
Energy Efficient Scheduling for Networked IoT
Device Software Update

Ngoc Hai Bui, Chuan Pham, Kim Khoa Nguyen, Mohamed Cheriet
Synchromedia - École de Technologie Supérieure, University of Québec, Canada

Email: {ngoc-hai.bui.1, chuan.pham.1}@ens.etsmtl.ca, {kim-khoa.nguyen, mohamed.cheriet}@etsmtl.ca

Abstract—Software in IoT devices needs to be improved
regularly to adapt security issues and new user requirements.
In advanced IoT networks, devices employ the component-based
software architecture in which components can be updated
at run-time, such devices can download software components
from neighbors, enabling fast distribution of updates in the
entire network. One of the most energy consuming operations
in the update process is flash re-writing in which the order
of re-writing components into the flash memory is decisive for
energy consumption. In this paper, we propose a mechanism
that schedules updates in an entire IoT network to minimize
the energy consumption, while satisfying the deadline constraint
for updating all the devices. We mathematically formulate the
problem of energy efficient update scheduling as an optimization
problem with a novel energy model of the update process, then
propose an algorithm to approximate the optimal schedule for
updating all devices in the network. We examine the proposed
algorithm in three different network instances including a tree,
a partial mesh and a full mesh topology. Simulation results
illustrate that our algorithm can obtain a near optimum which
is, in the best case, only 3.2% different from the minimum.

Index Terms—energy efficiency, software update, IoT device,
component-based IoT software.

I. INTRODUCTION

The scale of the Internet of Things brings many challenges
to deployment and management. In order to adapt incremental
user requirements of IoT applications, software in IoT devices
needs to be changed regularly to improve functionalities.
Software update must become an crucial task to maintain
effective performance of IoT systems [1].

Research on software update for IoT/wireless sensor net-
works can be categorized into three main topics: Data dis-
semination, data minimization, and execution environment [2].
Data dissemination protocols [3] focus on the ways to deliver
software updates in the network, to minimize communication
costs. On the other hand, data minimization [4] focuses on
reducing the size of updates, and has a direct impact on the
energy used for communication and processing. Therefore, it
not only helps extend sensor network lifetime but also de-
creases updating time. In addition, the execution environment,
such as virtual machine [5], image-based and component-
based [6], also has a significant impact on how the software in
an IoT device can be updated. Recently, the common execution
environment in advanced IoT devices is component-based,
such as Contiki, SOS [7], in which software is divided into
small modules, so-called components, which can be separately
updated at run-time. In such environment, only portions of the

whole software need to be replaced through the update process,
enable to reduce the amount of data needed to deliver.

Inside a device, software components are placed in an order
in the flash memory as shown in Fig. 1a. Each component
occupies several memory pages, when a component is updated
(assume its size changes), its memory pages have to be re-
written completely and all the components laid next to it in the
flash need to be shifted to other addresses [8]. Therefore, all
these components also have to be re-written. In this situation,
different component update orders can result in different
numbers of re-written pages. In addition, in component-based
software systems, some components may call the others during
their operation [9]. This dependency leads to an update order
constraint, in which a component can only be replaced when
all components it depends on had been updated. Otherwise, an
inconsistency error would be obtained. Because a large amount
of energy is consumed for flash re-writing[10], defining an
optimal update order is significant for decreasing energy
consumption in device software update operation. Some work
[11] also mentioned the update order constraint, however, this
constraint and its impact on energy have not been considered
carefully in previous studies.

Existing work on component-based software for IoT devices
often focuses on the ways a component is updated [9],
[12], [13], and do not consider thoroughly how updates are
distributed, especially when multiple updates are required at
the same time. In this paper, we consider an IoT network
consisting of component-based IoT devices with the same
software connected to a gateway, and a set of components
needs to be updated to all devices from the gateway. We
propose a mechanism that schedules updates on all devices
to minimize the energy consumption, taking into account the
component dependencies and the deadline constraint for up-
dating the entire network. A schedule specifies two decisions:
First, where a component can be downloaded for each device;
second, when it can be downloaded.

II. SYSTEM DESCRIPTION

A. IoT sofware components

We consider the case in which a gateway downloads soft-
ware updates from the cloud, and then send to a number of
devices of the same type. A device does not have to update
all new components at the same time, but one by one. Since
components may call others, their dependency causes the order
constraints that need to be satisfied by the update schedule.

978-3-903176-24-9 c© 2019 IFIP

Fig. 1. Software components in flash memory of an IoT device and the
corresponding component constraint graph.

