
Performance Evaluation of GTP-U and SRv6 Stateless
Translation

Chunghan Lee∗ Kentaro Ebisawa∗ Hitoshi Kuwata† Miya Kohno‡ Satoru Matsushima§

∗ Toyota Motor Corporation † APRESIA Systems,Ltd. ‡ Cisco Systems § SoftBank Corp.
∗ {chunghan lee, kentaro ebisawa}@mail.toyota.co.jp † hitoshi.kuwata.gt@apresiasystems.co.jp

‡ mkohno@cisco.com § satoru.matsushima@g.softbank.co.jp

Abstract—The GPRS Tunneling Protocol User Plane (GTP-U)
has long been deployed for GSM, UMTS and 4G LTE. Now
for 5G, IPv6 Segment Routing (SRv6) has been proposed as an
alternative user plane protocol to GTP-U in both 3GPP and IETF.
SRv6 based on source routing has many advantages: stateless
traffic steering, network programming and so on. Despite the
advantages, it is hard to expect to replace GTP-U by SRv6 all at
once, even in a 5G deployment because of a lot of dependencies
between 3GPP nodes. Therefore, stateless translation and co-
existence with GTP-U have been proposed in IETF. However
there are no suitable measurement platform and performance
evaluation results between GTP-U and SRv6. In particular, it
is hard to measure latency on commercial traffic generators
when a receiving packet type is different from a sending packet
type. In this paper, we focus on the performance evaluation
between GTP-U and SRv6 stateless translation. We designed an
SRv6 measurement platform using a programmable switch, and
measured GTP-U and SRv6 functions with pre-defined scenarios
on a local environment. Well-known performance metrics, such
as throughput and packets per second (PPS), are measured by the
traffic generator while the latency at the functions was measured
using telemetry on our SRv6 platform. In our evaluation, we
cannot find the abrupt performance drop of well-known metrics
at SRv6 stateless translation. Moreover, the latency of SRv6
stateless translation is similar to GTP-U and their performance
degradation is negligible. Through the evaluation results, it is
obvious that the SRv6 stateless translation is acceptable to the
5G user plane.

Index Terms—SRv6, GTP-U, 5G, P4, Mobile user plane,
Measurement

I. INTRODUCTION

With the explosive growth of smartphones and the rapid de-
velopments of cloud computing and mobile technology, mobile
networks have been drastically evolving as 5G networks that
have low latency and high throughput. For the mobile user
plane, the GPRS Tunneling Protocol User Plane (GTP-U) has
been deployed for GSM, UMTS, and 4G LTE networks.

IP is connectionless, and has a potential to mitigate session
load, so IPv6 Segment Routing (SRv6) [1][2][3] has been
proposed as an alternative user plane protocol in both 3GPP
and IETF. SRv6 based on source routing has quite a few
advantages: stateless traffic steering, common and simplified
dataplane across domains, state reduction and service program-
ming [4]. However, it is hard to expect to replace GTP- U by
SRv6 all at once, even in a 5G deployment because of a lot
of dependencies between 3GPP nodes. Currently, a method

[5] for stateless translation between GTP-U and SRv6 has
been proposed, and co-existence with GTP-U has been also
discussed for the 5G user plane within IETF.

Unfortunately, there are no quantitative performance eval-
uation results between GTP-U and SRv6. Thus, it is hard
to clarify the validity of SRv6 stateless translation method.
Moreover, there is no suitable measurement platform although
some GTP-U and SRv6 functions are supported by CPU-
based and ASIC-based platforms. In CPU-based platform, it
would be hard to achieve the pure performance evaluation
for the 5G networks. Alternatively, ASIC-based platform as
a commodity programmable switch, such as Barefoot Tofino
[6], is reasonable for the evaluation.

Although several SRv6 functions are implemented on the
programmable switch [7], there are problems with existing p4
code. The first problem is that there are no implementations
of translation functions. The second one is that unnecessary
switching and routing functions are involved to the SRv6
functions and they are widely spread out hardware resource.
The last one is that we cannot measure the latency on a
commercial traffic generator, such as IXIA, when packet types
are changed by the translation functions on the programmable
switch. In order to solve the problems, we should design and
implement GTP-U and SRv6 translation functions with the
latency measurement.

