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Abstract—We consider the problem of loss of continuous data
feeds from sensor networks, due to transient failures. Because
the failures are recoverable, part of the missing data may be,
eventually, acquired. Even then, the limited resources of the
nodes can result in an incomplete reconstruction of the missing
data. In this paper we study a set of proposed data imputation
methods, and their variations, on a real data set. We determine
the tradeoffs involved in the proposed techniques. A common
characteristic of the studied techniques is that they depend on
the recent behavior of the data stream and do not make specific
assumptions about the long-term stochastic behavior of the data.
We consider also the case where simple, sub-sampling based,
handling of accumulated missing data is implemented by the
nodes.

Index Terms—Data Imputation, Wireless Sensor Networks

I. INTRODUCTION

Missing data is an inherent problem in Wireless Sensor
Networks (WSNs) due to node or communication failures that
occur for a number of reasons, such as wireless medium in-
terference, jamming attempts, power failures, physical damage
to the sensor nodes, unreliable or aged electronic components,
etc. [1]. These issues can lead to short-term or longer-term,
transient, sensor “blackouts” which in turn can result in gaps in
the collected data. Since the deployment of WSNs is primarily
performed to acquire data to inform or automate tasks, gaps
in the data may inhibit the ability to carry out those tasks. A
strategy is needed of how to handle missing data such that
the intended application of the WSN continues to be fulfilled,
correctly, and without undue difficulty [2].

Two general approaches exist: (a) to recover the missing
data in some fashion, isolating the application from data
blackouts of any number of nodes, or, (b), to handle such
failures within the application. The first option may potentially
compromise the correctness of the application, while the
second requires that contingency plans are developed and
implemented by the application for a (typically large and
complex) variety of failure scenarios. The two approaches
are not necessarily mutually exclusive. For example, a WSN
can recover missing data to allow the normal operation of
the application, but also provide some notification to the
application signaling that it is now operating with recovered,
and possibly less reliable, data. We adopt option (a) and study
alternatives of how to determine the missing data, evaluated

in terms of their root mean square error (RMSE). A notable
characteristic of our work is that we do not assume any
particular long-term stochastic behavior of the data streams.
The evaluated schemes simply have a short-term “window” of
the data over which they operate and whose gaps they attempt
to fix.

Specifically, in this paper we consider techniques for recov-
ering the missing data to allow the continuous operation of the
WSN application. We are motivated by our own experience
in collecting data from a multi-apartment residential building.
Our evaluation is therefore making use of a specific sensor type
that was capable of providing CO2, relative humidity (RH)
and ambient temperature readings. Over a multi-year data
collection, there were gaps in the collected data. We speculate
that most of the failures were due to power failures that
were, subsequently, recovered. We note that powering on/off
the sensors was possible by the residents (either intentionally
or accidentally). As we describe in the experiments sections,
we found a long period of nearly pristine data, with few
missing data gaps, which we subsequently used as ground
truth data. It is on this pristine ground truth data that we are
performing mutation experiments to evaluate the efficacy of
various recovery techniques. The intention was to be better
informed about which technique we should apply to the gaps
in other parts of the data stream.

Overall, we follow the typical model for a WSN according
to which data is collected to a single node, the sink [3]. The
sink is the location where the data maintenance and analysis
can be performed and where complete data can be relayed to
the cloud or directly to the system actuators. Typically, the
sink is connected to the wired infrastructure, and hence it is
also assumed to have no energy limitations as it could be
connected to a continuous power supply. If we exclude the
sink, all the remaining, “regular,” WSN nodes are assumed
to have limited storage and computation resources, and hence
require little energy to operate and small size to enable their
ubiquitous deployment.

