely used by 

network operators and law enforcement agencies (LEA) for 

application identification. Widespread use of encryption reduces 

the accuracy of traditional traffic classification solutions such as 

DPI (Deep Packet Inspection). Machine Learning based solutions 

offer promise to fill the gap. However, enabling such systems to 

operate accurately in high speed networks remains a challenge. 

This paper makes multiple contributions. First, we report on the 

development of MLTAT, a high speed network classification 

platform which integrates DPI and machine learning and which 

supports flexible deployment of binary or multi-class 

classification solutions. Second, we identify a set of robust 

features which fulfill a dual-constraint - support 10Gbps 

computation rates and sufficient accuracy in the supervised 

machine learning models proposed for network traffic 

classification. Third, we develop a set of labeled data suitable for 

training the system and a framework for larger scale ground 

truth generation using co-training.  Our findings indicate 

detection rates around 90% across 8 traffic classes, benchmarked 

in the system at 10Gbps rates.   

Keywords—Traffic Classification, Encrypted Traffic, Machine 

Learning, Bid Data, Ground Truth 

I. INTRODUCTION 

Recent trends to protect privacy have led to the encryption 
of many popular applications.  Currently, 50-70% of Internet 
traffic [6] and 60% of mobile traffic is encrypted [13], with 
forecasts estimating a 90% encryption rate in the near future.  
Existing traffic analysis tools, security monitoring solutions 
and network probes are less accurate and effective as they fail 
to classify and filter encrypted traffic.  DPI methods, for 
example, which are highly accurate when classifying 
unencrypted traffic, are rendered all but useless because pattern 
matching algorithms are unable to operate on encrypted data. 

Multiple studies have examined the efficacy of Machine 
Learning for classification of encrypted traffic, with promising 
results. The work carried out in academic environments now 
requires further research to address issues hindering its 
transition to real-world usage. The practical application of 
machine learning techniques to the classification of encrypted 
network traffic in real world scenarios is a major challenge.  
Much of the reviewed literature claims high level of accuracy 
for various methods in different scenarios, but the authors 
generally do not make their raw data available so that their 
results may be replicated.  Where data is available, solutions 
tend not to generalize well when applied in a different network 
or environment.  The dearth of such data highlights a second 
but important need - the challenge of acquiring sufficient, well 
labeled network classification data with which to train 

classifiers [1]. Finally, we note that unlike academic 
environments or offline tools which can base solutions on 100-
200 features, real-time requirements for high speed networks, 
demand a identification of a limited set of features as the basis 
of classification.  

To address the above issues, this paper reports on efforts to 
build the MLTAT (Machine Learning Traffic Analytics Tool) 
platform which uses machine learning to classify encrypted 
network traffic for high speed networks of 10Gbps and beyond. 
We study whether a limited number of easy-to-compute 
features can be used as the basis of machine learning 
classification, while achieving high classification accuracy for 
multiple different applications. A key part of the work involved 
creation of labeled network traffic datasets which were used to 
train the classification models. While some of the data sets 
were created using scripts and manual effort, several semi-
supervised machine learning techniques were investigated to 
assist with expediting the labeling effort.  

This paper is organized as follows. Section 2 discusses 
related work. Sections 3 and 4 present the MLTAT system and 
architecture as well as the study carried out using the system. 
Section 5 provides a description of the research into creating 
labeled datasets for MLTAT. Section 6 concludes this paper. 

II. RELATED WORK 

Prior research has studied the use of machine learning for 
classification of encrypted traffic. Using Weka,  the authors [4] 
classified encrypted applications - SSH and Skype - using 
C4.5, AdaBoost and Genetic Programming. They concluded 
that different feature sets were required for different 
applications to improve the detection accuracy. In [2] the 
authors used K-means and K-NN clustering with 17 features 
for real-time classification of encrypted Bit Torrent P2P and 
Skype traffic on a Cisco platform. They achieved reasonable 
accuracy with no technical, memory or performance 
implementation limitations. 