Our research goal of this paper is to evaluate the quantita-
tive performance of stateless translation between GTP-U and
SRv6, and to clarify the possibility of co-existence of GTP-U
and SRv6. To achieve our goal, we firstly designed and imple-
mented GTP-U and SRv6 stateless translation functions with
the minimum resource on the programmable switch. Next, we
injected nanosecond timestamp to a packet header as telemetry
to measure the latency at the functions. Lastly, we measured
well-known performance metrics, such as throughput, packet
loss and packets per second (PPS), at the functions under
light (100Mbps) and heavy (100Gbps) conditions on a local
environment.

This paper shows the quantitative performance evaluation of
GTP-U and SRv6 stateless translation using the programmable
switch. We clarified that there are no significant different
of well-known metrics between GTP-U and SRv6 on the
local environment. Although the latency at the SRv6 stateless
translation functions is slightly high in comparison with GTP-

978-3-903176-24-9 c⃝ 2019 IFIP

U and their impact is small under the heavy condition. Finally,
a discussion of significant implications for future 5G user
plane derives from the basis of our performance evaluation.

The rest of this paper is organized as follows. We first
introduce related work for SRv6 and discuss what are different
points in Section II. Next, we describe the overview of
SRv6 stateless translation and our measurement method for
the stateless translation in Sections III and IV. Then, we
present evaluation results on the local environment and discuss
implications from our evaluation in Section V. Finally, we
conclude with a summary of the main points in Section VI.

II. RELATED WORK

Many SRv6 applications [8][9] which could be applicable
to Datacenter Network (DCN)s were widely proposed. In
the applications, the Segment Routing Headers (SRH) [3]
was efficiently used to apply both traffic steering and service
policies. Lebrun et al. [10] designed and implemented Soft-
ware Resolved Networks (SRNs) based on Software Defined
Networking (SDN) to apply SRv6 to enterprise networks. In
SRNs, a DNS server was extended as an SDN controller
and it provided dedicated network paths to users for steering
their traffic. Y.Desmouceaux et al. [11] applied SRv6 for
network load balancer (LB). SRv6 forwarded packets from
a new connection through a set of candidate servers until the
connection is accepted to a dedicated server. Ventre et al. [12]
designed and implemented Southbound API between an SDN
controller and the SRv6 device. gRPC, REST, NETCONF, and
remote command line interface (CLI) were implemented to
analyze performance differences when each protocol is used as
Southbound API. Finally, there were no previous works using
the programmable switch as the SRv6 platform supporting the
mobile user plane.

Some SRv6 applications have been relied on SRv6 ex-
tension in the Linux kernel. Duchene et al. [13] proposed
SRv6Pipes to enable service function chain (SFC) based on
mapping the SRH to bytestream, such as TCP flow, by using
some kernel system calls. In SRv6Pipes, SR-Aware TCP proxy
provided transparency at network stack in the kernel. To
perform several network functions on the proxy, a large enough
IPv6 address space is allocated for the proxy, the function,
and the parameters of the function. SRv6 test framework
(SRPerf) was also proposed by Abdelsalam et al. [14]. Their
evaluation focused on the performance of SRv6 functions,
such as T.Encaps, T.Insert, End.X, End.DX6, and so on, in
the kernel. Poor performance was observed by both End.X
and End.DX6. The major cause of poor performance was that
caches on routing tables were not activated although a next-
hop was already known. Y.Desmouceaux [15] applied eBPF to
SRv6 to process SRHs in the kernel. They showed use cases of
SRv6: LB, ECMP nexthop, and latency measurement. Again,
it would be hard to expect to measure the pure performance
on the kernel. In summary, our performance evaluation results
were fundamentally different from those used in previous
works.

III. OVERVIEW OF THE STATELESS TRANSLATION

A. GTP-U

GTP-U, specified in 3GPP, is currently a mainstream mobile
user plane protocol and it is a connection-oriented protocol. A
GTP-U tunnel is used to carry encapsulated Transport Protocol
Data Unit (T-PDU)s. The Tunnel Endpoint ID (TEID), which
is present in the GTP header shall indicate which tunnel a
particular T-PDU belongs to. A value of TEID is allocated
on each endpoint and indicates which tunnel a particular T-
PDU belongs to [16]. In this manner, packets are multiplexed
and de-multiplexed by GTP-U between a given pair of tunnel
endpoints [17]. Thus, the same number of TEIDs is required
to process the same number of sessions.