Another practical form of faults covered by our study are
faults restricted only to the communication transceiver but not
to the entire sensor node. Then, it is possible for sensing to
proceed independently of whether the transceiver is powered
or not. This is due to the elevated wireless transceiver energy
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demands, making them prime candidates for powering down
when energy is scarce (in conditions of low battery charge
– until batteries are replaced, or due to unavailability of
harvested energy, etc.). Hence, node failures can be perceived
as inability to communicate, but still being able to collect
sensed data that are later sent when communication is restored.
The limitation then becomes that of the storage available on the
sensor node. We capture the limited storage resources of sensor
nodes, by following a technique similar to that by Raza et al.
[4] to handle the storage of data over prolonged failures. That
is, the impact on the recovered data is both a side-effect of the
failure intervals as well as of the storage management strategy.
The data recovered after communication is re-established are
used to improve past estimations by re-estimating the missing
data.

In this research, a collection of sensor data imputation
methods proposed in the literature, with some variations, are
evaluated under different sensor failure circumstances, using
a real dataset. We selected five methods for missing data
estimation on the basis of how frequently they appeared in
various articles and their ability to be reproduced. We consider
the impact of various parameters that control an underlying
Markovian model of node failures. Additionally, we adopt a
partial sub-sampling strategy assuming the nodes that cannot
communicate can still sense, albeit the available storage for
their samples is limited and have to evict measurements if their
storage buffer is full. We assume that the micro-controller used
in the sensor is of meager capabilities, such as an 8051 or an
MSP430. Therefore, no more than a handful of measurements
can be kept in micro-controller RAM and external storage is
prohibitive due to its own additional energy demands.

The rest of this paper is structured as follows: Section II
presents a summary of related work. Section III introduces the
missing data estimation methods evaluated in the remaining
of the paper. Section IV outlines the models used for the
node failures, and for the storage management of the sensor
nodes. Section V presents information related to the evaluation
process and the real datasets used. Section VI presents the
evaluation results. Section VII provides a discussion of the re-
sults and provides evidence linking the observed performance
to the “sparsity” of the underlying signals. Finally, section
VIII concludes the paper with an overview of the results and
directions for future work.

II. RELATED WORK

Extensive literature exists on the topic of statistical imputa-
tion techniques. Specifically for WSNs, the existing proposed
methods can be categorized into methods that exploit temporal
correlation of values produced by a sensor node, and those
that exploit spatial correlations, i.e., correlations of sensor
data produced simultaneously from sensors placed at multiple
locations [2], [5], [6], or a combination of both spatial and
temporal correlations [3], [7]–[15].

In [7], [8] the authors used a method called time-space
correlation which uses a neural network. Jie et al. [9] used a
Back Propagation (BP) Neural Network for spatial correlations

and Linear Regression model for temporal regression and then
weighted the two methods based on Pearson correlations of the
sensor nodes. Li and Parker [16] used a Fuzzy Adaptive Reso-
nance Theory (ART) Neural Network to perform classification
of data events with missing data. Yan et al. [10] made use of
piecewise cubic interpolation for their temporal correlation.
They also used Data Estimation using Statistical Methods
(DESM) for their spatial correlation estimation and used a
weighted sum of the two based on the Pearson correlation
coefficient.

Zhang and Yang [11] used multiple regression for both their
Spatial Method (SM) and Temporal Method (TM). They then
combined the two methods to create STM and DC methods
which appeared to use the TM or SM method that had the
smallest error. Zhen [12] also used linear regression together
with a second exponential smoothing method.

Ren et al. [13] created a decision tree which, based on
spatial and temporal Pearson correlation values, determined
which method to use. The methods proposed were Temporal
Correlation Algorithm Linear Interpolation (TCA-LI), Tem-
poral Correlation Algorithm Multiple Regression (TCA-MR),
Spatial Correlation Algorithm (SCA), or Spatial Temporal
Correlation Algorithm (STCA).

Pan et al. [5] used the nearest neighbour estimates us-
ing the regression (R2) values for weights for each. The
same group also published results using Adaptive Multiple
Regression (AMR) algorithm using spatial data [2] and in
addition, used piecewise cubic interpolation for additional
temporal correlations [14]. Lou et al. [6] also used a Nearest
Neighbour search. Kumar et al. [3] proposed Prediction using
a Spatial-Temporal Correlation (PSTC) algorithm which used
the Pearson Correlation as a weight to surrounding nodes.

