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Abstract—In recent years, fog computing has increasingly
become popular with the advent of Internet of Things (IoT)
applications characterized by strict Quality of Service (QoS)
requirements. To deploy applications, applications are typically
decomposed into services then embedded with fog nodes.
However, an overlooked aspect in container placement strategies
is the heterogeneous inter-container network communication
technologies and their impact on application performances in
fog networks. We propose and evaluate in this paper, a near
optimal genetic algorithm based container placement strategy
that takes into account Remote Direct Memory Access as well
host and overlay mode for inter-container communication to
ensure application response time requirements.
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I. INTRODUCTION

Recent years has seen an increasing prevalence of
applications with stringent latency (e.g under 10ms)
requirements in order to properly operate. As such,
deployment and execution over cloud is unsuitable as
latency worsens from the overhead induced by inter-cloud
communications. Fog computing is an emerging paradigm,
introduced to tackle these challenges by extending the
processing, storage and networking capabilities to the network
edge. By enabling processing near end-user locations, low
latency can be achieved [1].

A technique to provision network applications consist of
decomposing applications into chained micro-service which
are then deployed across the network. However, given
applications’ low-latency requirements and in the context of
fog computing, heavy virtualization overhead combined with
high virtual machines (VM) startup times are major concerns.
Moreover, as fog nodes typically have less capacity (in terms
of processing, storage, communication, etc.) compared to
cloud nodes, the number of virtual machines that can be
deployed is limited. Increasingly, containerization is being
advocated especially for fog computing. It operates on the
premise of making virtual instances share the kernel of an
operating system while retaining only relevant libraries, drivers
and binaries for a given application, thereby reducing the
resources needed during the computational process.

A critical task to minimize costs and ensure satisfaction
of end-users’ Quality of Service (QoS) requirements namely
response time and isolation consist of optimally placing
containers within heterogeneous fog nodes (i.e, CPU, storage,
communication fabric, etc.). However, key challenges must
however be addressed.

First, an overlooked aspect is the inter-container network
communication technology which has been shown to have
significant impact on application performance [2], particularly
when container migration is considered. Containers can
communicate mainly through three modes: (1) Host mode, (2)
Overlay mode and more recently (3) Remote Direct Memory
Access (RDMA) [3]. In summary, in host mode, containers are
binded within their host’s network namespace. In that, all of
the network interfaces defined on the host are accessible to the
container thereby allowing near bare metal performance and
avoid the use of NAT [2]. Overlay mode (e.g, Weave, Flannel,
Calico, etc.) uses networking tunnels to allow communication
across hosts, thus enabling containers to operate as though
in an intra-host network. Each host runs a software router
which connects all containers on the host. It is also referred
as bridge mode as the hosts are connected to each other
through a bridge. RDMA tackles the data transfer overhead
which constitutes one of the major factors to network latency.
It reduces network latency and host’s CPU utilization by
allowing access to data from the memory of a host to another
without any OS involvement. As kernel related overhead is
reduced, an increase in throughput is typically observed. This
is confirmed in our experimental evaluations.

Another important aspect to consider relates to isolation
requirements for the sake of system stability and security,
especially given that end-user devices are sometimes used as
fog nodes. Because containers share a single underlying OS, it
is more challenging to provide isolation in a container-based
system. Containers mainly rely on the use of namespace
and cgroups to provide isolation, which enables several
services to be run in isolation on different containers on the
same host. Unfortunately, documented inefficiencies within
the kernel have shown notable detrimental impact on shared
container performances [4]. Each inter-container network
communication technology has a varying level of isolation
benefits with overlay and host mode providing respectively
the most and least isolation. There is however a performance
trade-off [5]. These considerations significantly influence the
container placement strategy.

