
Meta-Learning-Based Deep Learning Model
Deployment Scheme for Edge Caching

Kyi Thar1, Thant Zin Oo1, Zhu Han1,2, Choong Seon Hong1,
1 Dept. of Computer Science and Engineering, Kyung Hee University, Korea.

2 Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA.
E-mail:{kyithar, tzoo, cshong}@khu.ac.kr, zhan2@mail.uh.edu.

Abstract—Recently, with big data and high computing power,
deep learning models have achieved high accuracy in pre-
diction problems. However, the challenging issues of utilizing
deep learning into the content’s popularity prediction remains
open. The first issue is how to pick the best-suited neural
network architecture among the numerous types of deep learning
architectures (e.g., Feed-forward Neural Networks, Recurrent
Neural Networks, etc.). The second issue is how to optimize
the hyperparameters (e.g., number of hidden layers, neurons,
etc.) of the chosen neural network. Therefore, we propose the
reinforcement (Q-Learning) meta-learning based deep learning
model deployment scheme to construct the best-suited model for
predicting content’s popularity autonomously. Also, we added
the feedback mechanism to update the Q-Table whenever the
base station calibrates the model to find out more appropriate
prediction model. The experiment results show that the proposed
scheme outperforms existing algorithms in many key perfor-
mance indicators, especially in content hit probability and access
delay.

Index Terms—Autonomous deep learning model generation,
meta-learning, edge caching, content’s popularity prediction.

I. INTRODUCTION

According to Cisco, viewing videos on wireless devices
has significantly increased Internet traffic and is expected
to continue to increase exponentially [1]. Expanding the
capacity of network infrastructure to handle the exponential
increase of user demand is economically costly and unrealistic.
Thus, several future Internet network architectures (such as
Named Data Networking) have been proposed with in-network
caching capability to handle the increasing Internet traffic.
Accordingly, caching enabled edge nodes such as base-stations
can temporarily store video contents in their cache storage to
preserve user requests in the future, rather than re-downloading
the same contents from the original content servers.

Basically, caching schemes can be classified into i) reactive,
and ii) proactive caching. In reactive caching, the edge node
performs the cache decision (to store the content at the cache
or not) based on the content’s popularity1 only when the

This work was partially supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded by
the Korea goverment(MSIT) (No.2019-0-01287, Evolvable Deep Learning
Model Generation Platform for Edge Computing) and US MURI AFOSR
MURI 18RT0073 , NSF CNS-1717454, CNS- 1731424, CNS-1702850, CNS-
1646607. *Dr. CS Hong is the corresponding author.

1Content’s popularity can be defined as the proportion of the number of
requests for a particular content to the total number of requests from users,
ordinarily obtained for a specific region through a given period.

request for a particular content arrives [2]. In the proactive
caching, the edge node predicts a content’s popularity before
any user’s request and make the cache decision [3], [4]. In
this paper, we apply the proactive caching scheme because we
would like to reduce the backhaul traffic by using unutilized
bandwidth at the off-peak hours and the performance of
this caching scheme is directly related with the content’s
popularity prediction accuracy. Depending on the assumption
such as popularity follows Zipf distribution, many researchers
proposed various edge-network cache decision schemes2 [5],
[6]. In practice, the popularity of the content is dynamically
changing depending on different factors (e.g., events, type of
content, and the lifespan of the content). Hence, the content’s
popularity prediction becomes one of the most challenging
matters to design effective proactive caching scheme.

Recently, deep learning has been utilized in numerous areas,
such as object detection. Due to its high performance in
prediction, deep learning based prediction models are utilized
in content’s popularity prediction to gain more precise results
[4], [7]–[10]. Stack Auto Encoder, has been used in [8] to pre-
dict the content’s popularity in a software-defined networking
environment. The utilization of echo state network to support
cache decision was presented in [4] and the neural network
with several hidden layers was presented in [7]. In addition,
the utilization of the Convolutional Neural Networks (CNNs)
to track the context to support caching decision was shown in
[9].

Constructing an appropriate deep learning model is com-
plicated and time-consuming process even for the human
experts. This is because human experts need to find out
the relevant deep learning architectures, training procedures,
and hyperparameters to solve the domain-specific problem
with satisfactory performance. Thus, we need an autonomous
solution to search the appropriate deep learning architecture
for domain-specific tasks (i.e., find the appropriate model
among Feedforward Neural Networks (FNNs), Recurrent Neu-
ral Networks (RNNs), etc.) as well as autonomously manage
the hyperparameters optimization (i.e., find the number of
appropriate hidden layers, number of neurons, etc.) [11], [12].

