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Abstract—We present a model to predict the short-term
utilization of an IEEE 802.11 channel. We approximate the
time-varying utilization process via a Markovian state transition
model and subsequently create a lumped representation of the
transition matrix. Each lumped state can then be treated as
a class. The lumped matrix provides a simpler to understand
description of the channel utilization behavior and naturally
includes the persistence in one lumped state which resembles
the characteristic behavior of naı̈ve predictors (where predicted
state equals the current state). We demonstrate that treating
the lumped states as classes allows good prediction models to
be built using Logistic Regression and Neural Network models.
Our results are based on IEEE 802.11 wireless utilization data
collected as reported in the channel utilization (CU) field of the
QBSS Load Element in Beacon frames. The presented approach
can be implemented as an edge computing task, whereby edge
nodes calculate the lumped states and train models, informing
nearby client devices of the model parameters, allowing them to
produce predictions on their own.

Index Terms—channel utilization, IEEE 802.11, Markovian
models, lumping, prediction

I. INTRODUCTION

Consider the following, simplified, motivating example: a
node turns on and can only perform a single measurement,
i.e., receive a nearby access point (AP) – ostensibly, the AP
with which it intends to communicate – Beacon transmission
informing it of medium utilization (as per 802.11e). Then,
based on this measurement it has to predict the channel
utilization (CU) for the next time interval. Also, anecdotal
evidence (that are confirmed later in this study) point that a
naı̈ve predictor, simply predicting the utilization in the next δ
seconds to be the same as the measured CU in the most recent
δ seconds, works very well in many cases.

A feature of the current study is that we analyze a real
Wi-Fi data set collected over a one month period in an
academic campus environment. Our main contribution is that
of relating the observed behavior to a simplified Markov chain
by way of state transition lumping. Using the lumped matrix
we can perform predictions. The act of lumping states, creates
“cliques” of states that, seen collectively as a meta-state,
result in the process remaining in the meta-state for prolonged
periods of time. Each of our lumped states also represents a
range of utilization values. This lumped view is what makes
naı̈ve prediction work so well (the process remains in the same

state in the next step). With the lumping, we may construct
more than one lumped state; hence, a rich set of lumped states
(“cliques”), each representing a different utilization range, are
produced, while “transient’‘ states also emerge linking those
cliques. The resulting prediction based on the lumped matrix
is found to outperform the naı̈ve predictor, especially when it
matters the most – during busy-hour traffic.

In our study, we use a set of standard Machine Learning
(ML) algorithms to perform class predictions. Note also that
no modification of the protocol stack is performed that would
render the approach incompatible with IEEE 802.11. Emphasis
is placed on building a model from locally-collected utilization
data. As such, either the APs directly assist the collection
of CU data by e.g., sending CU values to an edge node, or
additional “sniffer” collecting CU data and passing them to
the edge node.

The rest of the paper is structured as follows. In Section II
we described related work and the standards that enabled our
work. In Section III we lay out the methodology on both the
data collection side, as well as on the generation of the lumped
transition matrices. In Section IV we describe the evaluation
setup and the alternatives that were evaluated. In Section V
we outline the results produced and discuss by comparing
and contrasting various schemes. Finally, Section VI provides
concluding remarks and directions for future work.

II. RELATED WORK

In recent years, due to the widespread use of APs in
buildings, occupancy detection [1], [2], [3] methods based on
Wi-Fi traffic have been proposed. For example, Balaji et al. [4]
exploits authentication, authorization, and accounting logs of
APs in buildings to detect the occupancy but is not concerned
about CU statistics. We also assume accessibility to such logs,
is not possible, or restricted for privacy reasons, while Beacons
reveal no information of client devices. Moreover, in most of
environments, it is common for only a subset of APs to be
centrally managed (if at all).

Efforts have been made to use APs signals or Wi-Fi manage-
ment packets (Probe packets) for prediction. Wei Wang, et al.
[1] uses a Markov based feedback recurrent neural network for
predicting occupancy of a building. They include the Markov
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model due to stochastic and chronological interdependent fea-
tures of Wi-Fi data packets. The work bears some resemblance
to our work due to the Markovian facet; however, they are
not concerned about time-series prediction. More importantly,
they include ad-hoc pre-processing steps to filter certain MAC
addresses since their model needs to avoid counting MAC
addresses belong to a person as several occupants.

Closer to the Cognitive Radio (CR) literature, we find [5]
where the authors try to predict the idleness or busyness of a
channel, and hence do not attempt a finer-grain view of the
CU as we do. Nevertheless, they adopt a non-stationary Hidden
Markov Chain to deal with the perceived non-stationarity of
the channel but, crucially, the presented validation is only
using simulations of primary user following exponential busy
and idle distributions. Yet another work that proposed a
Markov model to fit real measurements is [6] which used real-
time measurements made in the 928-948 MHz pager band, but
does not indicate measures to deal with non-stationarity (the
period of observations is unclear as well) and, similarly to [5],
the objective is the busy/idle distinction of the primary user.