Finally, Gao et al. [15] presented Temporal and Spatial
Correlation Algorithm (TSCA) which combined a weighted
temporal rate of change estimate with the rate of change of
spatially correlated nodes.

In summary, a large number of methods involved linear
interpolation as a baseline [2], [3], [5], [13], cubic interpolation
[10], [14], multiple regression spatially or temporally [2],
[11]–[13], and often compared with k-Nearest Neighbour
(kNN) which is often very similar to or referred to as Naive
Spatial Estimation (NSE) [3], [5], [6]. This group of methods
forms the basis for our comparisons.

III. MISSING DATA IMPUTATION METHODS

We consider that the system synchronously advances in
discrete time steps, and that we are limited to a “horizon”
of m recent time steps (m is subsequently refined/modified
as needed). In our evaluation section, we consider multiple
options for mapping the time step to natural time, but the
mapping does not impact the definition of the methods we
describe here. The data are sent once per time step/slot as
long as the node is not in failed state.

We follow closely the notation conventions of [13], where
many of the presented techniques were systematically pre-
sented. We can view the data in the following form:




V11 V12 V13 . . . V1n
V21 V22 V23 . . . V2n

...
...

...
. . .

...
Vm1 Vm2 Vm3 . . . Vmn


where Vki corresponds to the kth data value for node ai.

For the sake of presentation, it is convenient to think of Vki
as scalars, but this need not be the case in general. The time
Tk corresponds to the timestamp for which the data Vki(∀i)
occurred.

1) Linear Interpolation (LIN) or Temporal Correlation Al-
gorithm - Linear Interpolation (TCA-LI): This is the most
simplistic method as it only requires the available data before
and after a gap of missing data, and performs linear interpo-
lation to recover the missing data, or more formally:

V̂ki = Vui +
Tk − Tu
Tv − Tu

(Vvi − Vui)

Where, V̂ki is the estimated value and Tu < Tk < Tv . The
data from Tu and Tv should be the closest available data to
the missing data at time Tk. If we express the computation
required for computing the missing data over the horizon of
m time steps, the computational complexity of this method is
O(m) due to the search for the values for Vvi and Vui.

2) Temporal Correlation Algorithm - Multiple Regression
(TCA-MR): This method uses multiple (per-node) linear re-
gression to find correlations in the temporal aspect of the data.
The weights determine how strongly the recent data effects the
next value versus the data more distant in the past.

The outlines for this method can be seen in [13]. TCA-MR
has a time complexity of O(l3), where l is the number of
recent data points that effect the next value.

3) Spatial Correlation Algorithm (SCA): An alternative is
to describe the correlations in the spatial aspect of the data .
Here, the weights determine how strongly the other node data
is correlated to the data from the missing node.

As with TCA-MR, the outlines for this method can be seen
in [13]. SCA has a time complexity of O(r3), where r is the
number of nodes used to find the data of the missing node.

4) NSE or k-NN: Typically, the Nearest Neighbour (k-NN)
approach is described as using an estimation based on the
values of the k nearest nodes, where distance is determined by
the Pearson correlation. Other methods, such as Naive Spatial
Estimation (NSE), use a weighted summation of neighbouring
node estimations where the weights are assigned by correlation
coefficients over the total sum of all correlations. The method
used here is similar to the latter with one small modification
to account for the discrepancies in the node types. That is, we
first normalize each of the nodes data sequences:

V̂ki =

r∑
q=1

ρiq

Ci
∗
Vkq ∗ µi
µq

Where: ρkq =
E[(Vk − µk)(Vq − µq)]

σkσq
, Ci =

r∑
q=1

ρiq

Here, µx and σx are the mean and standard deviation values
respectively of node ax over the temporal sequence length

(i.e. the previous h data values). Ci is the sum of each of the
correlation values of all nodes {a1, a2, . . . , ar} with node ai.

As with SCA, a subset of all nodes is used which only
include those nodes that contain a value at the time slot Tk
in which node ai has missing data. The complexity of this
algorithm is O(rh).