2The process to decide whether to store the new content or remove the
cached content

978-3-903176-24-9 © 2019 IFIP



Fig. 1: System Model

A. Our Methodology

Thus, in this paper, we proposed “a meta-learning-based
autonomous deep-learning model deployment scheme,” to sup-
port intelligence edge caching. Previously, we applied random-
search and reinforcement learning methods to construct the
deep learning models, [11], [12]. But, random-search method
can only explore in a random direction to find the best
deep learning model within possible configurations [11]. Also,
reinforcement learning used in [12] has lack of feedback
mechanism from the BSs to search and construct the better
model than the currently used model. So, in this paper, we
applied meta-learning with reinforcement learning to solve the
aforementioned problem of [12]. Also, we enhance the search-
ing space design and model generation rules from [12] to
be able to improve the searching performance. Meta-learning
(learning to learn) is the approach to create learning models
that can learn new abilities or acclimate to new circumstances
rapidly from experience (meta-data).

Our contributions are summarized as follows:
• We propose the system design to jointly work with rein-

forcement (Q-Learning) meta-learning based deep neural
network deployment scheme with mobile edge computing
architecture. Our proposed scheme includes two learner
i) master meta-learner (MML), and ii) slave meta-learner
(SML). The MML construct the potential deep learning
models and SMLs utilize the best-suited model among
constructed model to predict content’s popularity.

• We formulate the optimization problem to minimize the
content retrieval cost from the original content server.

II. SYSTEM MODEL

Fig. 1 shows the proposed system model, in which the MML
is located at the cloud data center, and each SML is located at
BS. Since finding the best-suited deep learning model requires
high computing power, we deploy the MML at the cloud
data center. After getting the best-suited model, the MML
distributes the best-suited model to each SML (each BS).
Then, the SML uses the best-suited model and predicts the

content’s popularity. Also, SML tunes the best-suited model
with the locally collected data (e.g., every 6 hours, every
night). If the best-suited model does not reach to the absolute
accuracy, even after the model tuning process, the SML send
the meta-information to the MML. Then, based on the meta-
information, MML explores the new model.

A. Network Model

Let a set of base stations is denoted as B = {1, 2, . . . , B}
where each BS b ∈ B has a limited cache capacity and it
can be denoted as Sb. Let the set of contents be denoted by
F = {1, 2, . . . , F} and the size of each content f is denoted
as κf . Let us introduce the binary decision variable x(t)b,f to
do the cache decision. x(t)b,f = 1 when the content f is cached
at the local cache of the BS b ∈ B at time (t), and x(t)b,f = 0
otherwise. Thus, at each time slot (t), the cache capacity of
Sb is limited by∑

f∈F

x(t)
b,f
κf ≤ Sb, x(t)

b,f
∈ {0, 1}, ∀b ∈ B, ∀t. (1)

B. Cost Model

For each arriving request rbk ∈ Rb from users at BS b ∈ B,
BS first checks whether the requested content is located in its
local cache or not, and the missing contents are retrieved from
the content server. Here, we use a proactive caching scheme
where cache decision to store content f for time (t + 1) is
made at the end of time (t) based on the predicted content’s
popularity. Then, the actual request is arriving at time (t+1),
and the content retrieval cost can be calculated as follows,

c
(t+1)
b,cache =

∑
f∈F

(1− x(t+1)
b,f )φ

(t+1)
b,f κf p

retrieve
b , ∀b ∈ B, (2)

where x(t+1)
b,f is the cache decision variable which is decided

at the end of time (t) (e.g., every midnight), φ(t+1)
b,f is the

request counts of content f at BS b for (t+ 1) and pretrieveb is
the unit retrieval cost or backhaul usage for each content f at
BS b.

III. PROBLEM FORMULATION

Then, we formulate the simple content retrieval cost mini-
mization problem as follows:

minimize:
x
(t+1)
b,f

1

T

∑
t∈T

∑
b∈B

c
(t+1)
b,cache (3)

subject to: (1).

where the objective function is minimize the content retrieval
cost by controlling the cache decision variable x(t+1)

b,f
. The

cache capacity is limited by (1). Moreover, the future request
counts of each content φ(t+1)

b,f are not known in advance
and the optimization problem (3) is a combinatorial problem.
Hence, exhaustive search is not feasible because of a large
number of configuration combinations. These reasons claim
the optimization problem in (3) challenging to solve in the
presence of limited information. Hence, to solve (3), we need



TABLE I: Table of notations.