The software component constraint is denoted by a directed
graph D =< VD, AD > with component set VD and arc set
AD presenting component constraints. D can be represented
by a matrix MD = {cm,n} where each binary entry cm,n
(m,n ∈ VD) with value 1 denotes an arc (m,n) ∈ AD, means
that a component m is called by component n. An example
of such a graph is presented in Fig. 1b.

Each component occupies a number of memory pages,
which is the smallest unit that can be erased and re-written.
The modification of any byte in a page will result in the entire
page needs to be re-written. Consider a set of components
a, b, c and d that are located in the flash as shown in Fig. 1a.
When c is updated, suppose that the new size of c increases
compared to the previous size (c′ is bigger than c), then all the
components lie after c in the memory will have to be shifted
to higher addresses. Thus, even if a is not in the update list,
it will be moved to a new location. There is a call from d to
a, the address of this call instruction needs to be altered and
the corresponding page - the page number 4 in Fig. 1a has to
be re-written.

B. System model

We focus on a model of an IoT network including a
number of connected IoT devices and a gateway. Both the
gateway and devices are considered as “nodes” in a graph
G =< VG, EG >, with VG is the set of vertices and EG
is the set of edges representing nodes and links, respectively.
Let VG = {i| i = 0, 1, . . . |VG|}, in which i = 0 represents
the gateway, and IoT devices are corresponding to i > 0.
We denote G by a symmetric matrix MG = {bi,j} where
each entry bi,j presents the bandwidth of the link between
two nodes i and j.

A device receives components from both the gateway and
other devices. It can download from or send to multiple
nodes at the same time, but can only download at most one
component from one corresponding node at a time. A device
can only send a component to other devices after it completes
downloading this component. The amount of time to perform
update in the entire network is limited by a deadline Tmax.

III. PROBLEM FORMULATION

A. Energy consumption model

We define two set of decision variables used in our optimiza-
tion model. Let ai,j,m be a binary variable that equals to 1 if
device i downloads component m from gateway/device j, and
let xi,m be the start time device i downloads component m.
The update schedule of each device i is characterized by the
sets {ai,j,m} and {xi,m}. We denote the sizes of a component
m ∈ VD before and after updating by soldm and snewm . The
duration of device i to completely download component m
can be calculated as follows:

ti,m =


0, i = 0,

snewm∑
j∈VG

ai,j,mbi,j
, i > 0. (1)

The amount of energy consumed when a device i updates a
component m can be calculated by multiplying the energy for
writing one flash page with the number of re-written pages:

Ei,m = e×snewm

ρ
+ λm

 ∑
h∈α(m)

size(h)

ρ
+

∑
h∈α(m)

∑
k∈β(m)

ch,k

 ,

(2)

where e is the energy consumption for writing one page, ρ is
the size of one page, λm is a binary indicator that equals to 1
if snewm 6= soldm , because if m does not change its size (snewm =
soldm), we do not need to shift the following components. α(m)
is the set of components lie after m and β(m) = VD\(α(m)∪
m) is the set of components lie before m in the flash memory.
The binary indicator ch,k ∈MD equals to 1 if the arc (h, k) ∈
AD, means that k depends on (calls) h; in this case, when
shifting h to new address, we need to re-write the (one) page
in k that contains the instruction calling h. And size(h) is the
size of component h at the moment updating m, i.e., size(h)
is snewh if h is updated before m, otherwise size(h) is soldh :

size(h) = snewh δh,m + soldh (1− δh,m), (3)

where the variable δh,m indicates that h is updated before m
or not:

δh,m =

{
1 xi,h + ti,h < xi,m + ti,m,

0 xi,h + ti,h ≥ xi,m + ti,m.
(4)

We can see that the quantity
∑

h∈α(m)

∑
k∈β(m)

ch,k in equation

(2) is constant and does not depend on the update order, so
this quantity can be skipped without affecting our scheduling
solutions. Also, with the assumption that component sizes
always change, means that snewm 6= soldm ,∀m ∈ VD, so λm
is always 1, then we can have the simplified form of Ei,m as:

Ēi,m =
e

ρ

snewm +
∑

h∈α(m)

(
snewh δh,m + soldh (1− δh,m)

) .

(5)

The value of Ēi,m depends on each component h ∈ α(m) is
updated before or after updating m.

The energy Ei consumed when device i updates all new
components is:

Ei =
∑
m∈VD

Ēi,m. (6)

In Eq. 6, Ei is a function of {ai,j,m} and {xi,m}.