In [5] Weka was used to study 5 algorithms (J48, 
NaiveBayes, NBTree, AdaBoost and LibSVM) applied against 
90 features to classify encrypted applications including Gmail, 
Facebook, iCloud, and Microsoft Update. A key contribution 
was analysis of the minimum number of packets to be observed 
for a flow in order to achieve desired accuracy levels. In [8], 
the authors implement a C5.0 classifier and compare its 
classification accuracy to 5 different DPI tools when applied to 
Netflow. In [9] the authors describe TIE, an open traffic 
classification platform which uses an ensemble of ML methods 
to combine results from multiple algorithms for improved 



accuracy. In [11], the authors study the efficacy of PCA feature 
selection and pre-classification clustering to improve the 
accuracy of K-NN based classification. In [12] the authors 
studied the use of semi-supervised classification of encrypted 
applications with the proposal of a new algorithm to map 
clusters to target classes. A key highlight of their work is the 
requirement for a small amount of labeled training data. In 
[14], using Adaboost and C5.0, the authors studied the efficacy 
of features such as flow burstiness and periods of inactivity 
(idle_time) for accurate classification.    

III. MLTAT SYSTEM & ARCHITECTURE 

The MLTAT system depicted in Fig 1 ingests packet 
capture files, then processes and classifies the data to produce 
output files. The system integrates open source including 
Apache Spark, HDFS (Hadoop Distributed File System), 
HBase and Nginx. MLTAT has two primary functions: it is an 
experimental tool allowing users to train, tune, and validate 
machine learning models for network flow classification, and a 
powerful engine to use those models in production 
environments. Individual components were benchmarked and 
most scaled to 10Gbps and some beyond 100Gbps. The system 
was developed in Python with File Parsing and Feature 
Computation rewritten in C to achieve desired performance. 

 

 

 

 

 

 

Fig. 1. MLTAT System Architecture. 

Convenient user interfaces and APIs are provided to train 
new classification models using training data (labeled network 
traffic).  Users are able to select a machine learning algorithm, 
specify search criteria for hyper-parameters, and selectively 
include or exclude descriptive features.  Given these inputs, the 
system performs grid-search cross-validation to find the best 
set of hyper-parameters and evaluates training using held-out 
test data. Accuracy and a confusion matrix for the trained 
classifier are presented, allowing one to evaluate performance.  
Once satisfied with performance, classifiers can be enabled to 
make predictions on new data. 

Many classifiers, using different feature sets/algorithms, 
and trained on different datasets, can be handled by the system.  
This flexibility allows creation of classifiers  specifically 
targeted for particular applications.  Combined with the options 
for ensemble learning, one may deploy a single binary or 
multiclass classifier, many binary classifiers using the one-vs-
one or one-vs-all methods, or some other useful combination. 

A. Machine Learning Algorithms for Classification 

Based on findings in previously published studies on 
network traffic classification [5][10] and our own experiments, 
a number of supervised machine learning algorithms were 
integrated into MLTAT including Logistic Regression, Support 

Vector Machines, Decision Trees, Adaboost, Neural Networks 
and Naive Bayes. Hyper-parameters for each of these 
algorithms are exposed by MLTAT, providing a convenient 
mechanism for experimentation with different models.  The 
system performs grid-search cross-validation to find the best 
set of hyper-parameters among those suggested by the user. 

 

Fig. 2. Classification Pipeline 

As illustrated in Fig. 2, MLTAT uses a form of bagging to 
combine the predictions of several independent classifiers into 
a single result.  Two forms were implemented: simple majority 
vote and a weighted vote based on the confidence of each 
individual classifier. 

