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Abstract—This work presents an emerging problem in real-
world applications of machine learning (ML) in cybersecurity,
particularly in botnet detection, where the dynamics and the
evolution in the deployment environments may render the ML
solutions inadequate. We propose an approach to tackle this
challenge using Genetic Programming (GP) - an evolutionary
computation based approach. Preliminary results show that
GP is able to evolve pre-trained classifiers to work under
evolved (expanded) feature space conditions. This indicates the
potential use of such an approach for botnet detection under
non-stationary environments, where much less data and training
time are required to obtain a reliable classifier as new network
conditions arise.

Index Terms—botnet detection, machine learning, evolving
networks

I. INTRODUCTION

Cybercrime has evolved drastically along with the develop-
ment of the Internet and computer systems since the early
days. Hence, cybersecurity is one of the most important
aspects in managing networks and connected systems nowa-
days. In the recent years, many machine learning (ML) based
intrusion detection solutions have been proposed for dealing
with the enormous amount of data and a wide variety of
network threats [1].

A particular challenge in the applications of ML in intrusion
detection is to maintain the reliability / robustness of ML
based systems under dynamic and evolving environments
[2]–[4]. Different environmental changes may appear with
newly introduced technologies and/or novel threats. Among
these, many variations may emerge in the network / service
environments and data collection / processing procedures, that
could negatively affect the performances of deployed intrusion
detection systems. Examples of such changes include:
• Variations in network infrastructures, e.g. new network

devices / types, topology changes that provide new infor-
mation to intrusion detection systems;

• New or updated monitoring / data capturing systems that
allow extracting more features from current data streams;

• Concept shift and drift in normal network behaviours and
newly discovered attacks and malicious network traffic.

Essentially, the changes may affect ML based intrusion
detection systems via the feature space (input space), output
space, and / or objective function. In this paper, we focus on
a type of change: feature space expansion of network data,
where new information (features) are introduced from time

to time and need to be learned from / incorporated to ML
models. Under such conditions, the model needs to maintain,
or even improve the intrusion detection performance. Em-
ploying an evolutionary computation method, namely Genetic
Programming (GP), this work aims to evaluate the possibility
of evolving pre-trained GP classifiers to work under the
aforementioned changes of the deployment environments. In
doing so, we aim to improve the robustness and reliability of
an ML based network security system, and to reduce training
time and increase training data efficiency under new network
conditions.

The rest of the paper is organized as follows: Section II
summarizes recent developments of ML techniques reported
in the literature for network intrusion detection. Section III
formulates the problem in the context of botnet detection using
network traffic flows. The section also describes the employed
GP method and the introduced technique, which allows the
pre-trained GP classifiers to evolve under new data conditions.
Section IV presents the experiments and evaluation results.
Finally, conclusions are drawn and the future work is discussed
in Section V.

II. RELATED WORK

In recent years, ML techniques have been applied exten-
sively in cybersecurity in general and intrusion detection in
particular [1]–[3]. Different ML techniques for botnet detec-
tion have been explored in several works in the literature,
including decision trees [4], [5], neural networks [6], [7],
and unsupervised learning approaches [8]–[10]. Genetic pro-
gramming, an evolutionary computation approach, has been
successfully applied in several works as well [11]–[16]. Song
et al. in [11] applied Linear GP for intrusion detection on
a large and highly imbalanced dataset (KDD-99). Haddadi
et al. employed Symbiotic Bid-based GP for botnet detec-
tion and showed the advancement of GP over rule based
and packet payload inspection based systems [12]. In [15],
Sen and Clark applied GP and grammatical evolution for
intrusion detection in mobile network environments, with a
focus on power efficiency of the solution. In general, Wu and
Banzhaf surveyed applications of computational intelligence,
from artificial neural networks, fuzzy systems, evolutionary
computation, artificial immune systems, to swarm intelligence,
and soft computing in intrusion detection [16].
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Some particular changes in deployment environments of ML
based intrusion detection systems have been addressed in the
literature. For addressing concept shift and drift, online stream
learning techniques have been employed in [13], [14], [17].
Similarly, intrusion detection systems on “novel” data classes
have been addressed partially in [4], [17]. In [4], Haddadi
et al. examined the effectiveness of ML methods for botnet
detection under botnet evolution. However, changes affecting
the feature space of ML solutions for cybersecurity have not
been addressed in detail. In a related work, [18], Manzoor et
al. proposed an outlier detection technique for feature-evolving
data streams using streaming random projection and ensemble
of half-space chains. Different from the work in the literature,
in this work, our main focus is addressing the challenge
of feature space expansion (evolution) using an evolutionary
computation technique, GP, for botnet detection systems.

