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Abstract—There are two kinds of network data: Network
telemetry (e.g. packet counters) and business data (e.g. user
roles). Existing approaches to querying network data keep these
separate, increasing the number and complexity of queries users
must write to answer questions about networks. We present
Scout, a framework for creating tools which combine these two
types of data. It is comprised of: An information model which
can represent both network telemetry and business-domain data
in use-case-specific schemas; a nascent query language for this
information model; and an algorithm for executing queries on
schemas. A preliminary evaluation showed that a Scout-based
tool can answer questions pertaining to both network telemetry
and business data, and reduces the knowledge and number of
queries needed to answer realistic questions about networks.

I. INTRODUCTION

Operating a network requires gathering state and configura-
tion data, e.g. bandwidth usage or enabled ports. This is called
“network telemetry” [1] (see Section II-B). Questions about a
network can be answered by analysing stored telemetry, often
with a query language. However, a previous study [2] sug-
gested that network administrators are interested in questions
pertaining to business data (e.g. user roles), in addition to
telemetry. Mediums for storing telemetry and business data
are not typically integrated, and may use different query
languages. E.g. “How much data has Jane received today?”
might be answered by querying separate relational and time-
series databases for Jane’s ID; her periods of activity on the
network; which devices she logged into; their MAC addresses;
and how much data was transmitted to them by switches at
the edges of the network.

Even when working with just one type of data, many
network questions can only be answered by writing several
queries (e.g. in SQL, InfluxQL [3], or PromQL [4]) and
combining the results (e.g. with table joins, or scripts). This
requires detailed knowledge of the available data, an effort to
craft queries, and post-processing to combine the results [5],
[6], [7]. In summary, we identify the following problems:
P1) Telemetry and business data are segregated.
P2) Multiple queries are needed to answer realistic questions.
P3) Querying requires detailed knowledge of data sources.

We address these with Scout, a framework comprised of: A
general-purpose information model which can define schemas
to describe users’ particular networks and data sources (see
Section IV); a nascent query language (see Section V-A);
and an algorithm which executes queries by inferring re-
lationships from schemas so users do not have to state

them in queries (see Sections V-B and V-C). As an exam-
ple, the queries above might be written in a Scout-based
tool as Given: User{Name=’Jane’}; Return: Bytes.

sum(); Over: today(). This makes queries easier to read
and write, with the tradeoff that their outputs are less
predictable (see Section VII-C). Our preliminary evaluation
(see Section VI) compared a Scout prototype to Influx and
Prometheus and found that Scout substantially reduces the
number of queries needed to answer questions, and moderately
reduces the number of entities and properties referenced.

This paper is organised as follows: Section II discusses
background material; III reviews related work; IV introduces
Scout’s information model; V describes query specification
and execution; VI details our preliminary evaluation of Scout;
VII discusses evaluation results, and Scout’s applications,
benefits and limitations; and VIII describes future work.

II. BACKGROUND
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Fig. 1. Meta-model of querying systems. Examples are given in italics.
Colours correspond to topic areas: Red for information modeling; grey for
data storage; and purple for data analysis.

A. Information Modeling

Information models (e.g. the ER model [8], CIM [9], and
UML [10]) represent “concepts, relationships, constraints,
rules, and operations to specify data semantics for a chosen
domain of discourse” [11]. They can create case-specific
schemas which define entities representing domain concepts
(e.g. users) and define properties (e.g. user ID).

B. Data Storage

Network data may come from sources such as switches,
firewalls, web servers, or business processes (e.g. employee
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on-boarding). Collectors (e.g. SDN controllers, SNMP pollers)
transfer data to stores, of which there are several types: Rela-
tional databases (RDBs) group data tuples into “tables”, with
tuple elements identified by “columns”; Time-series databases
(TSDBs) are optimised for large volumes of ordered, time-
indexed data and focus on querying historical data [12,
Chapter 8.2] [13]; and Stream databases focus on real-time
processing [14, p. 337], and may or may not be time-indexed.
Adaptors retrieve data and format it according to a schema.

