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Abstract—To detect the position and the orientation of a mobile
device within a Wireless Local Area Network (WLAN) covered by
multiple access points (APs), the intrinsic properties of multiple-
input multiple-output (MIMO) channels are used linking the
received signal strength indicators (RSSIs) to the distance and
exploiting the received signal correlation structures. Location and
orientation fingerprinting is a map based positioning solution
that stores for a given orientation past measurements of RSSIs
at known reference/grid points in a database that is later used
to localize a mobile device at an unknown location and with
unknown orientation to the closest reference point. This paper
focuses on processing the RSSI data vectors from multiple receiv-
ing antennas on a downlink by applying the core tools of Machine
Learning (ML) classification methods to evaluate the effects of
MIMO RSSI meta-data when capturing 802.11n/ac packets using
commodity hardware. Specifically, the paper provides insights
into the design of the overall location fingerprinting system
operating with new WiFi physical link layer protocols. To verify
the operation of the proposed system, experimental results are
presented to investigate the impact of different factors, like the
number of receive antennas, affecting the estimation accuracy
for the location and the orientation of mobile user.

Index Terms—RSSI, indoor localization, fingerprinting, ma-
chine learning

I. INTRODUCTION

The viability of precise indoor localization using physical
layer information in 802.11 networks is an important problem
as location information has many potential applications from
context aware services through efficient radio frequency (RF)
resource allocation and management [1], [2]. The state of the
art in indoor localization is quite sophisticated. Researchers
have explored different techniques such as those based on
RSSI, Angle of Arrival ( AoA), Time Difference of Ar-
rival (TDoA), and Channel State Information (CSI) princi-
ples [3], [4]. The RSSI-based approach using conventional
neural networks is the simplest and most cost effective but
it has its limits in terms of location accuracy to one meter
when one antenna transceivers are deployed [5]. Over time,
the frontier of indoor localization technology has advanced
by deploying more sophisticated classification methods such
as those using machine or deep learning and channel state
information (CSI) achieving decimeter accuracy [6]. With the
proliferation of WiFi APs supporting MIMO communications,
indoor positioning and localization techniques which use mul-
tiple antennas are becoming ever-more challenging, and ML
has the potential to contribute in this area as ML performs
nonlinear approximations and is intrinsically data-driven [2].

The challenge when designing an indoor localization system
using WiFi infrastructure is that for this system to be a
ubiquitous service, it has to be installed on already deployed
WiFi infrastructure or commodity hardware without requiring
any major firmware changes in APs or network interface cards
(NICs). When capturing wireless frames, the 802.11 overhead
in a frame is pre-pended by the device driver with a metadata
header, offering information about how the frame was cap-
tured. Some of the most common parameters include channel
(frequency) and data rate (based on Modulation and Coding
Scheme (MCS) index value). The physical layer information
particularly important in this paper is the power level in dBm
at which the sniffing adapter antenna received the packet, i.e.,
RSSI. In 802.11g, the receiver was using only one antenna
and the device driver was reporting only one RSSI value for a
given frame. In 802.11n and ac physical link layer standards
when the data is received using multiple spatial streams, the
RSSI should be reported by the device driver as a vector of
dimensionality determined by the number of receive antennas
as shown in Fig. 1. At this point, different wireless sniffers
and device drivers use different metadata header formats to
encode the wireless physical layer and not always report the
vector representation for RSSI but rather its average value. In

Fig. 1. Per Packet Information 802.11n header from AirPcap NIC.

this paper, in the experimental part, we use Atheros wireless
802.11n/ac chipsets and corresponding drivers that provide
us with more than one RSSI value when receiving data on
multiple spatial streams. Specifically, Atheros QCA9558, a
802.11n chipset, presents four different RSSIs per received
packet if it uses three receive antennas: one is a combined



RSSI for all antennas, the other three represent three individual
antennas’ RSSI values.

The main contribution of this paper is a localization system
that works on commodity off-the shelf WiFi hardware that
provides (i) decimeter localization accuracy and (ii) reliable
orientation estimation for four directions: North-South (N-S),
East-West (E-W), W-E and S-N with possible extension to
eight directions. This system uses location fingerprinting (i)
to leverage existing RSSI information from multiple receive
antennas as part of the IEEE 802.11 n and ac protocols when
receiving data from different APs on multiple spatial streams
and (ii) to capture details unique to the environment. The
fingerprinting deployed in this paper is an extension of our
previous work when working with one antenna as in [5],
where location fingerprinting was presented mathematically
as a statistical classification problem. In this paper, since we
work with both location and orientation fingerprinting, the
classification space is expanded by the factor given through
the number of orientations we attempt to differentiate. The
feature space for our classification algorithms is also expanded
by the number of RSSI values we obtain on one packet from
one AP.