III. METHODOLOGY

As discussed in Section I, this work focuses on learning
under feature space expansion of network data for robust and
reliable botnet detection. To achieve this, different methods are
introduced based on a Linear GP approach in order to enable
and/or accelerate incorporating newly introduced (evolved)
features to pre-trained GP solutions. In this work, the data
is represented as network traffic flows. A network traffic
flow is a summarization of a “connection”, i.e. a sequence
of aggregated packets between a pair of network devices. A
network traffic flow is commonly identified by a set of five
different attributes (5-tuples) including source and destination
IP addresses and port numbers, and the protocol, over a
predetermined duration. Network traffic flow is a common data
type for ML applications in cybersecurity in general and botnet
detection in particular [1], [19].

A. Problem Formulation

Different changes in network environment and data collec-
tion / data processing steps may result in different feature
spaces of ML application in cybersecurity. Particularly, in
network traffic flow data, examples of such changes are
updated configurations for exporting flows, or new flow ex-
porter, which may introduce new features (information) in the
exported flows. To formulate the problem, we assume that
in deployment is a ML based botnet detection system, D,
working on the original feature space, F , i.e on data points
x ∈ RN , |F| = N . At some point, the aforementioned
changes may result in new information / features, hence maybe
a larger feature space: F ′, F ⊂ F ′. To traditional ML
methods, which assumes a fixed feature space, the newly
introduced features provide no benefit. Hence, new models
need to be trained with additional time, effort, and training
examples to ensure an adequate performance on the new data
which have new features. This work focuses on addressing the
challenge of evolving the detection system (classifier), D, into
an updated classifier D′ that works on the expanded feature
space F ′. This is to exploit the knowledge – that is embedded
in D through its training process – to quickly obtain a working

classifier for F ′ at the production level. To accommodate the
changes without generating and/or training new ML models,
we need to address the challenge of recognizing and learning
from newly emerging features, F ′ \F . Moreover, while doing
this, we need to maintain the current performance on the
known features and classes.

B. Linear Genetic Programming (LGP)

LGP is a GP variant where programs (solutions) in a
population (set of individual programs) are represented as a
linear sequence of instructions [20]. The execution of a LGP
program follows a graph-based data flow. Each instruction is
executed based on a defined arithmetic operation and operands.
The operands can be registers, constants, or input values.
The output is taken at the end of the program as the values
of designated registers. By manipulating the content of the
registers, which may carry the input feature values, LGP
potentially has the ability to perform feature construction [20].

LGP is trained using data subsets through a number of
generations. In each generation, the programs in the GP
population are evaluated on the training subset. Then, well
performed programs in the population are selected for vari-
ation operators to replace the worst ranked individuals and
evolve the population in the next generation. The variation
operators include: (i) Crossover, where blocks of instructions
are swapped between pairs of parent individuals; (ii) Micro
mutation, where a part of a selected instruction is modified
(target register, operands, or operator); and (iii) macro mu-
tation, where a selected instruction is replaced, deleted, or a
random instruction is inserted.

C. Learning From New Features

LGP has two unique advantages allowing a solution for
learning from expanding / evolving feature space: (i) By its
nature, LGP is a population based approach, where changes
in data can be learned gradually through generations; and (ii)
Based on the use of input registers in LGP programs, fea-
ture space expansion can be accommodated by appropriately
extending the input register vector.

In addition to extending the input register vector, variation
operators can also be modified to accommodate those new
features (input registers). In doing so, our principal objective
is to allow LGP programs to evolve on the new feature set
using the established structures, i.e. knowledge that has been
learned on the old feature set F , without violating them.

The following scheme for modifying the variation operators
is explored in this work: Upon seeing an expanded input
vector, the variation operators, micro- and macro-mutations
in this case, are adjusted to select new features (F ′ \ F) with
higher probability than the existing features. The probability is
controlled using two parameters: The initial multiply factor β
where (β ≥ 1), and the number of generations, G. As such, the
multiply factor for the probability of selecting a new feature
in generation g, where g ≥ 0, is:

βg =

{
(1− β)× g/G+ β, if g ≤ G
1, if g > G

(1)



Essentially, this scheme allows a seamless transition be-
tween the bias state of prioritizing the selection of new features
(in the first G generations) to learning from all features equally
(after generation G). This is done by gradually reducing the
multiply factor from the maximum value β at generation 0, i.e
when new features arrive, to 1 at generation G, i.e. treating
all features equally.