“Network telemetry describes how information from various
data sources can be collected using a set of automated com-
munication processes and transmitted to one or more receiving
equipment for analysis tasks.” [1] Telemetry is typically col-
lected as time-stamped samples of network state (e.g. per-flow
packet counters or network hardware CPU usage) [15], [16],
[17] and stored in a TSDB for historical analysis. Network
telemetry is distinguished from business data, which we define
as recorded information about an organisation’s state, e.g. user
roles, physical campus layouts, or login sessions. Business data
is typically stored in relational databases, proprietary formats,
or ad-hoc (e.g. notes, or serialised JSON) [2].

C. Data Analysis

An important tool for data analysis is querying, whereby a
user searches a data store with queries written in a domain-
specific language (DSL) called a query language (QL). QLs
are often specialised, e.g. RDBs are typically queried with
SQL; The TSDB InfluxDB [3] is queried with InfluxQL, which
supports time-series specific operators and functions; and
stream databases are queried with continuous query languages
like [18]. Query output can be interpreted directly or analysed
(e.g. with Nagios [19], Grafana [20], or Prometheus [21]).

III. RELATED WORK

A. Information Models for Telemetry

Some tools used to monitor telemetry are “schemaless”, e.g.
[22, Chapter 10], [21], [23]. These typically sacrifice structure
and standardisation for flexibility. Without a schema, users
must ensure that data sources write the same properties as
data analysers read, and that both interpret values in the same
way. This decreases the cost of implementation and increases
the cost of maintenance [22, Chapter 10]. An example is
Google’s Borgmon [22, Chapter 10]. Borgmon uses the “varz”
information model, which requires that data points have a time
stamp and a value. An information model which requires time
stamps cannot support both network telemetry and business
data (see Section II-B), exacerbating P1. Because varz does not
enforce timestamping, Borgmon could theoretically support
non-time-indexed data by passing null timestamps. However,
this could lead to errors during query processing, e.g. if a
data processor assumes all data will be timestamped. This
highlights the advantages (flexibility) and disadvantages (lack
of standardisation) of schemaless information models.

Prometheus’s information model [21] is almost identical to
varz [24], [25], but enforces time stamping. The TSDB In-
fluxDB [3] has an information model similar to Prometheus’s

[26] and to varz, but it supports schemas. It uses InfluxQL
[27], an SQL-like query language. InfluxDB (like Borgmon)
does not support business data.

B. Expressive Query Languages

A more expressive query language may let users express
themselves more precisely or write a wider range of queries
[28], but may also require more knowledge to use (see P3).
Flux [29] is an expressive scripting language inspired by
Javascript [30] and designed to replace InfluxQL [31]. Like
Scout, Flux aims to make it easier for users to query data. But
where we aim to reduce the knowledge users need to write
queries (P3), Flux makes it easier to express complex queries.

Less expressiveness can be useful. In [23], one may search
for properties without specifying entities (as is required in
RDBs). If data sources use the term “load” ambiguously a
query could output both CPU load and packet throughput. The
authors compare this to search engines like Google and discuss
result ranking [32]. Scout balances these approaches, by being
expressive without requiring detailed knowledge of schemas.

C. Abbreviated Query Languages

In CQL [33] users may simply specify the entity they want
to learn about and the entity they already know something
about. CQL finds paths from one entity to the other via
relationships in a schema. The INFER query language [34],
which is built on the AutoJoin query inference engine [35],
works similarly. Scout applies these ideas in the area of
network management, and develops them to support both
business data and telemetry. To our knowledge this has not
been done before.