B. Flow Determination & Direction 

In MLTAT, flows are considered to be bidirectional and 
identified by the unique 5-tuple (source IP, destination IP, 
source port, destination port and protocol). Features are 
computed for both the forward and reverse direction of flows. 
For TCP flows, the start of the flow is identified when the SYN 
packet is observed while flow end is detected via observation 
of a FIN. An MLTAT configurable timeout enables end of 
flow detection for UDP flows and when the TCP FIN packet 
never arrives. Feature computation required identification of 
forward vs reverse directions of a flow with heuristics 
developed to handle various situations which are encountered.  

C. Features 

Determining which features to support in MLTAT required 
research. Requirements to support 10Gbps and beyond in semi 
real-time meant that it was not possible to compute a list of 
200+ features and use feature selection to short-list the features 
of interest. We sought to identify a minimal set of features that 
can be computed at high speed during classification and used 
for prediction. Flow features implemented by MLTAT include: 
(a) Minimum, maximum, mean, and variance of packet size in 
both directions (b) Minimum, maximum, mean, and variance 
of packet inter-arrival time in both directions (c) Total flow 
duration (d) Protocol (e) Total packet, byte, and payload count 
in both directions (f) Entropy of packet size and inter-arrival 
time in the “backward” direction. 

IV. MLTAT STUDY & EVALUATION 

A. Experimental Setup & Dataset 

Studies were undertaken using MLTAT to classify traffic 
collected using the dataset generated during this project - 
described in section V. The dataset included 2170 PCAP files 
containing 354,808 flows representing 8 traffic classes (9 
classes if counting DNS). The data was divided into training 
and testing flows with the former used for model training and 
the latter used for prediction. In total, this included audio chat 
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(12,666 flows), audio stream (71716 flows), file transfer (3867 
flows), P2P (14,758 flows), text chat (9,097 flows), video chat 
(3170), video stream (36,648 flows), web traffic (8,230 flows), 
and DNS (194,656 flows). 

We used weighted precision as a metric due to the 
imbalanced data set with TP, FP, and FN as the total True 
Positives, False Positives and False Negatives respectively:  

            
  

       
                       

  

       
 

                    
  

         
               
            

 
     

 

B. Binary Classification 

In this approach, binary classification was used to classify 
the main application with all other applications labeled as a 
background class. There was one such model configured for 
each different application using the One-vs-Rest methodology. 
For example, for Video Stream, the first configured training 
model consisted of video stream traffic with all other traffic 
labeled as background/other traffic. The results of the 
individual binary classifiers were combined into a final result. 
The final recall score presented for each class of traffic is thus 
MLTAT's fused result of the individual 5 algorithms listed 
earlier (C4.5, SVM, MLP, Adaboost, Logistic Regression).   

 

Fig. 3. Binary Classification 

The training dataset originally included DNS flows 
generated by the applications. We wish to understand whether 
their exclusion improves results. Multiple scenarios were run: 
(i) The initial approach included DNS as part of the primary 
class of traffic; (ii) All the DNS flows were labeled separately 
to create a separate DNS traffic class; (iii) DNS flows were 
removed; (iv) DNS flows were extracted from the main class 
and labeled as part of the background class of traffic.  

Fig. 3 presents the recall and weighted precision scores for 
the 4 scenarios listed earlier. In terms of overall weighted 
accuracy, the original, label-DNS, no-DNS and DNS-as-
background tests yielded 79.3%, 86.4%, 87.9% and 87.5%.  
The DNS-as-background scenario (4th case) yields the best 
overall results when considering recall and weighted precision.  

C. Multi-Class Classification 

Another set of experiments used MLTAT to carry out 
multi-class classification using C4.5, where the models 

classified multiple classes of traffic at once. Recall and 
weighted precision scores were: Audio Chat (84.35% and 
86.16%), Audio Stream (91.09% and 90.72%), DNS (99.82% 
and 98.17%), File Transfer (72.55% and 86.77%), P2P 
(96.57% and 87.16%), Text Chat (92.29% and 96.59%), Video 
Stream (91.93% and 85.71%).  Most traffic classes have recall 
above 90% and minimum weighted precision of 85.7%. We 
ascertain also an overall accuracy of 90% and a weighted 
accuracy closer to 88% (when excluding DNS) - the latter is 
examined due to the imbalanced data set. 