B. Optimization model

The optimization model for our scheduling problem is
formulated as:

min

|VG|∑
i=1

Ei. (7)

Subject to:

xi,m ≥ 0, ∀i ∈ VG, i > 0,m ∈ VD. (8)

x0,m = 0, ∀m ∈ VD. (9)

∑
j∈VG

ai,j,m = 1, ∀i ∈ VG, i > 0,m ∈ VD. (10)

ai,j,m ≤ φ(bi,j), ∀i, j ∈ VG, i > 0,m ∈ VD. (11)

ai,j,m(xi,m − xj,m − tj,m) ≥ 0, ∀i, j ∈ VG, i > 0,m ∈ VD.
(12)

ai,j,mai,j,n(xi,m − xi,n − ti,n)(xi,n − xi,m − ti,m) ≤ 0,

∀i, j ∈ VG,m 6= n ∈ VD.
(13)

cm,n(xi,n − xi,m − ti,m) ≥ 0, ∀i ∈ VG,m, n ∈ VD. (14)

xi,m + ti,m ≤ Tmax, ∀i ∈ VG,m ∈ VD. (15)

In our model, constraint (9) states that the gateway does not
download from any source. Condition (10) indicates that a
device only downloads a component m from one other node.
Constraint (11) is the network topology constraint, a device i
can download from device/gateway j only if there is a link
(i, j); where φ(bi,j) = 1 if bi,j > 0, means that link (i, j)
exists, otherwise φ(bi,j) = 0 if bi,j = 0. Constraint (12) means
that a device j can only send a component to a device i after it
finishes downloading this component, with tj,m is calculated
by formula (1). Constraint (13) states that a device can only
download one component from each other node at a time.
Constraint (14) indicates the download order of each device
needs to satisfy the component constraint graph. And finally,
condition (15) is the deadline constraint Tmax.

Algorithm 1: P1 - Generate a schedule

1 repeat
2 Each step, do
3 for each device i do
4 Construct the bipartite graph Bi;
5 Do Matching the bipartie graph Bi;
6 With {m} is the set of downloadable

components given by Matching, set each
xi,m is the finishing time of the previous step,
then adjust {xi,m} so that {xi,m + ti,m} has
the order as in the flash;

7 end
8 Calculate the finishing time of this step;
9 until all nodes complete downloading all components;

Algorithm 2: ESUS Algorithm

1 for t from 1 to N do
2 Generate schedule St by P1;
3 if St does not satisfy Tmax then
4 Adjust St by P2;
5 end
6 if St still does not satisfy Tmax then
7 Start new iteration t+ 1;
8 end
9 else

10 if St is better than current best solution then
11 Update the best solution is St;
12 end
13 end
14 end

IV. PROPOSED ALGORITHM

We propose an algorithm called ESUS, it employs pro-
cedure P1 to generate an energy efficient schedule without
considering the deadline constraint Tmax. The outline of P1 is
described in Algorithm 1, this procedure divides the schedule
into steps. At each step, each device i maintains a list of
downloadable components and a list of possible sources,
that can be represented as a bipartite graph Bi. P1 finds a
matching of Bi with the purpose to maximize the number of
downloadable components. After that, P1 calculates xi,m for
each downloadable component m so that the order of complete
time (that is xi,m + ti,m) is same as the order of components
in the flash, that helps reduce the number of re-written pages.

In case Tmax is not satisfied by the initial schedule given by
P1, ESUS uses procedure P2 to properly adjust the schedule to
reduce the update time. P2 analyzes and shifts the download
time to the earliest as possible. It sequentially performs on
each component m. For each device i downloads m, it checks
if xi,m can be shifted to an earlier one, that is, if the source
of i has m sooner than xi,m, and if i has all the necessary
components called by m before xi,m. Then it changes xi,m
to the earliest as possible. P2 iterates the components in a

5 6 7 8 9
0

25

50

75

100

125

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

Number of components

 Optimal
 ESUS
 Random Schedule

Fig. 2. Energy consumption with different component sets in the tree topology
with 10 nodes.

topological order, it means that when examining a component
m, all the components that m depends on are already adjusted.
The outline of ESUS is presented in Algorithm 2.

V. SIMULATION RESULTS

In our simulation, we examine the proposed scheduling
algorithm in different network instances. To evaluate results
of ESUS, we use the CPLEX solver to find optimal schedules
of the optimization problem. Besides that, we also employ
CPLEX to find a random feasible schedule for each network
instance, that is a schedule satisfied all the constraints but does
not minimize the energy objective function. We calculate the
energy consumption of those random schedules and compare
to results of ESUS algorithm and optimal solutions.

A. Settings
Network settings. We define two typical topologies of IoT

networks, that are tree and full mesh. For simplicity, we set
the bandwidth of every connection between a device and
the gateway by bg = 4 KB/s, and the bandwidth of each
connection between two devices is set by bd = 8 KB/s.