Not all paths between a given pair of entities have the
same meaning (the “ambiguous path problem”) [33]. Imagine
the cyclic relationship between the entities Student, Teacher,
Course, and Enrolment in a database schema. The paths
Student–Teacher–Course and Student–Enrolment–Course start
and end at the same nodes, but have different meanings: The
former implies “all courses taught by teachers who advise a
given student”, while the latter implies “all courses in which
a given student is enrolled”. CQL and INFER mitigate the
ambiguous path problem by asking users to select paths, which
are displayed alongside pseudo-natural language explanations
(CQL) or SQL queries (INFER).

SQLSynthesiser [36] achieves similar results by asking
users to write example query outputs and database inputs.
The tool finds a query which produces the given output from
a database containing the given input. While reducing the
knowledge users need of the database schema, this approach
requires users to provide more information overall.

IV. INFORMATION MODEL

Schemas created with our information model represent
telemetry and business data as connected, undirected graphs.
Entities (“nodes”) represent data sources, and edges the rela-
tionships among them. Queries identify start and end nodes,
and are executed by tracing paths between them. Each node



defines a set of properties, e.g. a “Users” node might define
“Username” and “User ID”. During query execution nodes
emit atoms, data units containing property-value pairs corre-
sponding to the node which emitted them. We represent atoms
as nodename{(property=value, p2=v2, ...), ...}.

There are four types of node. The first three are called “data
nodes”, and each has a corresponding type of atom.

• Table nodes: They emit row atoms, which are sets of
property-value pairs, e.g. (Username=‘Alice’, ID=1)

. Properties of table nodes may be marked as single-
instance, meaning that only one atom of that node can
have any given value for that property (e.g. User ID).

• Interval nodes: Like table nodes, but also define a “time
interval” property. Interval atoms thus provide data about
a period of time, e.g. the period over which a user was
logged in: (ID=1, Time Interval=1pm-2pm)

• Time series nodes: Like table nodes, but with “Time-
stamp” and “Measurement” properties. They emit point
atoms, which represent a measurement at some in-
stant in time, e.g. a packet counter value: (MAC=1,

Measurement=900, Timestamp=1551754665).
The fourth type are parent nodes, which do not provide

data. Edges and properties defined by parent nodes are inher-
ited by their descendants. Values of single-instance properties
can occur at most once among the descendants of a parent
node. Parent nodes simplify relationships among data nodes
(see Section V-B for examples).

There are two types of edge:
• Labelled: Specify properties common to the nodes they

connect. This is similar in spirit to an SQL join. Values
of such “shared” properties must be comparable (i.e. it
must be possible to test them for equality).

• Inheritance: Connect parent and descendant nodes.

V. WRITING AND EXECUTING QUERIES WITH SCOUT

A. Query Specification
Existing query languages require that users construct their

own paths through schemas. This involves writing several
queries, and joining them with specific syntax, or parsing the
output of each and using it to write the next. Scout queries
instead specify two or three statements which are used to
automatically traverse the schema: given, return, and over.

• Given represents what the user knows, by specifying at
least one data node and (optionally) values for some of its
properties. E.g. Given: Location{Name=’Library’}

and Switch{ID=1}. Query paths include every node
given, and start with the first (see Section V-B).

• Return represents what the user wants to find out, by
specifying a data node and (optionally) functions to apply
to the output, e.g. Return: Port.count()

• Over: If specified, nodes will only emit interval and point
atoms which overlap these time intervals.

B. Path Construction
We find all (loop-free) paths between the given and return

nodes. Because adjacent nodes share properties (defined by

labelled edges), such paths will always have semantic mean-
ing, although paths with the same start and end nodes are
not necessarily equivalent (see the ambiguous path problem
in Sections III-C and VII). We mitigate this in two ways:
1) Like CQL, we display query paths alongside their outputs
(see Section III-C); and 2) Paths which do not contain all
nodes listed in the query’s given statement are discarded
(reducing the number of candidate paths). In our prototype
(Section VI-A) we construct paths with a depth-first-search-
based algorithm, with modifications for parent nodes:

• Parent nodes are excluded from data nodes’ neighbour
sets. Thus, parent nodes are never included in paths.