Although they share some similarities in term of research
issues, container placement problems for cloud networks
and fog networks are distinct by the fact that fog nodes
are more volatile, less reliable and less capable than cloud
nodes. These considerations have significant impact on service
placement. Very few works have tackled problems related to
container placement in fog computing, among them [6] where
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a service placement policy is proposed, leveraging a two-phase
partition based algorithm with the objective to increase service
availability and QoS satisfaction rate. To our knowledge,
[7] is the only work investigating communication aspects
between containers in the context of container placement
in large scale data centers. Also, none of the existed work
have considered, in the context of fog computing networks,
heterogeneous inter-container network communication fabric
and their impacts on the satisfaction of stringent application
performance and isolation requirements. Thus, we propose
in this paper an efficient container placement heuristic
derived from Genetic algorithm (GA) that aims to minimize
response time while taking into account fog node and
inter-container network communication fabric heterogeneity as
well as isolation requirements for applications deployed on fog
computing networks.

The remainder of this paper is organized as follows. Section
II describes our system model. In Section III, we provide
an Integer Linear Programming formulation of the container
placement problem in fog computing networks. We then detail
our proposed heuristics in section IV to solve the previously
described problem. Finally, we present our simulation results
in Section V before concluding in Section VI.

Fig. 1: Fog computing architecture

II. SYSTEM MODEL

We present in this section, our system model depicted in
Fig. 1, based on the hierarchical three-layer fog architecture.
It is composed of: (1) a device layer which consists of different
IoT devices, (2) a fog layer located at the edge of the network
consisting of a considerable collection of fog nodes able
to compute, transmit and store data, and (3) a cloud layer
consisting of multiple high-performance servers and storage
devices. Our container placement process is shown in Fig. 2,
centered around a fog service controller residing between the
fog layer and cloud layer. Its role consist of managing and

controlling fog resources within a predetermined geographic
area.

Fig. 2: Fog Service Controller

We consider a scenario where an application is decomposed
into a set of chained containerized micro-services, to be
deployed within the fog layer. The fog service controller has
two components: a request scheduler and a resource manager.
The request scheduler redirects incoming requests either to the
cloud or fog layer, depending on whether or not the required
application QoS requirements can be satisfied based on a
predefined threshold. When feasible, the resource manager
determines and effectively allocates the required containers
to fog nodes in the fog layer. Furthermore, as fog nodes
may be heterogeneous in terms of communication protocols
supported depending on its physical network interface, the
chaining of containerized micro-services also requires various
inter-container network communication fabric (e.g RDMA,
overlay, etc.) to be taken into account given its potential impact
on application performance and isolation requirements [2, 5].
Hence, RDMA-based technology could be available for certain
high capacity nodes (in terms of RAM, CPU, PCIe resources,
etc.) such as base stations, high-end routers or workstations in
contrast to host-based and overlay-based being accessible to
lower capacity nodes (access points, mid-range PC, etc.).

Our objective in this paper consist of finding optimal
locations to deploy containerized micro-services within the
fog layer where heterogeneous fog nodes (capacity-wise) and
inter-container network communication fabric varieties are
considered and such that delay and isolation requirements are
ensured.

III. PROBLEM FORMULATION
In this section, we formulate the problem of container

placement and service chaining in fog computing environment
as an ILP optimization problem.

Let U be the set of all participating end users/IoT device
connected to the fog system. Let S be set of services for which
container placement in the fog is required. Let C denote the
set of containers to be deployed on the fog nodes. We assume
the fog network to be composed by a set F of fog nodes. Each
fog node is characterized by its capacities in terms of CPU P ,
RAM M and storage L.

Our model considers a full mesh network topology for the
fog layer, for simplicity purposes. However, note that it could
be trivially extended to take into account a routing layer.



For simplicity, assume a container to host a single service.
Hence, consider sk,i ∈ Sk, a given service i composing an
application Ak, deployed within a container i. Let Xfj

sk,i =
{0, 1} denote whether a service i of an application Ak hosted
by a container i is placed on a fog node fj . Let |Ak| denotes
the number of services composing the application Ak.

