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Abstract—With edge computing, it is possible to offload com-
putationally intensive tasks to closer and more powerful servers,
passing through an edge network. This practice aims to reduce
both response time and energy consumption of data-intensive
applications, crucial constraints in mobile and IoT devices.
In challenged networked scenarios, such as those deployed by
first responders after a natural or human-made disaster, it is
particularly challenging to achieve high levels of throughput due
to scarce network conditions.

In this paper, we present an algorithm for traffic management
that takes advantage of a deep learning model to implement the
forwarding mechanism during task offloading in these challeng-
ing scenarios. In particular, our work explores if and when it is
worth using deep learning on a switch to route traffic generated
by microservices and offloading requests. Our approach differs
from classical ones in the design: we do not train centralized
routing decisions. Instead, we let each router learn how to adapt
to a lossy path without coordination, by merely using signals
from standard performance-unaware protocols such as OSPF.
Our results, obtained with a prototype and with simulations are
encouraging, and uncover a few surprising results.

I. INTRODUCTION

In recent years, an increasing number of IoT and mobile
devices became available, producing a massive amount of data,
and hence exacerbating network orchestration challenges, and
creating research and business opportunities. The majority of
these IoT devices do not have or cannot handle the computa-
tional requirements to process the data they capture. For this
reason, solutions that require outsourcing the responsibility to
perform all, or a part, of the computations to the edge cloud
are gaining popularity [1]-[5]. The process of transferring
or delegating computational tasks is called offloading [2] or
onloading [6]. Offloading or onloading operations are crucial
for mobile devices as they commence to lower response time,
lower processing time, and smaller device energy consump-
tion.

Computation offloading is strictly necessary for critical
scenarios, such as natural or human-made disasters [7], where
the physical network infrastructure is scarce or likely to
be temporarily unavailable. As latency requirements become
stringent, network alternatives are scarce, and data needs fast
delivery. In this or similar scenarios, responsive path man-
agement solutions to direct offloading requests, e.g., mobile-

The work of A.Gaballo was performed as visiting scholar in the Computer
Science Department at Saint Louis University, USA.

978-3-903176-24-9 (¢) 2019 IFIP

Guido Marchetto!

tPolitecnico di Torino, Italy

Flavio Esposito*

generated traffic steering, may become an essential application
requirement.

Traffic engineering solutions used in production today (e.g.,
OSPF, ECMP), are performance-unaware, that is, they react
only when losses or delay impact the cost assigned to a
path; we argue that those are hence unsuitable for unstable
or unreliable networks; moreover, in the presence of dynamic
traffic and network conditions, these solutions are known to
lead to sub-optimal performance [3], [5], [8]-[11]. To fill the
performance-unaware gap of many (edge) network decision
problems, the community has revived the decade old [12]
idea of Data-driven networking [4], [13]-[15]. Despite the
extensive use of machine learning to solve networking prob-
lems [16], e.g., traffic classification [17], latency predic-
tion [18] and video streaming bitrate optimization [19], most
of these approaches follow into two categories: either a model
is trained in a centralized fashion, as a Software-Defined Net-
work controller application [16], [20], or distributed machine
learning is used to train learning models faster [21]. While
traffic engineering solutions have been devised using deep
learning, see for example a chapter of this recent survey [16],
to the best of our knowledge, approaches that support deep
learning at every switch, and that provide performance-aware
forwarding decisions learning from performance-unaware pro-
tocols are still at their infancy. While it may be challenging
to apply our approach to wide-area or data center networks,
despite the recent advances in high-performance switches, we
believe that our approach can be ideal for the task offloading
problem during critical networked scenarios, such as those of
a data collection for situation awareness in disaster scenarios.
We test our algorithm for task offloading over MiniNeXT [22],
a network emulation environment based on container, and we
evaluate the performance tradeoff within several policies using
different network conditions. As a result of our study, we find
a few expected and a few surprising results. One surprising
result is that deep learning-based traffic offloading policies
may not always help improving network performance (when
each router runs a separate supervised learning model), so the
training overhead time may not be justified.

Another message from our study lies in the poorly [23]
explored use of our performance-agnostic traffic engineering
policies to generate performance-aware policies. We release
the code of our prototype [24] to allow the community
to exploit it and explore other (deep learning-based) traffic



offloading policies.