Notice that TCA-MR, SCA, and NSE share in common the
requirement of a horizon of past values to a length of h time
steps in order to capture the influence of recent history on the
to-be-estimated data. The choice of h (and l for TCA-MR) is
discussed in Section VI.

5) Cubic Interpolation: To address whether a more elab-
orate curve interpolation could provide benefits over linear
interpolation, we include a cubic interpolation scheme. The
cubic interpolation takes the two previous data points before
the “gap” and the next two data points after the gap, and
interpolates for the missing values. Since the matrix inversion
performed in the interpolation is constant (fixed size matrices)
the algorithm complexity here is O(m), i.e., similar to that of
linear interpolation.

IV. MODELS

A. A Markovian Node Failure Model

A Gilbert-Elliot (GE) Markovian model is considered rep-
resenting the independent state of each node: ai = 1, commu-
nicating or ai = 0, non-communicating (failed). Transitions
are used to represent changes from a slot in which the nodes
is communicating to non-communicating in the next slot (and
vice versa), while self-transitions express sojourn in the same
state. Specifically:

P (ai(t+ 1) = 0|ai(t) = 0) = (1− P[rec])

P (ai(t+ 1) = 1|ai(t) = 0) = P[rec]

P (ai(t+ 1) = 0|ai(t) = 1) = P[fail]

P (ai(t+ 1) = 1|ai(t) = 1) = (1− P[fail])

The collective state of the system S can be expressed as the
Cartesian product of the states of individual nodes, i.e., by a
total of 2n states where n is the number of sensor nodes. The
transition probabilities are used as parameters in the evaluation
of the schemes. In order to alter the number of missing data
sequences, the node failure probability, P[fail], is increased or
decreased. Likewise, to adjust the duration for which the node
remains in the failure state, the recovery probability, P[rec],
can be changed. A higher P[fail] results in more frequent node
failures and a lower P[rec] results in longer durations of node
failures.

B. A Node Storage Model

If the node is able to continue sensing while unable to
communicate, a form of storage management is needed if the
outage of communication lasts for a long time. We proceed
in a manner similar to that described by Raza et al. [4]. In
some scenarios, small collections of data can be gathered
and, rather than transmit each data value separately, send
messages consisting of a set of <timestamp,value> pairs.
After a failure is restored, the stored data can be sent, i.e.,
recovered, providing the potential to improve over previous



estimations (due to the gaps) and providing a new basis for
further estimations (if still needed).

To our best knowledge, previous works using data imputa-
tion methods for missing data estimation have not accounted
for partial missing data recovery from the nodes. Here, we
assume a small per-node storage capacity allows some part
of the missing date to be recovered and we demonstrate that
this can result in drastic improvement of the quality of the
imputation. A first, basic, partial data recovery scheme is a
First-In-First-Out (FIFO) queue, storing only the most recently
sensed data, to be collected as soon as communication in
restored. Under prolonged failure periods, the fact that FIFO
drops the older data results in potentially poor performance.
For this reason, we also consider a sub-sampling strategy
within the same space restrictions as that of FIFO. This sub-
sampling takes place incrementally, replacing two of the oldest
samples with a single value, i.e., effectively freeing up one
storage slot for the more recent data.

It is important to note that a node cannot determine in
advance the length of time it will stay in failed state. Therefore,
it is possible that the sub-sampling will have to take place
a number of times, and that eventually we will sub-sample
already sub-sampled data, and do this possibly repeatedly. The
gist of why sub-sampling can be powerful is based on the
observation that, with sub-sampling, the lower frequency com-
ponents that underlie shifting trends in the data are retained
across the time span of the failure duration.