We summarize the container placement problem in a fog
computing environment as follows :

min RAk
, ∀ Ak ∈ A (1)

F∑
fj

Ak∑
sk,i

Xfj
sk,i

= |Ak|, ∀Ak ∈ A (2)

Ak∑
sk,i

Cαsk,i
·Xfj

sk,i
≤ Rαfj , α = {P,M,L}, ∀fj ∈ F (3)

RAk
≤ DAk

, ∀Ak ∈ A (4)

The objective function (1) aims to minimize the response
time for each application in our application set A while
ensuring the QoS requirements in terms of delay threshold
abiding by the capacity and communications constraints are
guaranteed.

In (2), we ensure that all services composing a given
application are placed within the fog network. Through
constraint (3), we make sure capacity (CPU, RAM and
storage) limitation constraints are respected for corresponding
fog resources.

We capture through (4), the fact that service placement must
be done such that the resulting response time do not violate
the predefined application deadline DAk

with RAk
denoting

the application response calculated by equation (5).

RAk
= Dt

Ak
+MAk

+ dAk
, ∀Ak ∈ A (5)

Dt
Ak

denotes the required deployment time, MAk
represents

the application makespan duration required for services to be
executed on fog computing nodes and dAk

, further detailed
below, denotes the communication delay dependent both of
container placement and the corresponding inter-container
network communication mechanism used between containers.

dAk
= 2 ·

F∑
j=1

d(Uk, X
fj
sk,1

) +

n−1∑
i=1

F∑
j=1

F∑
j′=1

d(Xfj
sk,i

, X
fj′
sk,i+1)

+ d(Xfj
sk,n

, X
fj′
sk,1), (6)

d(Xfj
sk,i

, X
fj′
sk,i+1) =

dfj ,fj′ ifXfj
sk,i = 1 andX

fj′
sk,i+1 = 1

dfj ,fj ifXfj
sk,i = 1 andXfj

sk,i+1 = 1

The application communication delay dAk
includes the delay

between the end-user and the fog node on which the container
hosting the first service of the service chain is placed, the delay
between subsequent containers, the delay between the last
container to the first container and finally the delay between
the first container back to the end-user. Further note that

the intra-node delay as well as the inter-node communication
delay are also considered in addition to the delay induced by
different inter-container communications mechanisms.

IV. HEURISTICS

The problem described above is NP-hard to solve as it
generalizes the bin-packing problem with variable bin sizes
and prices. Furthermore, the service placement problem has
been specifically shown to be NP hard [8, 9]. Hence, calling
for an efficient heuristic.

A. Greedy Algorithm

We first propose a greedy algorithm for the problem
described above. Our greedy strategy consists of searching
and placing the first container in fog nodes near the end-users
while keeping in mind of the constraints (2), (3) and (4). We
subsequently conduct an exhaustive search to identify the most
suitable fog nodes for the remaining containers with regards
to the objective function defined in equation (1) until every
container is placed. Details of our greedy algorithm are given
in Algorithm 1.

B. Genetic Algorithm

We present in this section the design of our hybrid
genetic algorithm (GA) shown in Algorithm 2. Typically, each
potential solution in GA is considered as an individual and
represented by a chromosome, which in turn consists of genes
encoding specific characteristics of the individual. In our work,
a chromosome corresponds to a container placement plan for
a given application. Each gene in a chromosome denotes a
certain placement of a container on a specific fog resource.

The first step of a GA is to derive an initial population from
which the evolution starts. The selection operator consist of
selecting individuals with the aim of creating offsprings for
the next generation. We adopt a tournament-based selection
mechanism [10] in which individuals (initially randomly
picked) compete based on their fitness. The fitness metric
measures for an individual, the potential to contribute to
the optimal solution. In this work, it is computed based
on the delay. The next step is the crossover operation in
which parent chromosomes are split at a crossover point
and re-combined to create new offsprings. Given here that
a chromosome constitutes a container placement plan, the
crossover operation enables sufficient exploration of other fog
nodes, thus avoiding local optima and induce convergence. Our
adopted strategy is the single-point crossover operation[11]. To
introduce randomness and further introduce diversity between
offsprings generated after crossover, a mutation operation
may occur, with a certain probability, on specific genes of
a chromosome. Afterwards, the new population is evaluated
with the objective of finding container placement schemes
that have optimal fitness value. The new population goes
through another iteration of selection, crossover, mutation, and
evaluation until no evolution occurs for a predefined number
of generations.