V. GROUNDTRUTH / TRAINING DATA 

Currently, there are very few publicly available labeled 
datasets which include different network traffic types and 
applications. This limitation hampers research and 
development efforts, specifically related to traffic classification 
algorithms. In this work, we developed a mechanism that 
allows for labeling of collected (encrypted and non-encrypted) 
network traffic into different traffic classes (e.g., video, audio) 
and applications (e.g., Netflix, Youtube, Skype, DropBox). 

Labeled traffic is essential for the training of Supervised 
Machine Learning based Classifiers. In addition, such data can 
serve as ground truth to be used for the evaluation and 
verification of traffic classifier systems and algorithms. 
Recently Amazon launched SageMaker Ground Truth [15], a 
service that allows labeling of Texts and Images. However, it is 
not suitable for labeling network traffic traces. 

Two categories of labeled datasets are created: (1) Type-1 
datasets include traffic from a single application (2) Type-2 
datasets include traffic representing multiple applications 
collected from an enterprise or campus network. Type-2 
datasets are labeled based on semi-supervised learning 
techniques. A small number of a priori labeled flows are 
required for the semi-supervised algorithms. The Type-1 
labeled flows serve as the a priori labeled flows for this 
purpose. It is assumed that the characteristics of Type-1 flows 
are similar to the Type-2 traffic that is being labeled.  

A. Type-1 Dataset Creation 

In this study, Type1 traffic was generated from a desktop 
for a particular application and captured at the same location 
using tcpdump.  The collected data was automatically labeled 
with a given traffic class or application category, as listed in 
TABLE I. The 10 selected classes constitute some of the 
dominant traffic classes currently observed in networks.  

TABLE I.  TRAFFIC CLASSES - TYPE 1 DATA 

 Traffic Classes Applications 

1 Video Streaming YouTube, Netflix 

2 Video Chat Skype, Messenger 

3 Audio Streaming Spotify, SoundCloud 

4 VoIP Skype, Messenger 

5 File Transfer Dropbox, Google Drive 

6 Mail Gmail, Yahoo 

7 Web browsing Firefox, Chrome 

8 P2P BitTorrent, eDonkey 

9 Chat Messages Facebook, Telegram 

10 ToR Traffic Video streaming, Web browsing 



Many issues are encountered during large scale data 
capture for labeling. The primary objective is to keep the data 
as clean as possible (i.e., avoid background noise generated by 
various applications including multicast and broadcast traffic). 
Data was captured on a Linux platform which proved to be a 
better option than Windows since disabling of background 
processes is easier on Linux. If Virtual Machines (VM) are 
used it is important to configure the VM's network settings in 
bridged mode. We addressed the problem of buffering at the 
NIC card by modifying the NIC parameters to disable TSO and 
LRO such that the Ethernet NIC always sends packets it 
receives from the wire to the TCP stack without buffering.  

We note that it is extremely difficult to capture payload-
only traffic even after the steps outlined were taken. There are 
various advertisements and signalling packets that inevitably 
become part of the data capture. The difficulty arises in 
particular because traffic is often encrypted.  

B. Type-2 Dataset Creation 

Semi-supervised learning has been used in many areas 
where labeled data is hard to obtain, but abundant unlabeled 
data exist. Our proposed approach to generate labeled data 
relies on a semi-supervised approach referred to as Co-training. 

The co-training approach is built on self-learning with 
improved performance as presented in [3] and [7]. First, we 
conducted significant feature analysis, based on domain 
knowledge and characteristics of a variety of features. In the 
feature selection phase, we chose two fully independent subsets 
from the available features: (i) packet-related features, (ii) 
time-related features.  Subsequently, co-training follows the 
concept of self-learning, to add the most trustworthy unlabeled 
data with their predicted labels into the training dataset. Thus, 
the training dataset grows with high confidence, and 
increasingly larger volumes of unlabeled data is converted to 
labeled data.  

