
A Techno-Economic Assessment of Microservices

Ioannis Papakonstantinou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

mai19056@uom.edu.gr

Sarantis Kalafatidis
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

kalafatidis@uom.edu.gr

Lefteris Mamatas
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

emamatas@uom.edu.gr

Abstract—The microservices design paradigm enables appli-
cations, usually based on containers, exploiting the flexibility of
cloud computing and bringing unique scalability, fault-tolerance
and resource-allocation benefits. A number of orchestration fa-
cilities, including Kubernetes, target the efficient deployment and
operation of containers and are mainly focusing on the mainte-
nance of server resource allocation under predefined thresholds,
i.e., through scaling up or down containers to mitigate dynamic
changes in the workload. In this work, we highlight the technical
capabilities and cost-saving impact of microservices in contrast to
traditional monolithic applications, based on a techno-economic
analysis. We also investigate the service performance vs resource
allocation trade-off, uncovering interesting dynamics when elas-
ticity is driven from service quality metrics. This approach allows
the Service Providers (SPs) to balance their profit margins with
the customer satisfaction, i.e., reducing the infrastructure cost
while keeping the service performance at an acceptable level.

I. INTRODUCTION

Cloud computing [1] is offering computing as a utility,
matching dynamically the resource supply with the demand,
which leads to better services and significant reductions in
the infrastructure expenses. Traditional monolithic applications
are not suitable for cloud environments, since they are usually
resorting to resource over-provisioning, due to their inability
to flexibly adapt to dynamic workloads, increasing the cost of
infrastructure and the risks of instabilities due to unexpected
peaks in the service resource requirements. Along these lines,
the microservices architecture (MA) [2] was proposed as "an
approach to developing a single application as a suite of small
services, each running in its own process and communicating
with lightweight mechanisms". Such systems consist of small,
single-functionality services that can be implemented, scaled
and tested independently, especially towards putting together
large-scale services handling dynamic workloads.

Although MAs introduce virtualization and communication
overhead, their capability to flexibly tailor the service deploy-
ment to the instantaneous dynamics of the client resource
demands brings significant application performance, fault-
tolerance and infrastructure cost benefits. Such services are
mainly based on containers and orchestrated by novel envi-
ronments, e.g., Kubernetes, towards satisfying particular server
resource demand goals. However, the latter mainly consider the
containers as black boxes, without explicitly addressing crucial
Service Provider (SPs) aspects, such as customer satisfaction
or monetary cost of the utilized cloud resources.

Since the infrastructure operational cost is significant for
a SP, efficient resource management leads to profit increases,
depending on the maintenance of customer satisfaction. The
targeted client performance is usually related to particular
Service Level Objectives (SLOs), as part of Service Level
Agreements (SLA) between the Service and the Infrastructure
Providers. Consequently, it is important to study the impact
of MAs on these both aspects and enable the appropriate
tuning of user Quality of Experience (QoE) and infrastructure
monetary cost trade-off. The latter should be continuously
maintained through appropriate scaling up or down of mi-
croservices with respect to the dynamic workload magnitude,
i.e., a capability called elasticity. Elasticity should strike a
balance between over-provisioning and under-provisioning [3],
avoiding unnecessary server resource utilization and reduced
QoE, respectively.

In this paper, we highlight the technical and economical
benefits of MA, contrasted to the monolithic application design
option, based on a techno-economic analysis. Our findings
underline both the server resource efficiency benefits of MA
and the infrastructure cost reduction, which are both up to
64%. Furthermore, we argue that a tolerable increase in the
application Response Time (RT) can further reduce the opera-
tional costs of the applications, e.g., by 72% in our case. Our
results suggest that relevant elasticity mechanisms based on
upper thresholds in customer performance metrics can be an
interesting viable option for Service Providers.

The remainder of this paper is organized as follows. Section
II contrasts this paper against the related works. Section III
provides our techno-economic analysis, comparing the mi-
croservices to the monolithic approach, in terms of application
performance, resource utilization and infrastructure cost bene-
fits. The same section also investigates the trade-off between
service RT vs server resource allocation and cost. Lastly,
Section IV discusses our next steps and concludes this paper.

II. RELATED WORKS

Here, we discuss works investigating the technical and
economic benefits of MAs, as well as elasticity approaches
that consider microservices and their economic and client
performance impact.

A number of papers investigate the technical capabilities
of microservices by comparing them with monolithic archi-
tectures, i.e., experimenting with two versions of the same
application, corresponding to both design options. In [4], [5],978-3-903176-31-7 c©2020 IFIP

the authors experiment with web services developed with
both Play framework and AWS Lambda as the microservices
technology, highlighting server resource savings but with an
increase on client RTs. A similar comparative methodology is
adopted by paper [6], but with a social network application
and container-based microservices, i.e., achieving high scal-
ability and throughput, but lower RTs, in the case of MA.
The work [7] observed a significant resource consumption
increase in the MA case, mainly due to the containerization
overhead, based on single-host experiments. However, the
MA demonstrates its full potential with a large number of
users and a distributed deployment of service functions, while
exercising its novel elasticity capabilities. For example, in [8]
the authors recommend the monolithic architectural option in
the case of a small load, i.e., less than 100 users. Finally,
in [9] the authors compare traditional VMs with container-
based services in terms of scalability, highlighting significant
operational efficiency in the case of MA.