Algorithm 1: Greedy algorithm
Input: C, F , Delay matrix
Output: Mapping matrix ci, fj
Falloc ← ∅ ; Cdep ← ∅
for each ci ∈ C do

# the fog nodes are sorted in ascending order
for each fj ∈ F do

# verify that constraints (2), (3) and (4) are
respected

if fj can host ci then
Falloc ← Falloc ∪ {fj}
Cdep ← Cdep ∪ {ci}
C ← C \ {ci}

if Cdep 6= ∅ then
Update Placement with Placement(Cdep, Falloc)

return Placement(Cdep, Falloc)

V. EXPERIMENTAL RESULTS

A. Evaluation environment
In our simulations, we assume that the fog computing nodes

are within the same domain, thus under a single administrative
control. Furthermore, we also consider the fog nodes to be
static. We leave mobility and multi-domain/operator aspects
for future research. Also note that each end-user request is
processed according to their order of arrival.

The number of generations is set to 500 for our GA-based
container placement heuristic in addition of the population
size being set constantly at 100. As previously mentioned, the
selection mechanism used is the tournament selection strategy
with a size equal to 2. The crossover and mutation operation
rate is respectively set at 0.07 and 0.01. An optimal container
placement plan is selected after 500 generations.

We run our simulations using a physical machine running
Ubuntu 18.04, with Intel Xeon(R) E5 with 32 CPU cores,
2GHZ and 64GB of RAM.

In our evaluation, we consider a fog network with ten fog
nodes, the network topology is generated using BRITE [12],
we consider twenty different applications, each application
leveraging three services deployed on three containers.

For this work, in order to find optimal container placement
schemes to satisfy stringent application QoS requirements,
we compared the performances of three optimization
algorithms previously described : ILP implemented using the
CPLEX library [13] and also serving as the baseline for
our evaluations, greedy and finally a GA-based container
placement algorithm named CPGA. A summary of our
experimental parameters is shown in Tables I, II and III.

B. Results and Discussion
We mainly focus on investigating the impact of various

inter-container networking technologies with regards to
application performance and isolation requirements. More
specifically, we look at the following metrics to evaluate
the effectiveness of a container placement plan : (1) the

Algorithm 2: CPGA Container Placement based on
Genetic Algorithm
Input: C, F , Delay matrix
Output: Mapping matrix ci, fj
# Set of parameter:
# population size (pop size), number of generation

(gen num), tournament size (k), crossover probability
(pc), mutation probability (pm)

# Set of containers C, and set of fog nodes F are used
to generate the initial Population
POP ← population of pop size number of random

individuals
Best←∞
Iter ← 1
while terminating condition not true (Iter < gen num)
do

# Selection
P1 ← Tournament selection(POP )
P2 ← Tournament selection(POP )
# Crossover or mutation operator
R← random(0, 1)
if R < pc then

POP ′ ← Crossover(P1, P2)

if R < pm then
POP ′ ← Mutation(P1)

# update the population
POP ← POP ∪ POP ′
# evaluation
newBest← mini∈POP fitness(i)
if newBest < Best then

Best← newBest

Iter ← Iter + 1
return Best Individual

Scenario Number
of nodes
(RDMA)

Number
of nodes
(Overlay)

Number of
nodes (Host)

Scenario 1 4 4 2
Scenario 2 2 4 4
Scenario 3 0 5 5

TABLE I: Scenarios

achieved response time by the fog layer to an application
request for service; (2) the number of activated fog nodes
to measure resource usage as well as projected the energy
consumption; and finally algorithm execution time to indicate
scalability potential as the number of requests increases over
time. We simulated three scenarios, summarized in Table I
in which the available inter-container network communication
fabric is varied. We first investigated using ILP, the average
application response time for each simulated scenario with
regards to the number of request received by the fog service
controller, as shown in Fig.3. It can be clearly observed
that lower response time are achieved in scenarios with