Armed with the observations made regarding Markovian
models, we follow an explicit Markov chain construction
whose state transition probabilities are time-dependent, further
describe in Section III-B. Contrary to busy/idle indicators, we
are concerned with the prediction of the degree of utilization.

A. The QBSS Load Element

Based on 802.11e amendment, QoS Basic Service Set
(QBSS) Load Elements advertises in every Beacon and Probe
Response frames. Virtually all APs in use today (2019) support
the 802.11e extensions. One component of the Load Element
is channel utilization (CU), whose values from 0 to 255 map
linearly to the range from 0% to 100%, and express the
utilization of the wireless medium seen by the AP (including
the traffic with its own clients). Non-802.11 transmissions are
also, indirectly, accounted for, as long as their transmissions
are such that the physical carrier-sensing of the AP assesses
the medium as being busy.

Note that we do not consider channel selection. Channel se-
lection makes sense for the case where APs can be controlled,
and then schemes such as DCA [7] and similar works, e.g.,
[8], apply. We assume we have no form of control over the
APs’ operating channels. A per-channel application of what we
propose here is possible but channel switching admits a wider
set of options, given that one can attempt to minimize the
number of tests before picking the right channel – something
outside the scope of the current work.

III. METHODOLOGY

A. Data Collection

We captured several days of Wi-Fi AP Beacon transmissions
from a plethora of APs in a campus building at the University
of Alberta. The majority of APs are centrally managed to
provide ubiquitous Wi-Fi service, each one of which supports
QBSS and transmits approximately 10 beacons per second.
The capture of the Beacon frames was performed using

inexpensive Wi-Fi sniffers in the 2.4 GHz band. The sniffers
would round-robin, staying two seconds in each channel,
across the three non-overlapping channels (1, 6, and 11)
to capture beacon frames on each one. Not capturing some
beacons (for approximately four of every six seconds) was
examined and found to have no significant impact. Specifically,
to reduce the impact of missing Beacon CU measurements,
we used the maximum CU reported in the two seconds of
observation interval and use it as the maximum CU over the
six seconds interval, as it was found close to the maximum
had we continuously listened to the same channel.

B. Discrete-Time Markov Model

Consider time progressing in time steps of length δ (were
as noted, δ = 6sec. due to the data collection setup), then
the evolution of the CU of an AP on a specific channel from
time t to t+ δ will be approximated by a first-order Markov
chain. We can trivially produce estimates for the transition
probabilities of the transition matrix, P, by counting the
corresponding transitions between successive CU values from
the collected data, and normalizing accordingly. Technically,
P is a 256 × 256 matrix. We handle the non-stationarity by
considering that each 30-minute interval is characterized by
a separate transition matrix, P(i), where i identifies the 30-
minute interval within a day. When determining the transition
probabilities of P(i), we use the transitions in the CU values
for the corresponding 30-minute interval only. In the interest of
brevity we drop the exponent from P(i) with the understanding
that we are talking about models for 30-minute intervals, and
noting places where this is not the case.

Our objective is to, starting from a 256 × 256 matrix, for
each 30 minute interval, to reduce the model to a small (no
more than 5 × 5) matrix which we will subsequently use
for predicting the next state. Towards this end, we perform
a first grouping in an ad-hoc manner, simply to reduce
the data handled in subsequent steps, therefore reducing the
computation demands – and can be skipped if computational
resources are abundant. Namely, we translate the 256 × 256
matrix to 26× 26 by grouping states 0− 9 together, 10− 19
together, ..., 240 − 249 together, and 250 − 255 together by
accumulating the transition probabilities and re-normalizing
accordingly. The rationale is that we consider changes in the
utilization of 100 × (10/255) ≈ 4 % as insignificant for our
purposes.

C. Quasi-Lumpability

State lumping of a Markov chain reduces a large state
space into a smaller one [9]. A discrete time Markov chain
is lumpable with respect to a given state space partition
S =

⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j if its transition

probability matrix P satisfies the lumpability condition:

∀Si, Sj ⊂ S ∀s ∈ Si :
∑
s ′∈Sj

ps,s ′ = ki,j ∀i, j, (1)

where ps,s ′ is the one-step transition probability from state s
to state s ′, and ki,j is a constant depending only on i and



j. The ki,j are the elements of the lumped matrix, K. That
is, a Markov chain is lumpable if the transition probability
from each state in a given partition to another partition is the
same. The probability of transitioning from a given state to a
partition is equivalent to the sum of the transition probabilities
from this given state to each state in the partition.