Notation Description

System Notations

B, B, b Set, number, element of BSs

F , F , f Set, number, element of contents

Sb Physical cache size at BS b

κf Size of content f

pretrieveb Unit backhaul usage price of BS b

φ
(t)
f , φ̂

(t)
f Real and predicted request counts of movie f at time (t)

xtb,f Cache decision variable for content f at BS b and time (t)

Machine Learning Notations

m Prediction model

λm, γm Learning rate and regularization rate of model m

ltrain
m , lvalid

m Training and validation loss of model m

l
pred
m Prediction loss of model m

σ,ω, θ, ε Reward, ratio of immediate reward, state (Q-Learning’s Pa-
rameters) and loss threshold

Fig. 2: Components for meta-learning based deep-learning
model deployment platform for content’ popularity prediction

a three-step solution: i) searching the best-suited model to
predict the content’s popularity, ii) predicting the popularity
of each content f , φ̂(t+1)

b,f , and iii) caching the popular content
based on predicted results φ̂(t+1)

b,f .

IV. IMPLEMENTATION PROCESS

The details discussion for the implementation process of
meta-learning based autonomous deep learning model deploy-
ment platform are as follows.

A. Components needed to implement meta-learning

Master Node: consists of five main components, i) man-
agement module, ii) preprocessing module, iii) optimizer, iv)
model dictionary and iv) MML. The management module
manages model deployment and tracking the performance of
the master and slave nodes. The preprocessing module is
responsible for cleaning, extracting the log files to construct
the dataset to train the models. The optimizer module provides
various type of optimization scheme such as Stochastic Gradi-
ent Descent (SGD) for training process. The Model Dictionary
stores the various deep learning architectures such as CNN and
RNN, which are discussed in details in Sec. IV-B. The MML

Fig. 3: Generic Deep Learning Model Framework for different
architectures

explores, constructs and selects the best-suited popularity pre-
diction model based on collected data D , {dt|t = 1, 2, ..., t},
where (t) is time when the data is collected.

Slave Node: consists of i) SML, ii) Caching Module, iii)
Preprocessing module, iv) Data Collector module, and v)
Request Handling Module. The SML manages the model
calibration, and model replacement based on the performance
of the current utilizing model and the new model send from
the MML. Also, SML provides the predicted popularity scores
to the caching module to make proactive cache decision. The
Data Collector gathers information such as the number of
cache hits and the total number of requests. The Caching
module makes the cache decision and downloads contents
from a server based on the predicted popularity scores. When
the request arrives at the BS, the Request Handler checks
whether the requested content is located in its Content Store
(cache storage). If the requested content is in the cache, then
the Request Handler Module provides the content to the user.
Otherwise, the Request Handler downloads the content directly
from the servers.

B. Generic Deep Learning Model Framework

In this section, we focus on the generic deep learning model
framework. The set of content’s popularity prediction models
can be denoted asM. Each model m ∈M represents various
types of prediction models such as RNNs. Among them, we
choose the best-suited model m∗ = {(mreq)|m∗req ∈ Mreq},
which has the lowest validation loss.

Fig. 3 shows the deep learning model framework to con-
struct the potential models to find the best-suited model. The
basic framework includes input layers, unknown architecture
layer, unknown dense layers, dropout layer, and the final
output layer. The input layer is the initial point to feed the
features information for training and prediction processes.
The unknown architecture layer arrangement determines the
architecture of the deep learning model, which can be FFNs,
CNNs, RNNs or Convolutional Recurrent Neural Networks
(CRNNs). The Model Dictionary stores the generic deep learn-
ing framework and the rules to construct the potential deep
learning models among various deep learning architectures.

If the unknown layer is searching for CNNs [13], we tune
number of the Convolutional layers and pooling layer. The
Convolutional layers utilize a convolution operation to the
input and pass the results to the next layer. The pooling layer



Algorithm 1 Finding best-suited popularity prediction model

Input: Ds, Marc, M , µmin, µmax, νmin, νmax,
Output: Predicted popularity scores, φ̂bf

1: Initialization: ltrain
m , lvalid

m = 0, λm, γm = 10−4

2: Master Meta-Learner (MML)
3: for k in range(M ) do
4: if rand(0,1) > pk then . Exploration
5: model ← rand choice(Marc)
6: layer ← rand choice(layer list(µmin, µmax))
7: layer config ← rand choice(config(layer))
8: m ← rand choice(model config((model,

layer config, νmin, νmax)))
9: else . Exploitation

10: model, layer, layer config ← min Q(QT-model,
QT-layer, QT-config)