V. EVALUATION

A. Dataset

The data used for this study was collected from a multi-unit
apartment complex consisting of eleven apartments across four
floors. A sensor in each apartment was collecting temperature
(◦C), CO2 levels (ppm), and relative humidity (%). Some pre-
processing was necessary to adopt them to the discretized
synchronous assumptions made here. We set as the minimum
time step/slot to be equal to 60 seconds. All data collection
intervals studied are multiples of 60 seconds. Due to the lack of
synchronization across all nodes, the exact natural time when
each node was sampling was not directly controlled. Over a
60 second period, each node would approximately sample 4
times. The value closest to the beginning of the next time
slot was considered the measurement for that time slot. When
no measurement was reported in that time slot, the node was
considered failed (as in failed node in the source data).

B. Recovery for Re-estimation

We restricted the node data storage to five
<timestamp,value> pairs; applying data sub-sampling
once we exceed this capacity. The data estimation simulation
runs through each data value in sequential order, starting
at time T0 from Value V00 until V0k and then repeating
for T1 and so on. When a point is reached where Vki is
missing, the value is estimated using one of the methods in
Section III. When a node reaches a point where the data is
no longer missing but the previous l values were missing, it

indicates that a node has recovered from a failed state. At
that point, the simulation will place up to p (in our case five)
exact values recovered from the node. When no buffering
is simulated, p = 0. If FIFO buffering is simulated, then
the p = 5 most recent sensed values at that node are placed
leaving the l − p earlier entries vacant. If the sub-sampling
behavior is simulated, the p values are spread across the l
vacancies as per the timestamps of those p remaining values.
The remaining l − p missing values will be re-estimated
using the same method as before (before the failed node had
recovered) but will use the p true values that were before
assumed missing.

C. Metrics

The metric used to evaluate the estimation methods is the
Root Mean Square Error (RMSE).

For the sake of presentation, any method with an average
RMSE greater than 10 for the Temperature dataset was consid-
ered unreasonable and removed from plotting to ensure results
from other methods could be easily compared.

VI. RESULTS

The analysis of the estimation methods was done over 3
parameters; namely, the time step/slots, the probability that a
node will recover in the next interval if currently in the failed
state, and the data recovery sampling method and amount.

Initial testing was done to determine the values of the
controlled parameters which include the failure probability,
P[fail], the length of the time series for TCA-MR, SCA, and
NSE methods (h), and the start and end times of our datasets.

For the controlled failure probability, it was important that
the value was large enough that there were enough failure
sequences to give meaningful errors, but also not too large
such that the number of overlaps of node failures were not
too frequent, resulting in estimations largely influencing other
estimations. It was determined that P[fail] = 10−4 and
P[rec] = 10−2 was sufficient in meeting these demands for
time intervals of 600 seconds, and it formed a baseline for
all comparisons. When sub-sampling was used, a total of five
values could be stored at each node.

The length of the time series for estimating using the TCA-
MR, SCA, and NSE methods determined how many intervals
prior to the missing data value were used to perform the
estimation. This is represented as the h value in the description
of the methods. After some testing, using the value of 100 (and
using a value of 10 for the l parameter in TCA-MR) fit within
these constraints. It should be noted that, under different time
intervals, h and l should ideally be calibrated.

The data set used was not complete during the entire lifetime
of the data collection process, some work was carried out
to determine a region of data where there were at least h
continuous and complete data points, followed by a large
number of data that contained no more than 30 minutes
of consecutive failures of all nodes, ending with at least 2
consecutive time intervals with complete data for all nodes. We
ended up using the data collected from 3:20AM May 25, 2016



Fig. 1. Method comparison under different time
steps/slots.

Fig. 2. Method comparison under different re-
covery probabilities (P[rec]).

Fig. 3. Method comparison when (i) no data
was recovered, (ii) only the most recent five data
points were recovered (FIFO), and (iii) where
five points were recovered and spaced using sub-
sampling.

until 10:02AM August 17, 2016. At a 60 second granularity,
it is 121362 minutes of data from each of the 11 nodes. Of
the total 1334982 data values, just 14110 (∼ 1%) are missing
due to gaps in the data set.