However, Markov chains are seldom (exactly) lumpable, in
that we cannot generally satisfy the equals relation in Equation
1 regardless how we partition the state space. In those cases,
we adopt the relaxed definition known as quasi-lumpability
[10]. Intuitively, quasi-lumpability allows for the sum of rows
of the resulting lumped matrices to not sum up to 1. Formally,
a Markov chain is ε quasi-lumpable with respect to a given
state space partition S =

⋃
i Si with Si

⋂
Sj = ∅ ∀i 6= j

if its transition probability matrix P can be written as P =
P− + Pε, where the elements of P− are lower or equal to
the corresponding elements of P and satisfies the lumpability
condition:

∀Si, Sj ⊂ S ∀s ∈ Si :
∑
s ′∈Sj

p−s,s ′ = ki,j ∀i 6= j (2)

where now, p−s,s ′ is the one-step transition probability from
state s to state s ′ in the matrix P− and no element in Pε

is greater than ε. A more helpful formulation is to permute
the rows and columns of the transition matrix to bring it in
the form P = diag(P1,1,P2,2, ...,PN,N ) + E where E is
an “error” matrix, and the Pi,i represent sub-matrices that
correspond to the i–th lumped state (for N lumps) – hence
the derived K matrix would be of N ×N . The closeness of
the approximation is judged by the norm ‖E‖∞.

The permutations implied by the Pi,i-based formulation of
lumping allow for lumping together any collection of states.
This is meaningless in our setting since via lumping we
are trying to produce ranges of utilization values we can
collectively consider as a single state. To this end, we add
the constraint of lumping only neighboring states together. In
addition, because of the limitation in computational resources
we set the maximum number of lumped states to be equal to
five. We then find a lumped representation with no more than
five states that minimizes ‖E‖∞. Finally, after lumping we
need to adjust the lumped matrix to include states that were
not present (no corresponding measurements) in the collected
data. Our strategy is to lump states that were not present in
the training set to the closest lumped state, hence the number
of lumped states is retained.

IV. EVALUATION

Given the set of training data collected over multiple days,
comprising of the CU measurements reported by an AP on a
channel, we construct the lumped matrix for each 30 minute
period of a day. The lumps correspond to utilization ranges,
and each range can be seen as a class. Thus, the problem is re-
framed as predicting the correct class. Part of the data is used
for testing the models. The test data are used in the following
way: a CU value is read from the captured data and based on
it (and depending on the model listed next), the class/range of

the next CU is predicted. If the next CU value indeed belongs
to this class, the outcome is positive, else negative. In other
words, the correct class has to be determined. The next CU
value is then revealed and the process continues in this manner.
The following are the predictors used.

A. Lumped Markov Chain

Sequentially, a measured CU value is revealed and hence its
class as well. The corresponding 30 minute interval lumped
matrix is used to predict, by means of a transition chosen with
the given probabilities of the lumped matrix, what will be the
next class/range.

B. Naı̈ve

This predictor returns as prediction the same class as the
class of the measured CU. The classes are as defined by
the lumped model corresponding to the particular 30 minute
interval.

C. Logistic Regression

Another model used is that of standard Multinominal Lo-
gistic Regression [11], where the generated probability value
is converted to a prediction for the class. The classes used are
the same derived by the lumped Markov chain for each corre-
sponding 30 minute period. Because of the 30 minute intervals
used in the definitions of utilization classes, the derivation of
the lumped matrices is already “aware” of the temporal aspect
of the process. We therefore endow the training data for the
Logistic Regression with engineered features capturing time.
Namely, we introduce 48 features (one for half hour of a day),
plus five features for the day of the week1, and an additional
300 (one for each 6 second measurement interval within the 30
minute period) to capture the time offset from the beginning
of the 30 minute “slot”.

D. Neural Network

Two variations of Neural Network [11] are used, (i), with
one hidden layer and, (ii), with five hidden layers, always using
100 nodes per layer. The same feature engineering is used as
for Logistic Regression.

V. RESULTS

Our dataset contains 38 days worth of data. For the sake of
simplicity, and without hurting the generality and applicability
of the presented techniques, we narrow our attention to 28
working days (10 days were weekends). The 28 days were split
into four groups of 7 days, based on which we performed 4-
fold cross validation, training on 21 days and testing on seven
for each fold. To save space, only the average across folds is
reported.

1For the sake of brevity, at this and all following discussion we restrict our
attention to working days, i.e., weekends are excluded.