B. SRv6

Segment Routing (SR) [2] leverages the source routing
paradigm with abstraction of network resource as segment,
called as ”Segment ID” (SID). In SR, an ingress node steers
a packet through an ordered list of the SIDs as instructions,
called as ”SID list”.

SRv6, specified in IETF, is the IPv6 dataplane instantiation
of SR so that a SID in SRv6 is a 128 bits length IPv6 address.
SRv6 introduces the concept of network programming [1].
In SRv6, a 128 bits SID is divided into arbitrary length of
locator, function and argument parts. A SID can be bound
to any function/service in a router or compute instance of the
locator so that SRv6 achieves a networking objective that goes
beyond mere packet routing.

By that, SRv6 has many advantages: common dataplane,
tunnel elimination, state reduction, and traffic steering. We
here introduce how to reduce the states using SRv6 briefly.
Only the ingress nodes have to indicate SID list that a packet
must traverse. Any other nodes in the network do not need to
maintain the states.

C. Stateless GTP-U translation with SRv6

Co-existence with GTP-U is vital to deploy SRv6 user plane
in a step-by-step basis. However if the co-existence introduces
additional states in the user plane, it could be an obstacle to
transition from GTP-U to SRv6. Thus, the solution for GTP-U
translation with SRv6 is required to eliminate the obstacle so
that some stateless translation solution is anticipated.

The idea of the stateless translation is that all identifiers
of a GTP-U tunnel can be embedded as an argument of a
SRv6 SID. It enables that just one configuration of a prefix
allocated to the translation aggregates all tunnels states into
one configured SID. This method was proposed to IETF in
”SRv6 for Mobile User Plane” [5] which defined following
functions:

• T.M.Tmap
Translate a GTP-U over IPv4 packet to a SRv6 packet.

• End.M.GTP4.E
Translate an SRv6 packet to a GTP-U over IPv4 packet.

• End.M.GTP6.D
Translate a GTP-U over IPv6 packet to a SRv6 packet.

!"#$%&'()*+%,--)+..!

!"#$%/+.0120'1%,--)+..!

/.3%"')3! &)*%"')3!

45!/!

6.+)%/232!

"758!9! !"#$%/,! !"#$%&,! 45!/!

:4";6! &7#<!

&+=>+13%!/!

?@!A!

@BC!A!

!"#$!

6/"!

:4"!

"#$%&'()(*+,-(%$#!

#$+()(+./0$#1!

!

Fig. 1. Mapping between GTP-U and SRv6.

• End.M.GTP6.E
Translate an SRv6 packet to a GTP-U over IPv6 packet.

For T.M.Tmap and End.M.GTP4.E cases, the IPv4 destination
address and TEID of the GTP-U packet are embedded as an
argument of the SID in the sending, or receiving SRv6 packet
respectively, as depicted in Fig. 1. Although this method
provided the GTP-U and SRv6 stateless translation, there are
no performance evaluation results. In this paper, we propose a
measurement methodology and analyze our evaluation results
for GTP-U and SRv6 stateless translation.

IV. MEASUREMENT METHODOLOGY

A. SRv6 platforms

Multiple hardware and software platforms have demon-
strated support for SRv6. We classify two SRv6 platforms:
CPU-based and ASIC-based SRv6 platforms. In the CPU-
based platform, there are two types of approach: Linux kernel
and DPDK [18]. Several SRv6 functions [19] are implemented
in the kernel. However the functions are processed by network
stacks on the kernel and the extra overhead of packet process-
ing will be induced.

FD.io VPP [20] using DPDK has been supported as the
platform. We can expect the high throughput and low la-
tency with enough CPU cores. When the small number of
CPU cores is used, we cannot expect to evaluate the pure
translation performance. Moreover, the performance of packet
processing can be decreased when the number of VPP graph
nodes is increased. In VPP, GTP-U and SRv6 functions were
implemented after L2 and L3 VPP nodes and the multiple
nodes were one of performance bottlenecks [21]. For above
the reasons, the CPU-based platform will be adopted as our
measurement platform in the near future.