II. OFFLOADING PATH PREDICTION VIA DEEP LEARNING

Low-latency is a crucial aspect of task offloading systems,
especially when it comes to computationally expensive tasks.
Several studies exist on characterization of the slow path
in OpenFlow [25]; it was surprising to us, however, that
a neglected aspect in the edge computing literature [2] is
the latency minimization of the inter-process communication
among offloading servers and devices, while passing through
an edge network. To reduce such latency, we optimize the
end-to-end path between the communicating parties by trying
to predict not congested paths. In the rest of this section we
explore the use of deep learning techniques to achieve this
goal.

We exploit the congestion-agnostic limitation of traditional
routing algorithms when applied in this context. These al-
gorithms do not consider how rapid network load changes
may affect the data-intensive, latency-sensitive needs of edge
computing applications. Relying on higher level TCP-based
solutions for congestion and flow control, that by design are
(mostly) end-to-end, is insufficient. The path computed by
standard routing protocols is computed by taking into account
parameters such as the nominal interface speed.

The intuition behind our proposed solution is that collab-
orative traffic steering should be able to identify and avoid
congestion situations, without using TCP or other active queue
management approaches such as Explicit Congestion Notifi-
cation (ECN). By collaborative we mean requiring (a priori
or on demand) the participation of multiple network elements
in the routing decision process. The information used by our
protoype is the number of incoming packets on any given edge
switch or router (node). The idea is that the packet distribution
on the nodes reflects the network conditions. For example, a
high packet count on a router is an indicator of a big load that
is probably going to lead to packet loss and retransmission.
We also have to consider that the distribution of packets on
the routers is influenced by the routing algorithm: nodes that
appear in multiple paths will probably have a higher count
than less traversed nodes because they forward packets for
multiple source-destination pairs. If routers were able to see
all possible outcomes of a routing protocol in a network and
extract the consequent traffic patterns, they could try to choose
the less busy path.

Of course checking all possible outcomes is not scalable;
it is known, however, that deep learning models use pruning
search space strategies. We compare performance of multiple
deep learning models by emulating a small network with ten
routers, and using input given by the widely deployed routing
algorithm Open Shortest Path First (OSPF) for training the
deep learning component. We vary the network configurations
and record the traffic patterns. A posteriori, we use the
collected data and the routing choices taken by the routing
protocol to build a model capable of predicting each hop of the
path, from each source to each destination. With our approach,
we are correlating traffic patterns and routing decisions; this

correlation allows our system to dynamically adapt to the
network conditions, a behavior that would not occur with a
traditional routing algorithm.

The following section describes that steps we followed to
converge to the final deep learning model.

A. Data Generation Process

The majority of datasets available to the community refer to
traffic captured in datacenters, non-edge networks, or do not
contain details about the underlying topology or the logged
routing strategies. For these reasons, we created our own
novel dataset by means of a network emulation strategy that
considers all the elements we require to train our deep learning
system. This includes (i) the network topology, (ii) the routing
information, and (iii) the packet count on each node. The
final dataset consists of a collection of samples containing,
at any given time, the packet count together with the routing
decision that was made. During the data generation process,
the network is torn down and rebuilt with new link speeds,
so that the OSPF configurations are different. We generated a
dataset of 17,696 samples; we then used 85% of these samples
as a training set, and the remaining 15% was used as a test
set.
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Fig. 1: Model topology: R1-R6 are outer routers while R7-R10 are inner
routers. Each router runs a next-hop predictor based on LSTM.

B. Deep Learning Model

The deep learning model chosen for this work is a Long-
Short Term Memory (LSTM) Recurrent Neural Network, a
class of neural networks capable of using sequential informa-
tion and to exhibit a dynamic temporal behavior. We wanted
our model to learn the correlation between changes in the
packet distribution and routing decisions over time.

Given the computational complexity of standard routing
algorithms, training a single model to route all traffic becomes
quickly infeasible as the network between mobile user and
offloading server grows in size. To this aim, we trained a
separate deep learning model for every source-destination pair,
resulting in multiple simpler i.e., smaller, models. Assuming
that each router only has a single outgoing interface, training
an edge network with N routers will result in N(N — 1) deep
learning models. Each model can be trained independently,
making the training phase easy to parallelize.