Table I
PREDICTION RESULTS – UNIVERSAL LUMPED CHAIN

Naı̈ve Markov LR NN-1 NN-5
A 0.92 0.93 0.94 0.94 0.94
F 0.92 0.90 0.94 0.94 0.94

Table II
PREDICTION RESULTS – 30-MINUTE LUMPED CHAINS

Naı̈ve Markov LR NN-1 NN-5
A 0.96 0.96 0.96 0.97 0.97
F 0.96 0.95 0.96 0.97 0.97

A. Single (“Universal”) Lumped Matrix

First, we establish a comparison baseline by assuming that
the process is stationary and hence, a single transition matrix
(and corresponding lumped matrix) can describe the entire
process, i.e. we do not consider 30-minute intervals separately.
Based on the entire 28 days of data, when we lumped the
transition matrix, we ended up with a five-state lumped matrix
corresponding to the following intervals of CU values (and
utilization figures in parentheses): [0-100] (0-39%), [100-120]
(39-47%), [120-190] (47-74%), and [190-255] (74-100%), and
producing an error ‖E‖∞ = 0.007.

The results, assuming a “universal“ lumped matrix are
shown in Table II where ’A’ is the accuracy, ’F’ is the F1-
score, LR indicates Logistic Regression, NN indicates Neural
Network (followed by the number of hidden layers), and
Markov is the lumped Markov chain based prediction.

We now focus on lumped descriptios that change every
30-minutes, to approximate the non-stationarity of the CU
process. The difference is that now, with different number
of lumped states for each 30-minute interval, the number of
classes potentially changes, and hence the performance metrics
described are averaged across all 30-minute intervals of the
test data. Additionally, ‖E‖∞ now varies from one 30-minute
interval to the next. In the reported results the value of ‖E‖∞
ranged from a minimum of 0.0008 to a maximum of 0.055.

B. Busy vs. Non-Busy Hour Predictions

The complete appreciation of the advantage of the 30-
minute lumped states requires that we narrow our focus to
the two extreme utilization conditions, light load (after hours)
and heavy load (peak of working hours). We found that all
approaches were almost equally good at light (essentially
zero!) load as one would expect – even naı̈ve shines. The same
is not the case during the busy hour, where accurate prediction
is crucial to avoid overloading the system by deciding to
transmit when the transmission cannot be accommodated.

In Table III, a five hour period that is characteristic of high
CU values across the entire data set is used to narrow the
comparison when it most matters, i.e., in a busy system. For
the sake of completeness, we also show results (Table IV)
where the entire day is split in a rather ad-hoc manner into
two 12hour intervals (8am to 8pm and 8pm to 8am) where one

Table III
PREDICTION RESULTS – BUSY HOUR (11AM-4PM)

Naı̈ve Markov LR NN-1 NN-5
A 0.88 0.86 0.95 0.95 0.95
F 0.88 0.83 0.95 0.95 0.95

Table IV
PREDICTION RESULTS – TWELVE BUSY HOURS (8AM-8PM)

Naı̈ve Markov LR NN-1 NN-5
A 0.9 0.88 0.97 0.98 0.98
F 0.9 0.86 0.97 0.98 0.98

contains the five busiest hours. The lumped model gives better
results by a considerably margin during busy hours, when used
to define the classes for the Logistic Regression and Neural
Network model (the size of the network apparently has not
much impact) compared to Naı̈ve. This can be understood by
the fact that during busy hours, the circumstances in which
the utilization of the channel remains the same (the key to
Naı̈ve’s good performance) is happening less frequently. One
has to also note that predicting the busy hour behavior is
always strictly more challenging than the non-busy hour – as
we noticed that both Naı̈ve and lumped Markov performance
drops when moving from non-busy to busy. Finally, the
differences are less pronounced if we partition the day into
two rather arbitrary periods of 12 hours as the impact of the
mis-predictions is diluted across a longer time interval. Yet
it is possible to spot that the busy predictions by the lumped
states come close to being excellent (0.98) during the busy
hours (Table IV).

VI. CONCLUSION

We presented alternatives to predicting the short-term uti-
lization of a Wi-Fi channel, based on exploiting channel
utilization measurements reported in Beacon transmissions
from APs. A significant motivation was our observation that
a naı̈ve predictor performs remarkably well in many cases.
By introducing a lumped Markovian model, we captured the
essence of the naı̈ve predictor (long periods of staying within
a lumped meta-state) but were also able to construct classes
(lumps) of utilization that subsequently aided us to train ML
predictors to produce excellent results. In followup work we
are producing lumping schemes that penalize the creation of
large lumps representing large utilization ranges. Finally, we
plan to create a model that captures both the temporal, as well
as the spatial facets of the utilization process, interpolating the
channel utilization across many points in space from where the
measurements are collected.
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