• The children of a parent node are added to the neighbour
set of all data nodes which neighbour that parent node.1

• The neighbours of a parent node are added to the neigh-
bour sets of that node’s children.1

C. Path Execution

The goal of path execution is to produce output from
transitive semantic relationships between start and end nodes.
A semantic relationship exists between atoms which have the
same value for a shared property. E.g. user{id=1,username
=‘Jane’} and role{id=1,rolename=‘admin’} indicate
that Jane is an administrator. Because adjacent nodes share
properties we can apply this insight to each node in a path,
incrementally building a chain of semantic relationships from
start to end. More precisely: A path is executed by iterating
through its nodes in order. Each node emits atoms, which are
filtered then intersected with the atoms from the previous step,
before being passed to the next step. Nothing precedes a path’s
first step so its atoms are passed to the next step, after any
criteria from the given statement are applied, e.g. if User{ID
=1} was given, then only atoms of the “User” node with ID
1 will be passed.

Filtering retains atoms which lie within the query’s time
interval (row atoms fall within every time interval).

Intersecting retains atoms which match at least one atom
from the previous step. Atoms match if they have the same
value for each of the properties they share (their “intersection
properties”), defined by the labelled edge joining the current
and previous nodes. Time intervals are handled specially:

• Interval atoms are trimmed to Over when filtering.
• Intervals are copied to row atoms during intersection.
• When two interval atoms match the same atom, intervals

are merged and transferred to the output atom. If intervals
do not overlap, one output atom is created for each.

VI. EVALUATION

Our evaluation seeks to determine to what extent Scout
addresses the three problems we identified in Section I. The
results are discussed in Section VII-A. Specifically, we address
the following research questions:

RQ1) Can a Scout-based tool accurately answer questions
which involve both business data and network telemetry?

1These rules are applied recursively.



RQ2) Does Scout reduce the number of queries needed to
answer realistic network questions?

RQ3) Does Scout reduce the amount of knowledge needed to
answer realistic network questions?

A. Prototype

We created a Scout prototype to use in our evaluation. Each
concept from the information model (e.g. node, edge) was
implemented as a Python class. Node classes support standard
graph operations like adding or retrieving neighbours. We
implemented the algorithm described in Section V in Python
and defined an API for calling it, which was used to write
queries for our evaluation (see Figure 3 for an example).

For data sources (see Figure 1) we used Mininet [37]
to emulate small (3-10 switch) networks with a simple tree
topology. Traffic was generated by executing Python scripts on
Mininet hosts (e.g. a streaming web camera, an HTTP server,
an SFTP transfer, etc.) Business data was hard-coded in JSON
files. Specifically: Records of users, user logins, physical
locations, and deployments of switches to those locations.

For data collection (see Figure 1) we used Faucet [38],
a production-quality, Ryu-based [39] SDN controller, to pro-
gram the Mininet switches and gather telemetry by polling
their flow counters. Specifically: Per-flow in- and out-bound
bytes, packet and packets dropped counters, annotated with
source or destination MAC addresses. For convenience, we
used a high polling rate (once per second).

We configured Faucet to export telemetry to Prometheus,
and Prometheus to export to InfluxDB for long term data
storage (see Figure 1). This ensured that our PromQL and
InfluxQL queries executed on exactly the same data.

One adaptor (see Figure 1) class is implemented (in Python)
for each data node in the graph. Because Scout does not store
its own data (e.g. unlike InfluxDB), these adaptors read data
using Python APIs for InfluxDB [40] and JSON data.