Optimization settings. For each component set, every soldm
is set to the same fixed size, the corresponding snewm is set by
a multiplication of soldm and a random number, and a constraint
graph D is also randomly created. The deadline Tmax is set
to 100 seconds, the number of iteration N in ESUS algorithm
is set to 20 and the page size ρ is set to 4 KB.

B. Tree topology
In the first scenario, we examine the network of ten nodes in

which device connections form a tree rooted at the gateway.
Fig. 2 shows the results corresponding to different software
component sets. We can observe that results of ESUS are
close to the minimal solutions given by CPLEX, with 12.8%
difference on average and the closest is 4.1% different. We
can also see that ESUS’s results are better than the random
schedules in most cases.

C. Full mesh topology
In the second scenario, we evaluate a mesh topology in

which all devices can connect to each other as well as connect
to the gateway, so the graph G presenting the network is a
complete graph.

5 6 7 8 9
0

25

50

75

100

125

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

Number of components

 Optimal
 ESUS
 Random Schedule

Fig. 3. Energy consumption with different component sets in the full mesh
topology with 10 nodes.

5 10 15 20 25 30 35
50

100

150

200

250

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

Number of nodes

 Optimal
 ESUS
 Random Schedule

Fig. 4. Energy consumption with different number of nodes in the full mesh
topology.

1) Evaluation of different software component sets: Fig. 3
shows the results on a network instance of ten nodes with
the same software component sets as in the first scenario. We
remark that the optimal results are still unchanged, and the
results of ESUS are almost the same as in the second scenario,
with 7.1% difference on average and the closest is only 3.2%
different. Fig. 3 also shows that ESUS outperforms the random
schedules, with up to 30.8 % re-written pages saved.

2) Evaluation of different number of nodes: In another sub-
scenario, we fix the component set and examine the results
with full mesh networks of different numbers of nodes. As
shown in Fig. 4, ESUS can approximate the optimal solutions
in all cases, and its results are better than random schedules
in most cases.

VI. CONCLUSION

In this paper, we have introduced the problem of energy
efficient software update scheduling in IoT networks. We built
a novel energy model for the update process and formulated
the problem as an optimization problem. We then proposed
ESUS algorithm to find a near-optimal solution. Simulation
results showed that our algorithm can effectively approximate
the optimal solution given by CPLEX solver. In the future,
we will extend our work by considering different application
demands, other kinds software execution environment such as
virtual machine or image based will also be taken into account.

REFERENCES

[1] A. Al-Fuqaha et al., “Internet of things: A survey on enabling tech-
nologies, protocols, and applications,” IEEE Commun. surveys & Tuts,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] S. Brown and C. Sreenan, “Software updating in wireless sensor net-
works: A survey and lacunae,” Journal of Sensor and Actuator Networks,
vol. 2, no. 4, pp. 717–760, 2013.

[3] C. Dong and F. Yu, “An efficient network reprogramming protocol for
wireless sensor networks,” Computer Communications, vol. 55, pp. 41–
50, 2015.

[4] W. Dong et al., “R3: Optimizing relocatable code for efficient repro-
gramming in networked embedded systems,” in 2013 Proceedings IEEE
INFOCOM, pp. 315–319.

[5] M. Kovatsch et al., “Actinium: A restful runtime container for scriptable
internet of things applications,” in 2012 3rd IEEE iThings, pp. 135–142.

[6] A. Taherkordi et al., “Optimizing sensor network reprogramming via in
situ reconfigurable components,” ACM TOSN, vol. 9, no. 2, p. 14, 2013.

[7] O. Hahm et al., “Operating systems for low-end devices in the internet
of things: a survey,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
720–734, 2016.

[8] W. Dong et al., “Optimizing relocatable code for efficient software
update in networked embedded systems,” ACM TOSN, vol. 11, no. 2,
p. 22, 2015.

[9] P. Ruckebusch et al., “Gitar: Generic extension for internet-of-things
architectures enabling dynamic updates of network and application
modules,” Ad Hoc Networks, vol. 36, pp. 127–151, 2016.

[10] R. K. Panta et al., “Efficient incremental code update for sensor
networks,” ACM TOSN, vol. 7, no. 4, p. 30, 2011.

[11] W. Dong et al., “Enabling efficient reprogramming through reduction of
executable modules in networked embedded systems,” Ad Hoc Networks,
vol. 11, no. 1, pp. 473–489, 2013.

[12] W. Munawar et al., “Dynamic tinyos: Modular and transparent incre-
mental code-updates for sensor networks,” in 2010 IEEE ICC, pp. 1–6.

[13] M. Amjad et al., “Tinyos-new trends, comparative views, and supported
sensing applications: A review,” IEEE Sensors Journal, vol. 16, no. 9,
pp. 2865–2889, 2016.