11: m ← rand choice(model config((model,
layer config, νmin, νmax)))

12: end if . Updating Q-values
13: Train and validate m with Ds to get the reward σ ←

lvalid
m

14: Update QT-config, QT-layer, and QT-model with (4)
15: end for . Model Deployment
16: Choose and distribute the model m∗ = argmin(lvalid

m ) to
Slave Meta-Learner

17: Slave Meta-Learner (SML)
18: Predict the popularity with model m∗ and send the results

φ̂bf to the Caching Module
. Model Calibration

19: if lpred
m∗ > ε then

20: Minimize prediction loss with locally collected data
21: if current lpred

m∗ is lower than the previous then
22: Update and store the parameters of m∗

23: end if
24: end if
25: Send reward σ to MML at whenever update the local

model to update the Q-Values (line 14 to 18).

performs a down-sampling operation along the spatial dimen-
sions. The most common types of RNNs [14] are Gated Re-
current Units (GRU) and Long Short-Term Memory (LSTM).
We choose LSTM because neural networks using LSTM cells
have offered better performance than standard recurrent units.
CRNN [15] architecture results from combining CNN and
RNN. As such, we can configure the Convolutional layer,
Polling layer, LSTM to obtain the best-suited model. Next,
the dense layer is added to extract the features information
for the final prediction. The dropout layer is added to prevent
the over-fitting problem. Finally, the final output layer is
designed based on the prediction problem (e.g., if the problem
is the classification problem, the final output layer will be
constructed with the softmax activation function).

C. Reinforcement Meta-Learning

1) Applying Q-learning for the Master Meta-Learner:
Among the various reinforcement learnings, we apply Q-

learning [16] to search the best-suited model. Firstly, we
define the set of states θ = {1, 2, . . . , θ}, which represents
architecture types, layers, cells, neurons, filters information in
the hierarchical structure to construct search space for finding
the potential models. Secondly, we denote the validation
loss σm of each model m as the reward of the model m,
where our main objective is to choose the model m with
minimum validation loss. Thirdly, we define the set of actions
A = {1, 2, . . . , a}, which represents the way to construct the
model m in each round. Fourthly, we modify the hierarchical
Q-table from [12] to stores Q-values in hierarchical manner
instead of storing as in normal Q-table. Then, we update the
Q-values of hierarchical Q-table as follows,

Q(θ(t+1), a(t+1))←Q(θ(t), a(t))

+ α[σ(t+1) + ω min
a

Q(θ(t+1), a)

−Q(θ(t), a(t))],

(4)

where t is the current time step, σ(t+1) is the immediate reward
(validation loss) received at time (t + 1), θ(t) is the state at
time t, at is the action performed at time (t). α is the learning
parameter within the range 0 ≤ α ≤ 1. ω controls the amount
of immediate reward to return form future states.

2) Deep Learning Model Deployment Scheme: To find out
the potential deep learning models and to tune the initial hyper-
parameter settings of deep learning models, we randomly
extract a small portion of the data from the data set to create
a small data set. Let Ds = d[t=1:t=j] be the small data set and
Ds ⊆ D. Alg. 1 shows the way to construct the potential deep
learning models at the MML and the way to deploy the best-
suited model to predict the content’s popularity for SML. The
input parameters for the algorithm Alg. 1 are: i) Features and
target labels of the small dataset Ds, ii) Parameters to choose
the minimum and maximum number of layers (µmin and µmax),
iii) Parameters to choose the minimum and maximum number
of cells or neurons in each layer (νmin and νmax), iv) Number
of models to be searched M , and v) Model architectures
Marc to be explored (i.e., CNN). The output of Alg. 1 is the
predicted popularity scores. We initialized the model training
loss ltrain

m = 0, model validation loss lvalid
m = 0, learning rate

λm = 10−4 and regularization rate γm = 10−4.
Alg. 1 runs on two separated parts: MML and SML.

MML construct the potential deep learning models by using
two phase: i) exploration phase (from line (4) to (8)) and
exploitation phase (from line 9 to line 11). The MML choose
the exploration or exploitation phase based on the threshold
pk, where pk parameter maintains the exploration–exploitation
balance. The MML performs more exploration in the initial
stage and more exploitation in the later stage.