A programmable switch like Barefoot Networks Tofino
[6] using the P4 programming language [22] can be used
as a SRv6 platform. Tofino is ASIC-based so that we can
expect to evaluate the pure translation performance for the 5G
networks. Here, our objective is to evaluate the pure translation
performance between GTP-U and SRv6. Previously, S. Lange
et al. [23] evaluated performance of LTE Serving Gateway
(SGW) which processes GTP packets, but it was on the CPU-
based platform. To achieve our objective, the programmable
switch is desirable for stable performance. Thus, we adopted
Tofino as the measurement platform.

!
"#
$
"%
&
&
%
'
()
*

+
%
",
)
"!

!"#

$%&'(&)*+,!

-./01#2+3(45!

-./01#)23(45!

6789#2+3(45!

6789#)23(45!

.&(:3#

;(+(,2&!

-.$"),,*+/+)(/.)!

!
%
01
)
2,
!

6789#<.5=5.;(4>!

6789#<?+)5=5-./@5?>!

32%$)456! 32%$)476!

Fig. 2. Programmable switch for GTP-U and SRv6.

TABLE I
FUNCTION LIST FOR GTP-U AND SRV6.

Functions Description Sending Receiving
type type

GTP-U encap. Encapsulated as GTP-U IPv4 GTP-U
GTP-U decap. Decapsulated as IPv4 GTP-U IPv4
SRv6 encap. Encapsulated as SRv6 IPv4 SRv6
SRv6 decap. Decapsulated as IPv4 SRv6 IPv4
SRv6 Translated to SRv6 GTP-U SRv6
(T.M.Tmap)
SRv6 Translated to GTP-U SRv6 GTP-U
(End.M.GTP4.E)

B. Programmable switch for the stateless translation measure-
ment

To fulfill the measurement on the adopted platform, we had
to solve several problems with our P4 code in addition to the
existing P4 code provided by Barefoot. The first problem is
that there was no implementation of the stateless translation
functions while some other SRv6 functions were available
on Tofino. The second problem is that SRv6 functions were
widely spread out to multiple stages in the pipeline which
were also involving some other functions, such as VRF and
L3 routing, which were out of scope of the measurement.
We had to get rid out of those stages and functions since
it could cause extra latency which makes us hard to evaluate
the functions. The last problem is that we cannot measure the
latency of functions on a commercial traffic generator, such as
IXIA, when a receiving packet type is different from a sending
packet type. In order to overcome the problems, we designed
and implemented the GTP-U and SRv6 functions with the
minimum stages which was one of the challenging works in
our measurement.

Our programmable switch for GTP-U and SRv6 is adopted
on Wedge100BF-32 [24] (Fig.2). The switch has a pro-
grammable parser, an ingress pipeline which consists of two
stages, and a traffic manager. To decide the baseline of
latency, we added the L2 forwarding function at the 1st stage
(Stage(0)). Next, we prepared six primitive functions and fixed
the location of functions at the 2nd stage (Stage(1)) to reduce
extra latency on the pipeline. Each function is described in
Table I. The function applied to a packet is determined by
IPv4, UDP, and IPv6 header fields matched to an entry in
Match/Action table which is equipped to the functions to
determine the processing and forwarding of the packets. The
table is simultaneously looked-up in parallel using SRAM
or TCAM. Thereby it is expected that we can get stable

translation and forwarding performance unless the number of
the entries reaches the upper-limit of the table. However as the
impact was not yet investigated, the switch was configured
with only one match/action entry for the measurement to
exclude potential performance impact. In particular, we used
48 bits timestamp as nano scale provided from Tofino to
measure the latency at the functions. It is similar to Inband
Network Telemetry (INT) [25] but without adding additional
headers and avoid impacting packet length by using source
MAC address to store the timestamp.