IV. EVALUATION AND RESULTS

A. Dataset

The experiments are performed on a public dataset for
botnet detection, the CTU13 dataset [21]. Specifically, we use
the Neris botnet network traffic flow capture from the CTU13
dataset. This capture has been demonstrated as one of the
most challenging among the captures provided in CTU13 [8],
[21]. The evolution in data feature space of the Neris botnet
traffic capture is simulated through the use of six basic netflow
features (as provided in the dataset) and an extended set of
24 netflow features (maximum number of features achievable,
exported from CTU13 provided Argus1 binary file2). This
can be seen as an update in real-world monitoring process,
where more information is extracted from the same source
of data. The original feature set is F = {duration, protocol,
flags, type of service, #packets, #bytes}. On the other hand,
an updated feature space, F ′, exported using expanded Argus
configuration includes the following features: F ′ = F ∪{#src
packet, #dst packets, #app bytes, #src bytes, #src app bytes,
#dst bytes, #dst app bytes, #load, #src load, #dst load, loss,
src loss, dst loss, rate, src mean size, dst mean size, src max
size, src min size} where src: source, dst: destination, and app:
application. In each run, the dataset is randomly split four-way
into training and test sets under basic feature set F , and under
expanded feature set F ′. By exemplar count, there are 29,967
normal flows, 2,973 botnet command & control (malicious)
flows, and 182,014 botnet (malicious) flows in the dataset.

B. Experiment Settings

This work assumes a binary classification, where the two
classes are normal (negative) and botnet (positive). The bot-
net detector performance is measured using the following
commonly used metrics [1]: Accuracy, Normal and Botnet
Detection Rates (NDR and BDR), and Class-wise DR (CDR).
Denoting True Positive, True Negative, False Positive, and
False Negative as TP, TN, FP, and FN, respectively, we have:

Accuracy = (TN + TP ) / (TN + TP + FN + FP ), (2)

NDR = TN / (TN + FP ), (3)

BDR = TP / (TP + FN), (4)

CDR = (NDR+BDR) / 2. (5)

Empirically chosen parameters of LGP are presented in
Table I. Multi-objective selection is employed in this work to
address two objectives simultaneously: (i) Maximize detection

1https://qosient.com/argus/
2mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-50/

TABLE I
PARAMETERS OF LGP

Parameter Value

Population size 500
Data subset size 200
Crossover rate 0.5
Micro mutation rate 0.8
Macro mutation rate 0.8
Function set {+,−,×, /,>, sin, exp, log}
Maximum program length 100

rate (over all classes); and (ii) Maximize accuracy. This not
only allows evolving well performed programs in the defined
objectives, but also indirectly address the false alarm rate and
class detection rate. Multi-objective selection is done through
the use of Pareto ranking. In the experiments, after a LGP
population PF is trained on the original feature space F for
300 generations, it is used as the initial population for PF ′

β to
evolve under the expanded feature set F ′. In order to examine
the effect of β, i.e. different levels of biasing toward the new
features in F ′\F introduced in III-C, we choose the following
values {1, 2, 4} for β, and 50 for G. These parameters result
in the LGP populations PF ′

β=1, PF
′

β=2, PF
′

β=4, respectively.
Two other LGP populations are also trained for comparison.
The population PF ′

assumes the solutions learned in PF
and continues to evolve using only features in F , while the
population QF ′

is trained from scratch on F ′. Experiments
are performed and results are obtained based on 20 runs.

C. Results

Figure 1 shows the training results (Accuracy and CDR)
on training data subsets of the populations over the training
generations, and Table II shows test results of the LGP
populations after different number of generations.

Note that the population PF achieves nearly identical
performance (on test data with feature space F) to PF ′

β at 0
generation (Table II). As shown in Figure 1, on small feature
space, F , LGP (PF ) struggles to learn to separate normal and
botnet flows from the limited number of features. Its accuracy
and CDR improve very slowly over the training generations.