1) Modeling Input and Output of the RNN: Supervised
learning involves a sample space X and a label space Y, with
the neural network responsible for learning a mapping function
from values in X to labels in Y, for each (z;,y;) € X x Y.
Our input/output modeling follows an approach similar to the
one described in [26]. Given a set of outer routers O, and the
set of all the routers in the edge network R, for each source-
destination pair (s,d) € R x O, the deep learning system
learns the next hop for destination d.

The easiest way to model the input is an N-dimensional
array, with [NV being the number of routers in the network.
Such an array is indexed by the router identifier, so the i-th
element of the array is the number of incoming packets on
router i. The output is modeled as a one-hot encoded ' router
indexed array, with a 1 in the position indexed by the predicted
next hop; the size of the output is again equal to the number
of routers in the network.

2) Choosing the Right Neural Network Architecture: In the
cross-validation phase, we have tested several configuration
by trying different combinations of hyperparameters such as
the number of hidden layers and the number of neurons. As a
result of this analysis, the model achieves the best performance
when composed of: one input layer (10 neurons), two hidden
layers (128 neurons ea., hyperbolic tangent activation 2), one
output layer (10 neurons, sigmoid activation).

After choosing the correct LSTM architecture, we also apply
proper input normalization and regularization techniques to
improve the training performance in terms of both accuracy
and loss.

III. EVALUATION RESULTS

In this section we evaluate our architecture prototype. All
our code is available at [24]. Our evaluation focus is the core
of our novel LSTM based algorithm to predict least congested
offloading paths. First, we detail the technologies used in
our evaluation testbed, then we discuss how our system can
emulate OSPF by analyzing the results of the model training;
finally we discuss the performance of the path prediction
model as a substitute to more traditional routing algorithms.
For a more complete analysis, we also implement the same
Deep Neural Network (DNN) described in [26], a traditional
neural network with four hidden layers and sixteen neurons in
each layer. We use this network to compare the performance
between DNNs and LSTM for the same task and understand
if our hypothesis about RNNs is correct.

A. Evaluation Testbed

Our prototype has been implemented using the following
technologies: we employ Ryu [28] as an SDN controller and
Google Protocol Buffers [29] as serialization/deserialization
abstract syntax notation. To emulate the edge network we used
MiniNEXT [22], a Mininet [30] extension layer that supports

'In machine learning, one-hot is a group of bits among which the legal
combinations of values are only those with a single high bit and all the others
low.

2The activation function defines the output of a node given an input [27].

Connectivity rate | Validation accuracy
30% 99.1%
35% 98.5%
40% 84.6%
45% 88.8%
50% 86.7%

TABLE I: Impact of the network density on the average
validation accuracy of the deep learning model (randomly
connected physical networks).

routing engines and process identifier namespaces. Finally, we
used Quagga [31] as a routing software suite and Keras [32]
as a machine learning library.

B. Overwriting OSPF Routing Decisions

To evaluate its performance when overwriting OSPF rules,
we observe the behavior of the path prediction system in a
functioning network. In particular, we use the same topology
(Figure 1) and traffic simulator adopted in the dataset gen-
eration phase; to ease the analysis process, all links are set
to the same rate. Afterwards, we select a source router and
a destination address and examine the difference in behavior
between OSPF and our system.

In general, our emulated edge network shows a dynamic
behavior, and our prototype predicted several paths for the
same destination under different traffic conditions. In partic-
ular, we run four traffic simulations, each of them for fifteen
minutes, varying the loss rate on the link chosen by OSPF
to connect source and destination; at the same time, the path
prediction component computes a new path every five seconds.
Considering Figure 1, the selected target is (R1, R3), with the
default path being R1, R2, R3 and the loss being varied on the
link between R1 and R2. Being performance unaware, OSPF
always chooses the same path, even when the link has (some)
losses. To adapt the threshold, a human needs to manually
reconfigure each router. Our system, on the contrary, shows
the ability to behave dynamically by proposing four alternative
paths.