The exploration phase includes the following steps as de-
picted in Alg. 1: Randomly select the model among the various
types of deep learning model such as CNNs (line 5). Randomly
select the number of layers for each model (line 6). Randomly
select the layer’s configuration (eg., [1,5] means 1 CNN layer
and 5 Dense layer) (line 3). Randomly choose the neuron/cell
configuration (eg., [5],[1,2] means 5 CNN stacks at the CNN



Algorithm 2 Cache decision process at slave node

Input: Predicted content’s popularity scores φ̂(t+1)
b,f

Output: Cache the popular contents for (t+ 1)
1: Sort contents in descending ordered based on predicted

content’s popularity scores φ̂(t+1)
b,f

2: Based on the content list, store the contents from the
beginning until the cache space ŝ(t+1)

b is full

layer, 1 neuron at first dense layer, and 2 neuron at second
dense layer) (line 4).

The exploitation phase includes the following steps: Choose
the model which has the minimum Q-value (line 10). Choose
the total number of layers, which has a minimum of Q-values
(line 11). Choose the layer’s configuration, which has the
minimum Q-values (line 11). Randomly choose the neuron/cell
configuration (eg., [5],[2,1] means 5 CNN stacks at the CNN
layer, 2 neuron at first dense layer, and 1 neuron at second
dense layer) (line 11).

The Q-values updating process which includes the following
steps: Train the chosen model with the small dataset(e.g.,
one-month worth data) and get the reward (e.g., validation
loss) (line 8 and 11). Update the QT-values of QT-config
table, QT-layer table and QT-model table with their individual
rewards, respectively (line 16 to 18). Then, model deployment
module of the MML selects the best-suited model which
has the minimum validation loss value (line 19), i.e., m∗ =
argmin(lvalid

m ) and distributes to the SML.
The SML utilize the model m∗ to predict the content popu-

larity scores φ̂ at every time t (e.g., every 6 hours or 12 hours)
and send the results to the caching module to make cache
decision (line 22). Also, the Performance Checking module
from SML checks the performance of the prediction model
(line 23). SML calibrates the model with locally collected data
when the performance of the model is lower than the threshold.
At the same time, SML feedbacks the reward σ to the MML to
update the Q-Table to improve the model construction scheme
(line 27).

D. Caching Decision

Alg. 2 explains the cache decision process at the BS
to improve the cache hit. The inputs for this algorithm is
predicted content’s popularity scores φ̂

(t+1)
b,f . The output of

this algorithm is the decision on whether to store the expected
popular contents. After receiving the predicted content’s pop-
ularity scores φ̂(t+1)

b,f , the Slave Node (BS) sorts contents in
descending order based on the predicted content’s popularity
scores (line 1). Then, the Slave Node at BS b retrieves and
stores contents in descending order until its cache space is
full (line 2).

V. PERFORMANCE EVALUATION

We run our experiments on a PC with the followings con-
figurations; CPU: Intel core i7-7700k, RAM: 32GB, graphics
card: GeForce GTX 1080 Ti, and operating system: Ubuntu

TABLE II: Parameters used in the experiments

Parameters Value
Learning and regularization
rate

10−3

num models 100
Window size 12
Neighbors information 6
Features 2
Output size 1
Output activation function Relu
Batch Size 500
Training data 2012− 2015
Validation data 2016
Loss function Mean Absolute Percentage Error
Optimizer ADAM
Cache size 2% to 10%

16.04 LTS. We used pandas [17] to preprocess the dataset,
which is an open source data analysis tool. We implement our
proposed scheme using the GPU version of Tensorflow 1.4
[18] as a backend and Keras [19] as a frontend.

For the training and validation, we choose Movielens 1M
[20] dataset, which includes 6040 users and 1,000,209 ratings
over 3706 movies. We assume that the rating counts in the
dataset are request counts of the movies and that the times
when users rate movies are the same as the request arrival
times for those movies. The details configurations to train and
test the models are presented in Table. II.

We find the 100 constructed appropriate deep learning
model configurations, but because of page limitation, we only
show the validation accuracy and computation time of the best
10 out of 100 randomly constructed deep learning models
in Fig. 4. The best model is the M1 which has the best
validation accuracy and the configuration as follows: LSTM
〈73, 73〉, Dense 〈176, 106, 64, 143〉 , (i.e., 73 cells in layer-
1&2 of LSTM and 176 cells, 106 cells, 64 cells, and 143
cells, respectively, in layers 1,2,3 and 4 of dense layers). We
choose the probability of hit as in [12] and, content retrieving
cost (objective function), as Key Performance Indicator (KPI)
metrics.