II. FINGERPRINTING INDOOR LOCALIZATION

A. Background

The proposed location and orientation fingerprinting has
two phases: a training and an operational/test phase. During
the training phase, it collects different RSSI measurements
related to the position and orientation reference points as its
fingerprints (or features) database. In the operational phase,
mobile device reads its RSSI values and use the fingerprints
database to find the closest reference points to determine
its location and orientation. ML classification method like
k-nearest-neighbor (kNN), Decision Tree (DT) are used to
extract the core features and reduce the computational com-
plexity for localization [7], [8].

RSSI is the signal strength received at the receiver measured
in decibel-milliwatts (dBm) or milliWatts (mW), which can be
used to approximate the distance d between transmitter and
receiver by [9]:

RSSI = −10n log10(d) +A (1)

where n is the path loss exponent (which varies from 2 in
free space to 4 in indoor environments) and A is the RSSI
value at a reference distance from the receiver. RSSI-based
fingerprinting localization is simple and cost effective since
we can have the RSSI values from off-the-shelf WiFi NICs
easily, but this approach suffers from performance degrada-
tion in some propagation environments where RSSI values
exhibit large variations due to multi-path fading, shadowing
effect and measurement noise. As an alternative to RSSI
environment characterization, some WiFi NICs, like Atheros-
based, report the receive signal strengths called in this context
Channel State Information (CSI) for individual subcarriers in
OFDM frames, i.e., 56 subcarriers for 20MHz channel and
114 subcarriers for a 40MHz channel. This is in contrast

to RSSI which represent received power in the whole signal
bandwidth [9]. CSI amplitude values are believed to be more
stable over time than RSSI values. However, while CSI-based
fingerprinting may improve positioning accuracy, it also brings
up computational complexity because of the data scale of CSI
amplitude values. In this paper, with the focus on reduced
computational complexity localization algorithms suitable for
mobile device, the proposed localization method is only using
the RSSI values, though our experimental setup is capable to
work with both RSSI and CSI MIMO channel characterization.

Since introduction of MIMO in 802.11n, multiple antennas
are used (i) to form more spatial streams to increase data rates
(multiplexing gain) or (ii) to increase the reliability by working
with space-time block coding (diversity gain). Atheros WiFi
chips used in our experimental WiFi setup provide more than
one RSSI values on 802.11n or ac data frames. Specifically,
Atheros QCA8558, a 802.11n WiFi chip used in our experi-
ment, can offer 4 RSSI values when it utilizes two or three
spatial streams for MIMO with three receive antennas. By
analyzing these four values for RSSI, we found that the vector
values for RSSIs offer better characterization of the network
environment for the purpose of localizing mobile device than
working with independent RSSIs from individual antennas
when the correlation structure between the received signals
on different antennas is lost and this motivated the work in
this paper

From the perspective of machine learning (ML),
fingerprinting-based localization approach can be treated
as multi-label classification problem. Hence, many ML
methods, such as kNN, DT and support vector machine, are
applied to reduce the computational complexity and dig out
the core features for better localization performance. We use
kNN and DT algorithms in our experiments to show how the
vector representations for RSSI values improve localization
accuracy if they are included in the fingerprints (features)
database. kNN algorithm compares its real-time RSSI values
with k nearest weighted RSSI values of known locations to
find the matched location. Decision Tree can learn decision
rules from the off-line fingerprints database and then uses
these rules for classification (localization) to determine which
location the real-time RSSI belongs to.

B. Experimental Setup

Our experiment setup include three location-fixed APs and
one Mobile Device (MD) as showed in Fig. 2. The MD
works in a monitoring model which can receive data packets
from three APs simultaneously. During the training phase, MD
records the RSSI values as fingerprints in the off-line database
for ML classification training. In the test phase, MD uses its
real-time RSSI values and the trained model to predict (search)
the matched location. In our experiment the separation into
APs and MD is only at the logical level, as we actually deploy
four TP-Link AC1750 Archer C7 wireless routers to emulate
our testing scheme. Three of the TP-Link devices are used as
fixed APs and one simulates MD where the differentiation is
through the CSI-Tools software run on these devices. TP-Link
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Fig. 2. WiFi equipment configuration.