An example schema is shown in Figure 2. It is intended to
illustrate the features of our information model (see Section
IV) and support our evaluation of Scout. Its nodes were chosen
based on the queries we identified in Subsection VI-B1 and
are described below. Each node in the schema is implemented
as a subclass of a node type from the information model. Node
classes populate themselves with atoms by calling adaptor
classes (see Subsection VI-A). The schema itself is formed
by linking node objects into a graph at runtime. The schema
nodes are:

• User: Each atom represents a user account.
• Authenticated: Stores user sessions, e.g. derived from

authentications to a RADIUS server).
• User Device Interface: Stores MAC addresses of devices

which connect to the edge of the network.
• Connected: Stores periods of time devices spend con-

nected to network ports.
• Port: Each atom represents a switch port.
• Switch: Each atom represents a switch.
• Located: Records the physical locations of switches (we

assume the organisation tracks this).
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first step, so all atoms of the Location node 
are passed as output.

The atom output from the first step has value 
1 for the intersection property (LocID). Thus, 
the atoms of this node which have LocID=1 
are passed as output.

Because the atoms from the Located node 
are interval atoms, their intervals are 
transferred to the output atoms.
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Given: Switch{Is Edge=True}; 
Return: Port Traffic/Inbound/Bytes.group_by(Switch ID).sum(Measurement).sort(); 
Over: ‘2019-06-16T03:00:00Z' -> '2019-06-16T03:10:00Z' 
——————————————————————————————————————————————————————————————————————————————— 
schema.query( 
  given=('Switch', lambda switch: switch['Is Edge'],  
  ret=('Port Traffic/Inbound/Bytes', lambda bytes:  
    sum_atoms(group_by(bytes, 'Switch ID'), 'Measurement', sort_output=True)),  
  over=TimeInterval.from_string('2019-06-16T03:00:00Z', '2019-06-16T03:10:00Z')) 
——————————————————————————————————————————————————————————————————————————————— 
Executing path: Switch--Port--Port Traffic/Inbound/Bytes 
(('Switch ID', 2), 292317010) 
(('Switch ID', 3), 159245708)

topk(999, sum(increase( 
  of_port_rx_bytes{sw_id=~'0x(2|3)'}[10m] offset 200m 
)) by (sw_id)) 
 ——————————————————————————————————————————————————— 
Element                            Value 
{dp_id=“0x2"}                      294975798.1818181 
{dp_id=“0x3"}                      160695487.50417688

select sum(d) from ( 
  select non_negative_difference(measurement) as d from of_port_rx_bytes  
  where (sw_id='0x2' or sw_id='0x3') and time>'2019-06-16T03:00:00Z' 
    and time<‘2019-06-16T03:10:00Z' group by port, sw_id)  
group by sw_id 
 ——————————————————————————————————————————————————————————————————————— 
name: of_port_rx_bytes 
tags: dp_id=0x2 
time                 sum 
----                 --- 
1970-01-01T00:00:00Z 292317010 

name: of_port_rx_bytes 
tags: dp_id=0x3 
time                 sum 
----                 --- 
1970-01-01T00:00:00Z 159245708

Fig. 2. An example schema. Section IV details the information model.

• Location: Represents a physical location which is impor-
tant to the organisation, e.g. ‘library’ or ‘lab’.

• Port Traffic: Children of this node provide port traffic
data (e.g. the number of bytes received over time).

B. Methodology

1) Identify a set of realistic network questions: In a pre-
vious study we interviewed network administrators to learn
about their network management practices [2]. Based on
subsequent analysis of the interviews and follow-up sessions
with interviewees we identified ten realistic questions which
network administrators ask (see Table I).

2) Create a schema: We created an example schema (see
Figure 2) suited to answering the ten questions identified
in VI-B1 (e.g. some questions asked about switches, so we
created an appropriate node).

3) Generate data: We created a ‘ground truth’ for each
of the questions identified in VI-B1, and generated network
traffic and business data accordingly. For example, Q5 asks
how much data a given switch receives, so we configured a
switch and directed a known volume of data to it.

4) Write queries: We wrote queries which answered each
of the ten questions identified in VI-B1 in our Scout prototype,
InfluxQL, and PromQL. We selected InfluxQL and PromQL
for comparison because they are popular for querying network
telemetry. Where multiple queries were required to answer one
question we assumed a human or script would copy output
from preceding queries into later ones (‘query chaining’).
InfluxQL can ‘nest’ queries, e.g. select sum(d)from (

select d from ...). This is more direct than chaining and
we used it wherever practical. PromQL supports arithmetic
operators which achieve a similar effect.