Figure 1 clearly shows that when presented with a larger
feature space, F ′, PF ′

β (β = 1, 2, 4) are able to maintain
the performance that PF achieves on F , and evolve from that
to take advantage of new features in F ′. Results in Table II
and Figure 1 show that β = 1 gives better results, in terms of
Accuracy and CDR, than β = 2 and 4 after almost all training
generations. In fact, it appears that a higher β value generates
worse results than lower ones (Figure 1). This demonstrates
that by simply letting the variation operators select features
from the whole feature set F ′, the LGP is able to effectively
evolve a pre-trained population to a better population for
new conditions (in this case, under a larger feature space).
Artificially introducing bias towards newly introduced features
(β = 2, 4) may actually hinder the natural evolution of a
LGP program under the new conditions (use case) presented
in this paper. This suggests that a simple bias scheme does
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Fig. 1. Training accuracy and class-wise detection rates of the populations
on F ′ training subsets by number of generations

not help and more carefully designed methods are needed to
better adapt to feature space expansion.

On the other hand, continuing to evolve the LGP population
using the old feature set, as in population PF ′

, is proved
unbeneficial. Using this strategy, LGP was unable to improve
the solution inherited from PF in the new environment. A new
LGP population training from scratch (QF ′

) on the feature set
F ′ could quickly surpass PF ′

even after just 20 generations
(Table II). This clearly shows that by continuing to evolve on
features in F , PF ′

misses critical information introduced in
F ′ \ F .

Finally, comparing PF ′

β and QF ′
, it is obvious that PF ′

β ,
especially with β = 1, show better performances than QF ′

on
F ′ throughout the training generations. After 50 (100) training
generations on F ′, PF ′

β is able to obtain similar results to QF ′

at 100 (200) generations. This demonstrates that the previously
trained LGP populations can be successfully evolved to work
under expanded feature spaces to reduce time, effort, and
training examples.

V. CONCLUSION

Our main objectives in this work were to investigate the
capability of a LGP based botnet detector for evolving under
expanded feature space conditions. In doing so, the aim is to

TABLE II
TEST RESULTS OF GP POPULATIONS TRAINED ON F ′ AFTER DIFFERENT

NUMBER OF GENERATIONS.

# gen. Population Accuracy NDR BDR CDR

0 PF′
β 73.90 53.12 77.27 65.20

20

PF′
75.77 50.33 79.89 65.11

PF′
β=1 69.53 75.57 68.56 72.06

PF′
β=2 72.84 75.06 72.48 73.77

PF′
β=4 75.04 67.66 76.23 71.94

QF′
75.30 63.27 77.25 70.26

50

PF′
78.20 47.02 83.25 65.14

PF′
β=1 76.73 77.24 76.65 76.94

PF′
β=2 72.30 81.63 70.79 76.21

PF′
β=4 75.30 74.82 75.38 75.10

QF′
73.76 70.10 74.35 72.22

100

PF′
78.28 46.85 83.37 65.11

PF′
β=1 81.01 79.21 81.30 80.25

PF′
β=2 80.04 78.23 80.33 79.28

PF′
β=4 78.64 79.20 78.55 78.87

QF′
76.59 74.66 76.91 75.78

200

PF′
72.19 56.03 74.81 65.42

PF′
β=1 85.90 79.83 86.88 83.35

PF′
β=2 84.15 79.88 84.84 82.36

PF′
β=4 81.51 80.72 81.64 81.18

QF′
81.42 77.04 82.14 79.59

300

PF′
76.42 51.23 80.51 65.87

PF′
β=1 86.98 80.55 88.02 84.28

PF′
β=2 86.70 79.14 87.93 83.53

PF′
β=4 84.20 81.24 84.68 82.96

QF′
82.73 79.65 83.23 81.44

exploit the learned knowledge embedded in a pre-trained LGP
population under the existing feature space, in order to assist
the LGP population in quickly learning to work under the new
feature space. To this end, a modification scheme to variation
operators of LGP is presented. The empirical experiments
performed and the results obtained show the potential of
such an approach, where it enables a LGP population to
continue to evolve under a larger feature set without violating
previously learned solutions. Evolving from a pre-trained LGP
botnet detector, it is shown that the scheme can reduce the
training time and the training data required by half. Future
work will further investigate the ability of evolving existing
ML solutions to adapt to different changes in cybersecurity
environments including but not limited to shrinking feature
spaces. Furthermore, the effects of different methods and
their parameters for learning under feature space expansion
on GP population and behaviours of GP programs will be
investigated.
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