In the switch, incoming packets are processed as follows.
Firstly, the timestamp is recorded when the packets are re-
ceived by the switch. Next, MAC, IPv4, UDP, and IPv6 header
fields are parsed by the programmable parser and the fields
are extracted as metadata. The metadata is used to classify
the packet type and to match the primitive functions. Next,
the packets are unconditionally matched to the L2 forwarding
function at Stage(0). If the metadata is related to SRv6 or GTP-
U packets, the packets are matched to the primitive functions at
Stage(1). After the matching, the packets are forwarded to the
Traffic manager and the timestamp recorded when receiving
the packet is written into the source MAC address field. Then
the packet is looped back to the programmable switch and
the 2nd timestamp is recorded when receiving the packet.
This time, no primitive function processing is done on the
packet except for calculating the latency, by subtracting the
1st timestamp stored in the source MAC address field from
the 2nd timestamp, and set to the source MAC address field.

C. Measurement Scenarios

In this section, we introduce our measurement scenarios.
In our experiment (Fig. 3), our programmable switch on
Wedge100BF-32 is used as a DUT, and our traffic generator
(IXIA) is used as a tester. Our measurement method is based
on RFC 2544 [26], but slightly different from the original
RFC method. Well-known performance metrics, such as PPS,
throughput, and packet loss, are measured on the tester while
the latency at the function is measured on the DUT. It would
be possible to use an open source packet generator, such as
TRex [27], to measure the latency. But, the current version of
TRex cannot measure the latency with nanoscale timestamp.

The experiment is occurred as follow. Firstly, packets are
sent from the tester to the DUT to evaluate the functions.
Next, the packets are encapsulated, decapsulated, or translated
by the functions on the DUT. In this phase, the latency
at the functions is measured using the telemetry. Then, the
tester receives the changed packets. Finally, the well-known
performance metrics are measured by the tester and the latency
is extracted from the source MAC address field.

We prepared two types of measurement conditions: light
(100Mbps) and heavy (100Gbps). Under the conditions, the
PPS at both the sending and the receiving is equally achieved
to without packet loss. We also prepared two packet sizes:
short and long to clarify the performance impacts caused
by packet size differences. Particularly, the short packet size
was mainly observed at IoT application [28] and multimedia

!"#$%&'(")%('%*&!

!"#$%&(&+,%'(")%(#-"*.%/(

&0(1!234(56!784(0)(9:2;((

<+(,)=>=?2%(@A*#?0*'(!

"!

#!

$%%!

!""#$$

%&'()$*+,+&'%-&$

.%+/%+&0$

1&-*&'22'34+$/56%)7$

.89:0$!
!)=>=?2%(@A*#?0*'4('A#-("'(

%*#",B4(/%#",B(0)('&"&%C%''(

&)"*'C"?0*4(")%(>"&#-%/(

;+44<=,-5,$

>+&?-&2',)+$2+%&6)/$

'&+$2+'/@&+A!

B'%+,)C$'%$?@,)D-,/$

6/$2+'/@&+A!

Fig. 3. Measurement method on local environment.

!"#$%"&'
()*%+,-'./01''

'''''$%23-'455607!

8!95'(.607!

!"#$%"&'
()*%+,-'./01'

''''$%23-'455607!

8!95'(.607! 8!95'(.607'

!"#$%"&'
()*%+,-'./01'

''''$%23-'455607!

0"):;''

<";=>,!

?,*>+2>,'(4507' @A!BC'(D07!

CE!'(D07'

8!95'(.607!

?,*>+2>,'(4507!

8!9/'(5607!

?,*>+2>,'(4507!

F'G.'H%+I"+&:23'J! F'@A!BC'J! F'8!9/'J!

Fig. 4. Packet structure for measurements.

traffic in mobile network [29]. It is reasonable to evaluate the
functions with the short packet size.

In our experiment, a basic packet consists on an IPv4 header
(20 bytes) and a payload which we managed the sizes at 26
bytes and 1440 bytes, for short and long packet sizes respec-
tively. L2-forwarding and simple encapsulation/decapsulation
using GTP-U and SRv6 were measured to evaluate perfor-
mance impacts on the stateless translation functions. The
packet structure with the size of the headers and the payload
is depicted in Fig. 4. The total sizes of short/long packets were
64/1478, 100/1514 and 104/1518 bytes for L2-forwarding,
GTP-U and SRv6 respectively. The experiments at each con-
dition run five times. To summarize, the target functions
are measured with the four scenarios of the combination of
light/heavy conditions and short/long packet sizes.