5) Verify query output: To address RQ1 we executed the
queries from VI-B4 on the data from VI-B3 and verified that
the output matched the ground truth for each question. In some
cases query output needed post-processing (see the ‘+’ column
in Table I, and Subsection VI-C for an example).



TABLE I
SUMMARY OF RESULTS

Question InfluxQL PromQL Scout

Q E P * + Q E P * + Q E P * +

1 Which devices did a given user use on a
given day?

2 2 4 2 2 4 1 2 1

2 To which edge switch did a given device
most recently connect?

2 2 4 ! ! 2 2 3 ! 1 2 4

3 How many unique devices connected to a
given switch over a given period of time?

2 2 4 ! ! 2 2 2 ! ! 1 2 1

4 How many unique users connected to a
given switch over a given period of time?

3 3 5 ! ! 3 3 2 ! ! 1 2 2

5 How many bytes did a given switch re-
ceive in a given period?

3 2 4 ! 2 2 2 ! 1 2 2

6 Rank edge switches by how much data
they received in a given period

3 2 3 ! ! 2 2 1 ! 1 2 3

7 What ratio of packets are dropped, for
each port at the edge of the network?

9 5 3 ! ! 5 5 2 ! 4 5 4 !

8 What is a given user’s average data rate
over a given time period?

5+n 5 2 ! ! 5+n 5 2 ! ! 2 3 2 !

9 Rank users in terms of their average data
rates

5+n2 5 2 ! ! 5+n2 5 2 ! ! 2+n 3 2 !

10 What is the average data transmission rate
for a given period and physical location?

7+n 6 3 ! ! 5+n 5 2 ! ! 2 4 3 !

Totals 41 34 34 9 8 33 33 22 9 5 16 27 24 0 4

Q: Num. queries; E: Num. entities; P: Num. properties; *: External
query; +: Post-processed, n: Variable number of queries.

6) Count queries: To address RQ2 we counted the number
of queries needed to answer each question in each language
(see Table I). We counted nested queries individually (see
VI-B4). Some languages cannot access certain data sources
(e.g. InfluxQL cannot access account records in an SQL
database). In such cases we assumed one ‘external’ query
written in another language (e.g. SQL) would be required per
inaccessible data source. See the ‘*’ column in Table I.

7) Measure query complexity: To address RQ3 we counted
the number of unique entities and properties referenced by the
queries from VI-B4, using this as a proxy for the degree of
knowledge required to write them. We counted one entity for
each ‘external’ query because typically queries must reference
at least one entity.2

C. Example

Below we show the steps needed to answer Q6 from Table
I, and how we counted queries, entities, and properties. The
ground truth for this question established three switches in
a tree topology, with switches 2 and 3, at the edge of the
network, receiving 300MB and 160MB of data, respectively.
S1) Look up the IDs of switches at the edge of the network.

Neither InfluxQL nor PromQL can do this, so we assume
one ‘external’ query (and one entity) is needed.

S2) Sum the bytes received by each switch from S1. In
InfluxQL this requires two queries (nested), one entity,
and three unique properties (see Figure 3), in addition to
the external query and entity from S1.