We built two classifiers for classification. Multiple machine 
learning algorithms and classification methods were studied 
and Random Forest (RF) which utilizes a bagging approach 
was selected for the classifier due to its accuracy and 
performance. RF randomly selects a sample from the training 
set and also selects a subset from the features. The process is 
repeated and then the classification results aggregated.  

 There are multiple phases in the co-training approach. 
Experimentally, we established five phases for co-training. In 
each phase, different criteria are utilized based on different 
confidence levels. The higher confidence of classified results at 
in earlier phases ensures that the most accurate classification 
results are included in the training set.  

 Within each phase, it trains two classifiers (C1 and C2), 
obtains the corresponding predicted labels (L1 and L2), and 
takes advantages of different confidence levels (P1 and P2) as 
the thresholds to absorb the unlabeled data into the training set. 
For instance, in the first phase, if the predicted labels from two 
classifiers are identical (L1 = L2) and both have high confidence 
(eg P1 ≥ 80% and P2 ≥ 80%) , such flows are added to the training 
set. Similarly, in the second phase, if the predicted labels are 
the same (L1 = L2) and either of them has high confidence (P1 ≥ 

80% or P2 ≥ 80%), such flows are added. In the third phase, for 

any label (i.e., L1≠L2) flows are selected with the same 
confidence level as the previous phase. In subsequent phases, 
flows are selected with lower confidence (P1 ≥ 70% or P2 ≥ 

70%). In the final phase, we make use of three different 
classifiers: Random Forest, Neural Networks and AdaBoost, 
with a majority voting mechanism to determine the labels for 
all remaining flows. Since the criteria and conditions are 
experimental, different users can choose their own criteria in a 
flexible way, based on their requirements and scenarios. 

C. Test Results 

We carried out a series of experiments to validate the 
effectiveness of the co-training (CO) approach. The selected 
dataset includes a mix of 6 traffic types (Video Streaming, 
Audio Streaming, VoIP, P2P, Chat Messages, Web Browsing) 
representing Type-1 data as listed in TABLE I. Three sets of 
experiments were performed with different volumes of training 
data. Training data constituted 20%, 10% and 5% of the total 
flow volume in the dataset. The precision and recall scores 
were evaluated per traffic class. We observe that all classes 
have a precision and recall score above 88%, except Web 
Browsing. We note that with decreased training data, the 
precision and recall score for each class decreases. In 
particular, the Web Browsing score dropped significantly. The 
overall accuracy of labeling for the six traffic types are 
93.14%, 91.61% and 88.77%, with 20%, 10% and 5% training 
data respectively. Thus, the overall accuracy of this approach is 
high but there is room for improvement due to the requirement 
for high accuracy of labeled data. 

For the experiment using co-training with 5% training data, 
50.85%, 20.52%, 12.58% and 3.88% flows are labeled during 
Phase I, Phase II, Phase III, and Phase IV respectively. The 
remaining flows are labeled during the last phase (Phase V). 
The proposed co-training approach execution time is 
approximately 70 minutes on an Intel i5-8600 @ 3.1GHz 
system with 16 GB RAM (for the dataset consisting of 46,500 
flows). 

VI. CONCLUSION 

The MLTAT platform was developed to support network 

traffic classification of encrypted traffic using machine 

learning. The system supports a restricted short-list of 30 

features which are easily implemented in real-world systems 

and whose computation can scale to 10Gbps and beyond in 

high speed data planes. Using co-training based semi-

supervised machine learning we created labeled data sets 

representing different encrypted applications, with which the 

machine learning network classification models can be trained. 

We evaluated the accuracy of the system using binary and 

multi-class classification models with the observation that the 

former provided better overall results when tested using the 

dataset from this project.  
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