V. EVALUATION RESULTS

A. Well-known performance metrics at primitive functions

Here, we present the performance of well-known metrics,
such as PPS, packet loss, and throughput. To achieve the
well-known metrics, we used the statistics from the traffic
generator. In our experiment, there is no packet loss at both
light and heavy conditions. The average of well-known metrics
is summarized in TABLE II. We focused on the generation of
the same number of PPS under the measurement scenarios.
We clearly achieved the same number of PPS at the functions.

Regardless of GTP-U and SRv6 under the heavy condition,
the throughput is close to approximately 100 Gbps. Although
the throughput at the GTP-U is slightly different from that at
the SRv6, the throughput gap between the SRv6 and GTP-U
is negligible. Because the packet size at the SRv6 is slightly
larger than that at the GTP-U (Fig. 4), the throughput gap is
observed. From the results, we confirmed that there were no
abrupt performance changes in the well-known metrics under
the scenarios.

TABLE II
AVERAGE OF WELL-KNOWN PERFORMANCE METRICS (PPS AND THROUGHPUT).

Light (short) Light (long) Heavy (short) Heavy (long)
PPS Throughput PPS Throughput PPS Throughput PPS Throughput

GTP-U functions 100,805 96.7 Mbps 8,127 99.7 Mbps 100,805,260 96.7 Gbps 8,127,358 99.7 Gbps
(GTP-U encap. and decap.)

SRv6 functions 100,805 99.9 Mbps 8,127 99.9 Mbps 100,805,260 99.9 Gbps 8,127,358 99.9 Gbps
(SRv6 encap. and decap.)
SRv6 translation functions 100,805 99.9 Mbps 8,127 99.9 Mbps 100,805,260 99.9 Gbps 8,127,358 99.9 Gbps

(T.M.Tmap and End.M.GTP4.E)

Fig. 5. Normalized latency on local environment.

B. Latency at primitive functions

Since packets are forwarded to the additional stage, the
latency at the functions will be higher than the L2 forwarding.
Again, there is no way to measure the latency on the traffic
generator when the packet type was different between the
sending and the receiving. Alternatively, we measured the
latency using the telemetry function at the programmable
switch. The maximum latency was under one microsecond.
Unfortunately, the absolute values are omitted for Barefoot
network’s NDA. We present the normalized latency based on
the baseline (Avg. latency of L2 forwarding) in Fig. 5.

Under the light condition, there are no abrupt changes
in the latency (the white is the long and the blue is the
short) regardless of the packet sizes. With the long case, the
normalized latency on both GTP-U encap. and SRv6 encap. is
zero. Next, the normalized latency (the red is the long and the
green is the short) under the heavy condition is also shown in
the same Fig. 5. Interestingly, it was observed that the latency
was noticeably impacted most at SRv6 encap., followed by
T.M.Tmap and GTP-U encap. for both of the short and the
long cases while much low latency impact was observed on
the rest of functions, such as GTP-U decap., SRv6 decap.
and End.M.GTP4.E. Due to the high PPS rate, it was also
observed that the latency impact on the short was relatively
high compared to the long.

When it comes to the group of latency-impacted functions,
we found one common characteristic among them, i.e., the
header size of forwarding packets was increased after the func-
tion processing. On the contrary, another group of functions
processes the forwarding packets to decrease header size of the
packets. We classified the patterns of the results into increased
and decreased patterns.