Fog nodes CPU
(MIPS)

RAM
(MB)

DISK
(MB)

Node1 1000 1000 3000
Node2 500 250 500
Node3 2000 1500 4000
Node4 1000 1000 3000
Node5 1500 1000 2000
Node6 1000 1000 1000
Node7 500 500 1000
Node8 2000 2000 4000
Node9 1000 1000 2000
Node10 500 500 1000

TABLE II: Fog resources [14]

Services CPU (MIPS) RAM(MB) DISK(MB) MAk
(s)

Application A1: DA1
= 20 s, Dt

A1
= 15 s [15]

Container1 200 50 50 0.8
Container2 200 50 50 0.8
Container3 200 50 50 0.8

TABLE III: Application resource demands

greater number of RDMA-enabled fog nodes. The impact of
RDMA as an inter-container network communication fabric
is therefore evident in terms of network and application
performance improvement, although as a tradeoff, higher prior
capital expenditure to upgrade high-capacity fog nodes (given
compatible network interfaces are required) must be also be
considered. The performance gain can be explained from
RDMA’s ability to leverage zero-copy mechanisms with kernel
bypassing to reduce unnecessary CPU processing.

We also compared the performances of each container
placement algorithm (i.e ILP, greedy and CPGA) previously
described using scenario 2 as our simulation basis. Fig 4a
illustrates in log-scale axis the execution time of each tested
algorithm as the number of requests increases. Unsurprisingly,
ILP become more and more computationally complex as the
input variables increases with incoming application requests.
In contrast, Greedy and CPGA show more stable evolution
in terms of execution time indicating a potential suitability
for large scale fog environments. It can be noted that Greedy
exhibits the lowest execution time, explained by its relative
simplicity in its container placement search which focuses on
finding the nearest compatible fog nodes to deploy containers.
However, its limits are fully displayed in Fig. 4b where
we observed that the average response time achieved with
respect to the number of requests by Greedy are far greater
compared to CPGA and ILP. Hence highlighting the Greedy
algorithm’s inability to find near optimal container placement
strategy as the number of incoming requests escalates. In
contrast, CPGA reveals a better capability to discover and
deploy containers at near optimal locations within the fog
layer. In fact, we observe an average disparity of 10-15 ms
between CPGA and the optimal response time obtained by
ILP. We hypothesize that the crossover and mutation operators
leveraged by CPGA enables better exploration of the search
space, thus avoiding being stuck in local optima. It is worth
noting that CPGA’s execution time is also dependent of the
number of generations considered. The tradeoff then being
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that CPGA may not converge to optimal schemes with fewer
number of generations. To highlight this, we show in Fig. 4c
the average response time achieved by CPGA with respect to
the number of generations used. We note globally that CPGA
converges towards near-optimal container placement schemes
after 500 generations, thereby justifying why we set it to 500
generations for other simulations.

We further investigated the number of nodes used based on
the number requests received for each algorithm tested. The
results are shown in Fig. 4d where ILP seems to consume
the fewest amount of fog resources. Naturally, as Greedy
aggressively seek neighbour fog nodes for container placement
result in high resource consumption. Obviously, high resource
consumption has significant impacts, notably greater energy
consumption and operating expenditures. Note that all tested
algorithms converge to similar amount of nodes used as the
number of requests increases in the long term.

VI. CONCLUSION AND FUTURE WORK

We presented in this work, a GA-based container
placement strategy that takes into account heterogeneous
fog nodes in addition to various inter-container network
communication fabric. We investigated their impacts on
application performance through realistic scenarios using ILP,
greedy and CPGA approaches. Experimental evaluations has
shown our algorithm CPGA to outperform other approaches
tested. It has also highlighted the significant performance
benefits in terms of application response times introduced
by RDMA. By considering different inter-container network
communication fabric with varying level of isolation provided,
our container placement proposal also have accounted for
isolation requirements.

In our future work, we aim to implement a more realistic
scenario considering the mobility of fog nodes and to improve
the system model for resource provisioning in terms of
reliability and availability of services.
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