S3) Sort the values from S2. The InfluxQL query in Figure
3 cannot be reformulated to sort its output, so post-
processing is required. In PromQL, steps S2 and S3 can

2NB: We did not count ‘time’ as a property, because it is ubiquitous to time
series data and therefore unlikely to meaningfully raise the cognitive load of
writing a query.
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Given: Switch{Is Edge=True}; 
Return: Port Traffic/Inbound/Bytes.group_by(Switch ID).sum(Measurement).sort(); 
Over: ‘2019-06-16T03:00:00Z' -> '2019-06-16T03:10:00Z' 
——————————————————————————————————————————————————————————————————————————————— 
schema.query( 
  given=('Switch', lambda switch: switch['Is Edge'],  
  ret=('Port Traffic/Inbound/Bytes', lambda bytes:  
    sum_atoms(group_by(bytes, 'Switch ID'), 'Measurement', sort_output=True)),  
  over=TimeInterval.from_string('2019-06-16T03:00:00Z', '2019-06-16T03:10:00Z')) 
——————————————————————————————————————————————————————————————————————————————— 
Executing path: Switch--Port--Port Traffic/Inbound/Bytes 
(('Switch ID', 2), 292317010) 
(('Switch ID', 3), 159245708)

topk(999, sum(increase( 
  of_port_rx_bytes{sw_id=~'0x(2|3)'}[10m] offset 200m 
)) by (sw_id)) 
 ——————————————————————————————————————————————————— 
Element                            Value 
{dp_id=“0x2"}                      294975798.1818181 
{dp_id=“0x3"}                      160695487.50417688

select sum(d) from ( 
  select non_negative_difference(measurement) as d from of_port_rx_bytes  
  where (sw_id='0x2' or sw_id='0x3') and time>'2019-06-16T03:00:00Z' 
    and time<‘2019-06-16T03:10:00Z' group by port, sw_id)  
group by sw_id 
 ——————————————————————————————————————————————————————————————————————— 
name: of_port_rx_bytes 
tags: dp_id=0x2 
time                 sum 
----                 --- 
1970-01-01T00:00:00Z 292317010 

name: of_port_rx_bytes 
tags: dp_id=0x3 
time                 sum 
----                 --- 
1970-01-01T00:00:00Z 159245708

Fig. 3. InfluxQL (top), PromQL (middle), and Scout (bottom) queries used
for Q6, and their outputs. Entities are in red and properties in purple. The
Scout query is written in both informal syntax and Scout’s Python API.

be performed with one query, entity, and property, in
addition to the external query and entity from S1. In
Scout, all steps can be performed with one query, two
entities, and three properties.

VII. DISCUSSION

A. Results

We found that the Scout prototype’s output matched the
ground truth in all cases, so we answer RQ1 in the affirmative.
We found that Scout required fewer queries than InfluxQL and
PromQL in all cases, and substantially fewer queries overall
(16 for Scout, vs. 41 and 33). Thus, we answer RQ2 in the
affirmative.

Answering Questions 8 and 10 involved retrieving a set of
time intervals. Neither InfluxQL nor PromQL queries support
discontinuous time intervals, so one query for each language
had to be repeated for each interval (represented with an n in
Table I). Scout handles this situation automatically by retaining
time intervals during path execution (see Section V-C). The
process was similar for Q9, but had to be repeated for each user
in the organisation, causing the number of queries to increase
polynomially for InfluxQL and PromQL (represented with an
n2 in Table I).

The Scout prototype answered all questions without ‘ex-
ternal’ queries, whereas InfluxQL and PromQL needed these
nine times out of ten. Additionally, Scout queries needed post-
processing in fewer cases. This shows that network adminis-
trators can accomplish more with a tool based on the Scout
framework, which models both network telemetry and business
data.

We found that the Scout prototype required slightly fewer
entities than InfluxQL or PromQL (27 for Scout, vs. 34 and



33), appreciably fewer properties than InfluxQL (24 for Scout
vs. 34), and slightly more properties than PromQL (24 for
Scout vs. 22). However, we counted no properties for external
queries, creating an artificial advantage for InfluxQL and
PromQL. This is sufficient evidence to answer RQ3 in the
affirmative, but we accept that more work is needed to prove
this conclusively.