AC1750 C7 802.11n/ac wireless router is 2.4G/5G Hz dual
band Wi-Fi router with 6 antennas (3 for 2.4GHz and 3 for
5GHz) installed. Its powered by Atheros QCA9558 Scorpio
system-on-chip, a 720-MHz processor, and 128MB of RAM.
In order to fully control these APs and MD, we refreshed them
with open source firmware developed by OpenWrt community
and installed Atheros-CSI-Tools program [10]. Thanks to the
powerful CSI tools developed by Li and Xie, not only can we
extract CSI info but also we can retrieve RSSI values we need
in our experiment.

III. ML LOCATION AND ORIENTATION FINGERPRINTING

A. Fingerprinting Localization Flow Chart

With the help of Atheros-CSI-Tools, MD can obtain CSI
data packets from APs, from which we can extract many
useful features for indoor localization including RSSI, CSI,
timestamps, number of transmitting antennas, transmit-rate,
number of receiving antennas, number of spatial streams etc.
As the name implies, timestamps create the time line when
the CSI data packet is received. Other features’ meaning
can be also inferred from the names themselves. To reduce
the computational complexity and evaluate the performance
improvements with the introduction of multiple RSSI values
from multiple receive antennas, we exclude CSI and other
features. We only work in this paper with RSSI values as our
localization features.

Fingerprinting localization approach used in this paper
is visualized with the flow chart in Fig. 3. MD receives
three groups of RSSI values from three APs simultaneously,
RSSI1, RSSI2, RSSI3, and each group of RSSI is consist
of 3 RSSI values related to 3 antennas of MD, respectively. We
use RSSIij , (i=1-3, j=1-3) to denote the RSSI value received
at antenna j from AP(i) for a given orientation as shown in
Fig. 3. (COMRSSIi, i=1-3) is the combined RSSI values

corresponding to three APs. In total our fingerprints dataset
is denoted as follows:

RSSI =[RSSI,RSSI2, RSSI3, COMRSSI]

=[RSSI11, RSSI21, RSSI31, COMRSSI1,

RSSI12, RSSI22, RSSI32, COMRSSI2,

RSSI13, RSSI23, RSSI33, COMRSSI3]

(2)

After collecting RSSI values/vectors as in (2), we establish
an off-line features database including the reference points
(physical location) where these RSSI values are collected.
ML builds up a prediction model based on this database in a
training phase. Then in the test phase, MD reads its new RSSI
values and uses the database and corresponding statistical
classification algorithms to predict (search) its most likely
location/orientation. We treat this as a multiple classifications
(locations/orientations) problem and solve it using two ML
classification methods: kNN and DT. This is with the objective
to determine which methods offers the performance improve-
ment if RSSI values from multiple antennas are considered.
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Fig. 3. RSSI-based fingerprinting localization.

1) Indoor Environment Fingerprints Survey: The first step
to performing the experiments was to place the APs in certain
known locations and select their frequency channels. Grid
points were placed in an even pattern, roughly 30cm apart
from each other. In addition to each grid point, a test point
was placed near each reference point to be used during the
operational/test phase. Once the environment had been marked
and measured, MD in the monitoring mode was placed at each
grid point in turn. Data was captured for eight orientations.
All experiments were conducted in our laboratory which is
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composed of three small rooms and one big room with the
floor layout in Fig. 4. There are lots of tables, bookshelves,
and PCs crowed in the big room, which block most of light
of sight (LOS) paths. Three APs are placed in corners with
different heights from the floor. We separate laboratory spare
space into many 30cm X 30cm grids and collect the RSSI
values from each location marked in red. To obtain fine-tuned
fingerprints, we collect 500 groups of RSSI values for eight
orientations at every location. Each group contains three small
groups of RSSI as presented in (2). In practice, we use a
alternative but more practical way to check the performance of
localization method. We collect the fingerprints database once
and separate the database into two parts by random, 70% of
data are used for training to build , the rest 30% are used to test
the localization accuracy to see the performance improvement
along with the number of RSSI (antennas).

IV. RESULTS ANALYSIS

This section provides a performance summary of two local-
ization methods based on kNN and DT methods as presented
in the previous sections when we collected 500 RSSI vectors
from each APs with packets arriving at the average rate
of 500 packets per second. Figure 5 shows the relationship
between localization accuracy and the number of antennas
(or number of RSSI values) when deploying kNN and DT
based localization. The actual number of antennas varies from
1 to 3, though in all performance graphs we add the forth
group of RSSI values that represents the average reading from
the metadata overhead which actually does not gives any new
information and does not affect the performance. The number
1 means that only one RSSI (either the combined RSSI used
in most RSSI-based localization approaches, or one of three
individual RSSIs). The results in Fig. 5 represent the mean
of all possible combinations of antenna for a given number.
Specifically, the number of 2 along the x-axis means any two
of the three individual antennas’ RSSI, but not include the
combined RSSI. We use all three individual antennas’ RSSI
if the number is 3. Number 4 includes all antennas’ RSSI
together with the combined RSSI.