As the variation of latency impacted-patterns under the

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

-250 -200 -150 -100 -50 0 50 100 150 200 250

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n
(P

D
F)

Latency deviation [ns]

GTP-U encap.(short)
SRv6 encap.(short)

T.M.Tmap (short)
GTP-U encap.(long)

SRv6 encap.(long)
T.M.Tmap (long)

(a) Increased pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-20 -15 -10 -5 0 5 10 15 20

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n
(P

D
F)

Latency deviation [ns]

GTP-U decap.(short)
SRv6 decap.(short)

End.M.GTP4.E(short)
GTP-U decap.(long)

SRv6 decap.(long)
End.M.GTP4.E(long)

(b) Decreased pattern

Fig. 6. PDF of latency deviation under heavy condition.

heavy condition, we analyzed the PDF of latency deviation
at all functions (Fig. 6). In the figure, the zero value on x-axis
is the avg. latency of the functions. The evaluated function is
unstable when the deviation is far to the zero. In contrast, the
function is stable when the deviation is close to the zero. In
the increased pattern, it was expected that the PDF values (Fig.
6(a)) of the short cases could be fluctuated than the long due
to the high PPS rate. However in the long case, T.M.Tmap
only followed that expectation. T.M.Tmap has the smallest
gap in terms of header size difference between before/after
the processing, and the lowest latency is observed in the long
within the increased pattern. Interestingly, we found that SRv6
encap. was stable from the PDF value even in the short. It is
one of our future work for the investigation. On the other hand,
the PDF values (Fig. 6(b)) at all functions in the decreased

pattern are concentrated in the avg. latency. Thus, we cannot
find any particular differences between the functions.

C. Discussion

The implication derived from the measurement results on
the local environment is summarized as follows. In the heavy
condition, the extra latency and unstable performance were
observed. However due to that it is commonly observed
throughout the increased pattern, it would be a genuine char-
acteristic of the switch. Thus it is elaborated that the pure
performance of the translation functions, such as T.M.Tmap
and End.M.GTP4.E, is low and stable in terms of the latency.
Thus, our evaluation results are enough to show the possibility
of co-existence of GTP-U and SRv6.

The latency observed in the increased pattern could be
caused by some functions related to the packet buffer man-
agement of the switch. It means that some space still exists to
be improved on that functions in the future.

VI. CONCLUSION

In this paper, we focused on the performance evaluation
by measuring the primitive functions for GTP-U and SRv6
stateless translation using an industry-grade programmable
switch for co-existing with GTP-U as 5G user plane. In order
to evaluate the pure translation performance, the well-known
performance metrics are measured by the traffic generator
while the latency at the functions was measured by the teleme-
try on the programmable switch. In our local experiments,
the latency at the increased pattern was noticeably increased
when the throughput was close to 100 Gbps. It was interesting
that the stable and lowest latency was achieved by one of
the stateless translation function (T.M.Tmap). Through the
quantitative results, the performance gap among the stateless
translation, GTP-U and SRv6, is small and it is negligible. We
hereby believe that our performance evaluation results will be
helpful to consider the co-existence of GTP-U with SRv6 and
the transition methods to SRv6 in 5G deployment.

In future work, we intend to evaluate various SRv6 functions
on other platforms, such as VPP and the kernel. We will also
propose and deploy a full 5G network with suitable scenarios
for co-existing with the GTP-U.

REFERENCES

[1] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and
Z. Li, “SRv6 Network Programming,” Internet Engineering Task Force,
Internet-Draft draft-filsfils-spring-srv6-network-programming-07, Feb.
2019.

[2] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Jul. 2018.

[3] C. Filsfils, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer, “IPv6
Segment Routing Header (SRH),” Internet Engineering Task Force,
Internet-Draft draft-ietf-6man-segment-routing-header-18, Apr. 2019.

[4] F. Clad, X. Xu, C. Filsfils, D. Bernier, C. Li, B. Decraene, S. Ma,
C. Yadlapalli, W. Henderickx, and S. Salsano, “Service Programming
with Segment Routing,” Internet Engineering Task Force, Internet-Draft
draft-xuclad-spring-sr-service-programming-02, Apr. 2019.

[5] S. Matsushima, C. Filsfils, M. Kohno, P. Camarillo, D. Voyer, and
C. Perkins, “Segment Routing IPv6 for Mobile User Plane,” Internet En-
gineering Task Force, Internet-Draft draft-ietf-dmm-srv6-mobile-uplane-
04, Mar. 2019.

[6] “Barefoot tofino,” https://barefootnetworks.com/products/brief-tofino/
[Online].

[7] “Segment routing ipv6 – interoperability demo is already there!”
https://blogs.cisco.com/sp/segment-routing-ipv6-interoperability-demo-
is-already-there [Online].