B. Applications and Benefits

Writing a query is easy when the user already knows a lot
about the structure of their data and simply wants to automate
data retrieval and processing. Crafting suitable queries requires
consulting database schemas, writing throwaway queries to
explore the data, and trial and error. Worse, many questions
can only be answered with several queries, which may target
different data sources or be written in different languages,
especially if both network telemetry and business data must be
queried. As shown in our evaluation, Scout supports both net-
work telemetry and business data, and reduces the knowledge
and number of queries needed to answer questions.

Scout does not preclude the use of existing tools. For ex-
ample, InfluxDB and SQL allow users to craft highly specific
queries with predictable output, whereas Scout is better suited
to less specific questions and attempts to contextualise output.

We imagine Scout being used in enterprises large enough
to collect network data, but not so large that they are likely
to build custom tools. Scout can be implemented on top
of existing data storage and retrieval technologies (including
Influx and Prometheus, or even web services which output
JSON data). Expert users would create schemas which novices
could then use to write queries without needing to know much
about the structure of the data.

C. Limitations

Our work is at a proof of concept stage. In our evaluation,
we used small data volumes (tens of atoms) and a simple
schema. A more thorough evaluation, including a performance
analysis and a more complex schema, is part of future work.

We explored the features of InfluxQL and PromQL, re-
viewed examples and similar queries, and experimented with
different approaches to answering each question. However, we
are not experts in InfluxQL or PromQL, and a more proficient
user might reduce the number of queries, entities, or properties
needed to answer questions.

The “ambiguous path problem” occurs when an abbreviated
query finds more than one path through a schema for the
same query (see Section III-C).3 While such paths all have
semantic meaning (see Section V-B), they might not produce
the same output. We argue that this ambiguity reflects the
reality that any question may have more than one answer, and
that it is more useful to provide several potentially correct
answers, which can be interpreted and refined, than one answer
which is technically correct but inscrutable. There are several
strategies for mitigating this problem, e.g. Ranking paths,

3Not possible with the schema in Figure 2 as it is a tree.

like a search engine [32]; designing schemas with fewer
cycles; displaying paths alongside their output, for context
[33]; or adding information to queries to reduce the number
of candidate paths (see Section V-B).

Scout cannot model recursive relationships between entities,
e.g. one switch port may be connected to another. In our
schema (see Figure 2) this could be represented as a cycle
from the Port node to a new Linked interval node, and back
to the Port node. This would allow our schema to encode a
network’s topology, but would not work with our execution
algorithm, which cannot construct paths with repeated nodes.

VIII. FUTURE WORK

In practice, Scout schemas would need to be much more
complex than the example given in Figure 2. At this stage
it is not clear whether cognitive load increases or decreases
with schema complexity, or whether it does so super- or sub-
proportionally. This would need to be tested in future research.

We plan to carry out a study to compare users’ performance
when answering realistic network questions with Scout-based
and other query languages. We are particularly interested in
the impact on novices’ performance, and may measure things
like efficiency, accuracy, and user satisfaction.

Presently, Scout queries are implemented as Python expres-
sions. However, we would like to create a formal grammar for
Scout, based on the informal syntax we described in Section
V-A. This would make comparisons between Scout-based and
other query languages more direct, and would help with user
studies.

We do not intend for Scout to be a high performance
database like Gorilla [13]. However, an understanding of
Scout’s performance characteristics and scalability would be
beneficial, e.g. algorithmic time complexity, the impact of
schema size, memory usage, and data volumes.

Finally, we would like to investigate which classes of
queries are possible and impossible to write using Scout.

IX. CONCLUSION

In this paper we presented Scout, a framework for cre-
ating tools which answer questions about networks. It is
comprised of an information model which provides concepts,
relationships and semantics for modeling network telemetry
and business data, a language for specifying queries on this
information model, and an algorithm for executing them. We
evaluated Scout by creating a protoype tool and an example
schema and using them to write queries to answer realistic
network questions. We did the same with two existing tools,
Influx and Prometheus, and compared the results. We found
that Scout can answer questions pertaining to both network
telemetry and business data, and that it reduces the knowledge
and number of queries needed to answer questions.
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