A. Localization Accuracy Improvements
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Fig. 5. Localization accuracy with number of antennas.

From Fig. 5, we have 16.59% and 24.35% accuracy using
kNN and DT when working with single RSSI values on a
30cm grid, respectively. Detection accuracy reaches 48.58%
and 43.14% if we use 2 antennas, which is a big performance
improvement of about 24% (double). If we include all three
antennas, we can see another about 23% enhancement. We
also dropped out some locations to form a new database whose
locations have 60cm distance between each other, figure shows
us the overall localization accuracies are increased due to the
localization requirement decreased from 30cm to 60cm. In this
situation, we also see one more antenna brings up about 20%
improvement. We see about 92% positioning accuracy in case
of 60cm distance, which is a much better result compared
with our past work, which can only have about 1.8m or
worse location accuracy. However, both situations do not see
improvement comparing if we include the combined RSSI.
Adding up the combined RSSI does not bring new features
for ML classification.

B. Orientation Detection of Mobile Device

In the process of executing initial experiment in Sec-
tion IV-A, we noticed that the orientation/direction of MD
has an influence on the RSSI values. Therefore, we always
keep the MD in predetermined direction with the purpose to
get improved localization accuracy. In other words, in order
to reach about 92% accuracy on 60cm grid, we arranged that
MD had the same orientation when collecting data in offline
features database. Since the RSSI values reflect the directions
of the MD, we can use it to detect its direction reversely if
we can read its RSSI values. Therefore, in this part of our
experiment, we collected the RSSI values on one location
but in eight directions as shown in Fig. 6 to see if we can
detect the orientation change of MD. It also can be looked
as an ML classification problem. Figure 7 shows that results
for detecting the orientations of MD in eight possibilities.
With one antenna RSSI values, the accuracy to determine the
orientation is only about 53% to 59%. One more antenna RSSI
values will enhance the detection accuracy to about 85%. It
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gets a very respectable result of about 93% or 94% when
three antennas RSSI values are used. Similarly, introducing
the combined RSSI as the fourth RSSI value does not improve
the accuracy. Since the orientation of MD will impact the

1 2 3 4
Numer of Antennas (RSSI group values)

0

20

40

60

80

100

Di
re

ct
io

n 
de

te
ct

io
n 

ac
cu

ra
cy

(%
)

92.7793.02
85.38

59.64

93.9794.28
84.89

53.16

Direction detecting accuracy and number of Antennas

DT
KNN

Fig. 7. Orientation detection accuracy vs number of antennas.

accuracy of localization, we collect more RSSI values in eight
directions at each grid point and use ML classification to
check the influence. Each orientation per location has 500
groups of RSSI from three APs as the same before, so we
have eight times data scale (4,000 groups of RSSI) comparing
our last features database. The categories of classification also
increase up to eight times of former experiment. To show
the impact of orientation change of MD on the localization
accuracy, we redraw one direction accuracy together with eight
directions localization accuracy for comparison, which means
that we not only want to locate where MD is and want to
know which direction MD is. From Fig. 8, it is obvious that
localization accuracy in case of detecting eight orientations at
certain location are much lower than detection location (one

orientation only) case in 60cm grids situation. But we still can
see the accuracy is enhanced with the increment of antennas.
Similarly, adding up combined RSSI values does not improve
much the accuracy. To attain comparable localization accuracy,
more antennas need to be equipped in case of localizing
both eight possible orientation and location. The experiment
results also show that the potential reason for poor RSSI-based
localization accuracy in our past work, that is, we did not take
the influence of orientation of antennas into consideration.
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Fig. 8. Eight directions detection accuracy vs number of antennas.

V. CONCLUSION

The contributions of this paper are twofold: (i) the de-
velopment of new algorithms for localization and orienta-
tion prediction in WLANs with MIMO links; and (ii) the
performance evaluation of these algorithms in a real world
test environment on commodity hardware. RSSI values not
only represent the distance between transmitter and receiver,
but they also potentially contain core features which can be
used by machine learning method to attain more accurate
localization and orientation detection. The most interesting
observations in our work are that (i) increasing the number
of receive antennas and working with vector representations
of RSSIs can improve the performance of the localization
system more than working with individual readings from the
same antennas; and (ii) we could differentiate the device
orientation, e.g., N-S vs S-N, which seems counter intuitive
when one considers the symmetry of the receiving antenna
array in different cases. Disregarding orientation impact on
RSSI values in training phase will deteriorate machine learning
location accuracy subsequently.
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