[8] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment routing: a comprehensive
survey of research activities, standardization efforts and implementation
results,” CoRR, vol. abs/1904.03471, 2019.

[9] Z. N. Abdullah, I. Ahmad, and I. Hussain, “Segment routing in software
defined networks: A survey,” IEEE Communications Surveys Tutorials,
vol. 21, no. 1, pp. 464–486, Firstquarter 2019.

[10] D. Lebrun, M. Jadin, F. Clad, C. Filsfils, and O. Bonaventure, “Software
resolved networks: Rethinking enterprise networks with ipv6 segment
routing,” in Proceedings of the Symposium on SDN Research, ser. SOSR
’18. New York, NY, USA: ACM, 2018, pp. 6:1–6:14.

[11] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen, “6lb:
Scalable and application-aware load balancing with segment routing,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 819–834,
April 2018.

[12] P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils, “Sdn architecture
and southbound apis for ipv6 segment routing enabled wide area
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1378–1392, Dec 2018.

[13] F. Duchêne, D. Lebrun, and O. Bonaventure, “Srv6pipes: enabling in-
network bytestream functions,” in IFIP Networking 2018, 2018.

[14] A. Abdelsalam, P. L. Ventre, A. Mayer, S. Salsano, P. Camarillo,
F. Clad, and C. Filsfils, “Performance of ipv6 segment routing in linux
kernel,” in 2018 14th International Conference on Network and Service
Management (CNSM). Washington, DC, USA: IEEE Computer Society,
Nov 2018, pp. 414–419.

[15] M. Xhonneux, F. Duchene, and O. Bonaventure, “Leveraging ebpf for
programmable network functions with ipv6 segment routing,” in Pro-
ceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’18. New York, NY,
USA: ACM, 2018, pp. 67–72.

[16] 3GPP, “System architecture for the 5g system (5gs),” 3rd Generation
Partnership Project (3GPP), Technical specification (TS) 23.501, 2019.

[17] 3GPP, “General packet radio system (gprs) tunnelling protocol user
plane (gtpv1-u),” 3rd Generation Partnership Project (3GPP), Technical
specification (TS) 29.281, 2019.

[18] “Intel dpdk,” https://01.org/packet-processing.
[19] “Srv6 linux kernel implementation,” https://segment-routing.org/ [On-

line].
[20] “Fd.io,” https://fd.io/ [Online].
[21] “Improve the performance of gtp-u and kube-proxy using vpp,”

https://ossna2017.sched.com/event/BEN4/improve-the-performance-of-
gtp-u-and-kube-proxy-using-vpp-hongjun-ni-intel [Online].

[22] “p4,” https://p4.org/ [Online].
[23] S. Lange, A. Nguyen-Ngoc, S. Gebert, T. Zinner, M. Jarschel, A. Köpsel,

M. Sune, D. Raumer, S. Gallenmüller, G. Carle, and P. Tran-Gia,
“Performance benchmarking of a software-based lte sgw,” in 2015 11th
International Conference on Network and Service Management (CNSM).
Washington, DC, USA: IEEE Computer Society, 2015, pp. 378–383.

[24] “Wedge 100bf-32x,” https://www.edge-core.com/productsInfo.php [On-
line].

[25] “In-band network telemetry (int),” https://p4.org/assets/INT-current-
spec.pdf [Online].

[26] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network
Interconnect Devices,” RFC 2544, Tech. Rep. 2544, Mar. 1999.

[27] “Trex,” https://trex-tgn.cisco.com/ [Online].
[28] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-

nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classi-
fying iot traffic in smart cities and campuses,” in 2017 IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
Washington, DC, USA: IEEE Computer Society, May 2017, pp. 559–
564.

[29] S. Fowler, J. Sarfraz, M. M. Abbas, E. Bergfeldt, and V. Angelakis,
“Evaluation and prospects from a measurement campaign on real
multimedia traffic in lte vs. umts,” in 2014 4th International Conference
on Wireless Communications, Vehicular Technology, Information Theory
and Aerospace Electronic Systems (VITAE). Washington, DC, USA:
IEEE Computer Society, May 2014, pp. 1–5.