A. Time Step/Slot

In order to only change the time steps/slots, leaving the
average duration of the failure intervals the same, the failure
and recovery probabilities are scaled by the same factor as the
time steps. This means that at a time step of 60 seconds, the
failure probability and recovery probability would be 10−5 and
10−3 respectively. But if the time step is increased 10-fold to
600 seconds, the new probabilities would be 10−4 and 10−2

respectively. For hour granularity or 3600 seconds, the fail and
recovery probability are then 6 · 10−4 and 6 · 10−2.

The results of changing the time interval between subse-
quent data values can be seen in Figure 1. This shows that
the only significant effect on any method is the decrease
in error by the Cubic Interpolation method and the increase
in the TCA-MR method’s error. The decrease in the Cubic
interpolation error could be attributed to the decrease in the
lengths of the failure duration, while the increase in the TCA-
MR could be a result of the more intense fluctuations in the
previous h data points, resulting in a poorly fit linear equation.
The static nature of the other methods is likely caused by the
use of the recovered data which will be verified in the latter
sections.

B. Recovery Probability

As seen in Figure 2, when the failure duration increases
due to the decrease in recovery probability, TCA-MR is the
first to deteriorate beyond a reasonable error, then SCA.
Cubic interpolation can have relatively poor errors at recovery
probabilities of 0.0025 and below. LIN errors remain low due
to the five buffered, recovered, values which ensure that values
do not deviate too far from the data trend. NSE also remains
consistent, but with larger errors than LIN.

C. Node Recovery Amount and Method

Figure 3 shows the resulting error when the time interval is
600 seconds, P[fail] = 10−4 and P[rec] = 10−2. The first set
of bars correspond to typical assumptions that nodes cannot
store any data. The second set of points show the errors when a
node is able to buffer five data points but only retains the most
recent ones (FIFO scheme). The third set of points utilizes data
sub-sampling of the five buffered data points, which appears
to result in an increase of the information gained.

It is evident that recovering only the most recent data points
results in no significant reduction in error. However, spreading
the data out using sub-sampling decreases the error in the LIN
method and cubic interpolation. This is because the additional
recovered information ensures the LIN and Cubic methods
follow the trend of the data more closely.

VII. DISCUSSION

Our results suggest that “simple is beautiful.” The LIN
method has the lowest errors across all parameter sets. The
strongest reason for this stems from the synergy of LIN and the
use of recovered data which decreases the error significantly
by guiding estimations to closely follow the true data trend.
This is achievable with a surprisingly small number (in our
simulations equal to five) of recovered, and possibly sub-
sampled, values.

LIN and NSE appear to have the most consistent errors
across all the time intervals and failure durations. Due to the
nature of these two methods, it is not possible for the values
to exceed the maximum and minimum values of the dataset
and therefore the possible estimation values, and therefore
errors, are bounded. Conversely, SCA, TCA-MR, and cubic
interpolation can be susceptible to fixating on short term trends
that may not accurately represent the broader trends in the
data. This can result in the values increasing beyond the
true range of the data and, with a node failure duration of
significant length, can result in massive errors.

For the case of cubic interpolation, if there was a brief
moment of large increase or decrease in the values before or
after the node failure, the errors over that failure run would



Fig. 4. Method comparison for recovery method with minimum rank in
context. Each point plotted corresponds to an outage – outages are enumerated,
circles are RMSE without buffering, diamonds (and star next to the number)
are RMSE with buffering and sub-sampling; color indicates the range of the
minimum rank.

likely be significantly high. Because cubic interpolation fits
precisely to 4 points (2 prior to failure and 2 post failure), it
is very sensitive to any slight deviations in their values, more
prominent in the case of large intervals. Using five recovered
data points helps by shortening a single interval into at most
four smaller sub–intervals, reducing the sensitivity.

A. A Low-Rank Approximation Perspective

Next, we provide evidence linking the potential for an
imputation technique to perform well based on whether, in
the interval just prior to an outage, the reconstructed signal
could be represented in a “sparse” form. We adopt a matrix
rank view to express sparsity. Specifically, we notice the link
between minimum matrix rank, and the RMSE. At the same
time we keep the duration of the outage interval in context,
because longer outages are expected to result in higher RMSE.
Results assuming no buffering at the node and with buffering
(and hence sub-sampling) at the nodes are shown.