By studying the system behavior in the presence of losses,
it is possible to understand if our model is able to detect
and overcome these problems. We test loss rates of 0%,
5%,10%, 15% and count the number of predictions different
from OSPF (table II). With the loss set to 0%, 43% of the
time the predicted path is different from OSPF; if the loss
is increased to 5%, the ratio of paths different from OSPF
slightly rises to 45%, indicating that the system is able to
detect the change. The same happens for a loss of 10%, with
a much more noticeable improvement in the system behavior;
63.5% of the proposed paths are in fact, different from the
one chosen by OSPF. For the successive loss rate, equal to
15%, the performance goes down a little with only a 59.5%
different path ratio; the reasons for this loss in performance are
discussed in section IV. The ideal behavior would be for the
system to detect the link loss and consequently stop predicting
paths going through the damaged link. In our analysis this
happens only with a limited loss rate.

Table III compares the resulting retransmission rate of our



Fig. 2: Routing policies retransmission comparison. Our
proposed LSTM policy has the highest throughput by
minimizing retransmissions in challenged scenarios.

Link loss | Different path rate | Same OSPF path rate
0% 43% 57%
5% 45% 55%
10% 63.5% 36.5%
15% 59.5% 40.5%

TABLE II: Path predictions different and equal to OSPF.

Routing Strategy
Link loss rate | OSPF | ECMP | DNN | LSTM
0% 0% 0% 0% 0%
5% 5% 250% | 2.70% | 2.75%
10% 10% 5% 7.710% | 3.65%
15% 15% 7.50% 9% 6.07 %

TABLE III: Routing strategies retransmission rate comparison.

system, OSPF, and Equal Cost Multi Path (ECMP) routing
algorithms. The retransmission rate is computed by taking
into account how many times traffic would pass through the
leaky link, considering two equal-cost paths for ECMP and the
ratios in table III for our system. Overall, the LSTM policy
that we propose has a lower retransmission rate than the other
policies, therefore reaching a higher throughput. In Figure 2
we compare these three policies (LSTM, ECMP and OSPF),
showing the overhead needed to transmit the same amount of
data. When there is no link loss, the three policies behave
very similarly; however, as soon as a loss rate is introduced,
the performance gap of our proposed LSTM policy increases
with the loss rate.

C. Evaluation in Challenged Scenarios

We compared several routing policies in critical scenarios,
where network connectivity is scarce. We decide to simulate
a network in which statistically, half of the links are affected
by a loss rate; we use the same loss rates of the previous
experiments (5%, 10%, 15%), running each experiment ten
times, and generating traffic between five different targets. The
purpose of this experiment is to understand if our approach
is used with our LSTM policy, has higher resiliency than
OSPF when up to half of the edge network are unavailable.
To compare the performance of the two routing policies, we
counted the number of times the lossy links were selected
(Figure 3). The chart compares the total number of defective
links traversed in all runs for each link loss rate. In this case,
the LSTM policy does not introduce any significant advantage
under critical circumstances; overall, the performance of the
two policies are similar, with OSPF performing even better
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Fig. 3: Comparison of the number of (severely) lossy
links traversed by OSPF and LSTM.

when the link loss rate is set to 10% and 15%. The reasons
for the poor performance of the LSTM policy are due to our
training approach; our LSTM policy predicts alternative paths
based on the network conditions, proposing alternative paths.
Given that half of the links in the network are affected by loss,
the majority of the proposed alternative paths pass through
these links, resulting in poor performance. In Section IV we
give a few hints on how to overcome such limitations of these
and other deep learning policies.

IV. DISCUSSION AND CONCLUSION

In this work, we presented an approach for task and path
offloading. Our main goal has been to provide a testing
platform for task offloading and routing policies, in support
of offloading tasks traversing challenged edge networks. Our
virtual network testbed prototype based on MiniNExT found
interesting results and was released to allow the community
to compare novel or existing routing policies in different edge
computing scenarios [24].

In our prototype evaluation, we focused on a specific traffic
offloading policy tradeoff. In particular, we compared deep
learning based routing policies with ECMP and OSPF. Our
policy tradeoff analysis exposed advantages and challenges
of using deep learning as alternative to traditional routing
algorithms, when deployed on a single node and not as
centralized (SDN) controller application.

Despite the limited size of our dataset, our initial policy
tradeoff analysis results have shown how a cooperative routing
policy may lead to better performance than traditional routing
methods at the edge, especially with unstable network con-
ditions such as those that arise within an IoT network trying
to operate at the network edge during a natural or man-made
disaster.
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