A. Results and discussion

1) Benchmark: As we hold the full data set of all requested
contents, we can get the upper and lower bounds to act as
benchmarks to measure the proposed scheme performance.
The optimal scheme scheme is set as the upper bound in which
BSs cache the contents which possibly get the most requests
in next day. As for the lower bound, we use the no cache
scheme. In the no cache scheme, we deploy no cache in the
network, and the contents are directly downloaded from the
content store. Furthermore, we define the baseline scheme as
the randomized caching scheme, where we randomly cache
the contents. Also, we compared our proposed scheme with
the existing work (M virtual {the best model}) from the [12].

2) Probability of cache hit: Fig. 5(b) shows the cache hit
probability where a higher probability of hit means better the
caching performance as well as lower the backhaul usage. As
the increment in cache size, the cache hit probability also
increases due to the bigger storage capacity to store more



(a) (b)

Fig. 4: Popularity prediction performance comparison for the
best 10 out of 100 deep learning model configurations (a)
average validation loss, and (b) average computing time.

contents. The results from Fig. 5(b) shows that learning model
M1, created by our proposed scheme improves 16% of the
cache hit on average compared to other schemes.

3) Content retrieval cost: Fig. 5(c) shows the content
retrieval cost comparison where the lower the value, the
better the performance. The results in Fig. 5(c) shows that
the content retrieval cost of model M1, constructed by our
proposed scheme reduces the network traffic by 16% on
average compared to other schemes. Hence, Fig. 5(c) validates
that our algorithm can predict the most popular contents with
high accuracy.

VI. CONCLUSION

In this paper, we proposed the reinforcement meta-learning
based deep learning model deployment scheme for edge
caching to provide the appropriate content’s popularity pre-
diction deep learning models autonomously. We developed the
proposed scheme by using Tensorflow and train the model with
MoveLens dataset. As for the future work, we are going to
work on generalized metal-learning based deep learning model
deployment scheme for various types of the domain-specific
prediction problem.

REFERENCES

[1] Accessed: Feb. 7, 2019. [Online]. Available: http://www.cisco.com
[2] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching

through online learning,” IEEE Transactions on Multimedia, vol. 18,
no. 12, pp. 2503–2516, 2016.

[3] E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe, A. S. Er,
and M. Debbah, “Big data caching for networking: Moving from cloud
to edge,” IEEE Communications Magazine, vol. 54, no. 9, pp. 36–42,
2016.

[4] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for
proactive caching in cloud-based radio access networks with mobile
users,” IEEE Transactions on Wireless Communications, vol. 16, no. 6,
pp. 3520–3535, 2017.

(a)

(b)

Fig. 5: Caching related performance comparisons: (a) Cache
hit, and (b) Content retrieval cost comparison.

[5] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[6] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: Design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, 2016.

[7] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache:
Machine learning for network edge caching in the big data era,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 28–35, June 2018.

[8] W. Liu, J. Zhang, Z. Liang, L. Peng, and J. Cai, “Content popularity
prediction and caching for ICN: A deep learning approach with SDN,”
IEEE Access, vol. 6, pp. 5075–5089, 2018.

[9] K. C. Tsai, L. Wang, and Z. Han, “Mobile social media networks caching
with convolutional neural network,” in IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), April, pp. 83–88,
April 2018.

[10] R. Devooght and H. Bersini, “Collaborative filtering with recurrent
neural networks,” arXiv preprint arXiv:1608.07400, 2016.

[11] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, “Deepmec: Mobile edge
caching using deep learning,” IEEE Access, vol. 6, pp. 78 260–78 275,
Dec 2018.

[12] K. Thar, T. Z. Oo, Y. K. Tun, D. H. Kim, K. T. Kim, and C. S. Hong, “A
deep learning model generation framework for virtualized multi-access
edge cache management,” IEEE Access, vol. 7, pp. 62 734–62 749, 2019.

[13] Y. Goldberg, “Neural network methods for natural language processing,”
Synthesis Lectures on Human Language Technologies, vol. 10, no. 1, pp.
1–309, April 2017.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.

[15] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recur-
rent neural networks for music classification,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
2392–2396, March 2017.

[16] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

[17] Accessed: Feb. 7, 2019. [Online]. Available: https://pandas.pydata.org/
[18] Accessed: Feb. 7, 2019. [Online]. Available: https://www.tensorflow.org/.
[19] Accessed: Feb. 7, 2019. [Online]. Available: https://keras.io/
[20] Accessed: Feb. 7, 2019. [Online]. Available:

https://grouplens.org/datasets/movielens/latest/