We hypothesize that there exists a relation between the
information content just prior to an outage and the RMSE
of the imputation as applied to that outage’s values. For
an outage of length l between Tk and Tk+l, the infor-
mation content is operationalized by the minimum rank of
M = H(V(k−t)i, ..., V(k−2)i, V(k−1)i), where H is the Hankel
operator producing the matrix form from a time series of
length t (the values prior to the outage). The minimum rank
is obtained by using truncated singular value decomposition
(SVD) w.r.t. a certain reconstruction error e as an approach
for low-rank approximation. For M = USVT we look at
the singular values diag(S). A useful property of SVD is
that the singular values coincide with the error norm for all
possible low-rank approximations, Sk,k is equal to the norm
of difference between the approximating matrix M̂k with rank
k and the original data matrix M [17]. We minimize k subject
to

∑m
i=k+1 Si,i ≤ e

∑m
j=1 Sj,j , where m corresponds to the

number of rows in S and e is fixed. The approximating matrix
M̂k is obtained by simply setting all singular values Sk′,k′

with k′ > k to zero.
Figure 4 shows the imputation RMSE for several outages

under different conditions, each marker represents one outage.
The outages that are present in the figure were obtained by
simulations with the time interval of 600 seconds, the fail

probability of 0.0001 and the recovery probability of 0.02
based on the temperature dataset. For the sake of clarity
only outages with length between 50 and 75 are shown. The
low rank approximation is produced for t = 100 and with
e = 0.1%. The resulting minimum rank k values are color
coded depending on the range they belong to (“high” as blue,
“low” as orange – both ranges are of equal length). Note that
the minimum rank is independent of the imputation method.

In TCA-MR we clearly see a distinct low rank cluster and
a high rank cluster of markers. Outages with corresponding
lower minimum rank tend to have lower RMSE for the
estimation of missing values. In the cases of LIN and Cubic
methods we observe a similar distribution of the markers,
though it is less distinct. Another factor which comes into play
is the recovery method, sub-sampling versus no buffering. As
shown in Figure 3, LIN and Cubic benefit a lot from sub-
sampling, in contrast to TCA-MR which is hardly affected
by a change of the recovery method as circles and diamond
markers of the same outage coincide almost always. A closer
look at the subplot for LIN reveals that the overlap of the lower
rank cluster and the higher rank cluster is actually smaller
within the markers for a specific recovery method. This is
an interesting property to exhibit, because even though LIN
is using only one value prior to the first missing value of an
outage interval and the next (first after the outage interval) non-
missing value, the resulting RMSE still appears influenced by
the prior (pre-outage) minimum rank. The minimum rank is
an indicator for the level of difficulty in estimating missing
values independent of the chosen methods, at least for outage
intervals of comparable length to the “window“ of time t over
which the low rank is determined.

VIII. CONCLUSION & FUTURE WORK

Wireless sensors can be unreliable due to many causes
such as damage, tampering, etc. [1]. It is therefore imperative
to have some form of data recovery to maintain real-time
or retrospective analysis and actuation, while ensuring the
correct and uninhibited operation of applications [2]. We
evaluated a small collection of existing, simple, methods under
a Markovian failure model, allowing the probabilities of the
node outage and between-outage times to be controlled.

This research was conducted based on an assumption that
nodes can store a small amount of data when unable to transmit
to the sink node. The data recovery was used to re-estimate
past predictions to reduce the error from previous estimations.
A simple sub-sampling algorithm in limited storage was
considered which uniformly spaces recovered data during an
outage, resulting in improved imputation.

Although this study showed that, in most cases, LIN is a
good choice, as long as we are dealing with short outages and
sub-sampling based recovery, future work will examine more
data sets as well as ways to simultaneously exploit the sparse
representation of the sensed data, together with local decisions
at each node as to which samples to retain and which ones to
drop, beyond simple sub-sampling.
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