The survey paper [3] discusses elasticity handling mecha-
nisms in cloud computing, including approaches for microser-
vices. Furthermore, proposals [10], [11] take into account the
infrastructure cost, while also consider service performance,
but do not have a techno-economic viewpoint. In particular,
paper [10] targets service maintenance in accordance with the
SLA, at an economically efficient level in terms of locating
low-cost cloud resources. In [11], authors perform workload
prediction to drive microservices scaling through implementing
vertical elasticity strategies, i.e., dynamically adding or remov-
ing physical resources.

Here, we highlight the technical and economical benefits of
microservices in contrast to monolithic architectures through
a techno-economic analysis which decouples the impact of
virtualization overhead. Also, we investigate the service perfor-
mance vs resource allocation trade-off, in the context of MA.
Our research results highlight the efficient resource allocation
and cost benefits of microservices that could be further im-
proved with elasticity processes targeting conservative service
quality

III. TECHNO-ECONOMIC STUDY OF MICROSERVICES

In this section, we evaluate the technical and economic
benefits of microservices technology, also investigating the
service RT vs the infrastructure costs trade-off. We present the
methodology of our analysis and our techno-economic study
built around a web application going viral example. We assume
a typical web site that publishes articles that suddenly become
viral. The web site owner should keep his site online, while
minimizing his web hosting expenses, even by sacrificing web
visitors’ performance up to a tolerable point. Our goal is to
investigate how different service deployment configurations, in
terms of service architecture types and elasticity strategies, can
handle this challenging situation.

A. Methodology

To assess the impact of MA in terms of resource allocation,
service performance and infrastructure expenses, we carried

out a comparative analysis of two variations of a web appli-
cation we implemented, i.e., based on both microservices and
monolithic architectures, as shown in fig. 1. The application
consists of a number of independent service functions, such
as: (i) Nginx routing the outside requests to particular service
functions; (ii) Main Page hosting the main webpage of the
web application; (iii) Articles publishing articles that become
viral, returned to the user after an interaction with a MongoDB
database; (iv) Site Admin and Comments implementing the
web site administration and the capability of visitors to leave
comments, respectively; and (v) MongoDB representing a
MongoDB database. On the left side of fig. 1, we illustrate
a version of the application aligned to the MA paradigm, i.e.,
considering all the above functions as microservices, while on
the right side the monolithic version. In the latter, all functions
belong in the same service architecture, besides the MongoDB,
which we do not take into consideration, since there are no
architectural differences in its deployment between both service
architectural options.

(i) Microservices Architecture (ii) Monolithic Architecture

Fig. 1. Alternative architectures of web application

Our analysis is based on the following methodological
choices and assumptions: (i) both services are deployed in
containers to decouple the impact of microservices technology
used, e.g., the Monolithic container hosts all the web applica-
tion, besides the MongoDB; (ii) we set resource limitations in
the containers to emulate a distributed deployment, which are
diverse to reflect the different resource-demands of the service
functions; (iii) the number of visits to the service is equal to the
number of user requests; (iv) the users’ satisfaction (i.e., QoE)
depends on the average RT; and (v) the infrastructure costs are
considered from the CPU utilization view-point. Furthermore,
we consider a 3 sec upper limit on the user request RT, i.e.,
as a Service Level Objective (SLO). According to a survey
contacted by Google [12] and illustrated in fig. 2, the user will
stop waiting for a response to a request with a 32% probability,
when waiting from 1 to 3 sec. Such bounce rate increases with
the waiting time. The most significant probability increase is
in between 3 and 5 sec, i.e., 58%, which is the reason for
our 3 sec choice. Moreover, we assume that all service clients
are satisfied when the 95% of the requests receive a response
within this timeframe, since most SLAs are considered violated
with a lower than 95% success in their SLOs.

We simulate the workload (i.e, the client requests) with
the Apache JMeter [13] benchmarking / load-testing tool.
JMeter provided us with the service quality measurements,

Fig. 2. RTs and bounce rates [12]

i.e., the requests’ response-time, which we maintained below
the SLO, for at least the 95% of requests. We implemented
all microservices as Docker [14] containers, while Docker
Swarm orchestrates their deployment, e.g., implementing the
container replicas auto-configuration and the communication
among them. We used Docker Stats to measure the real-time
resource allocation, in terms of CPU usage.

The techno-economic analysis that follows compares exper-
imentally the monolithic with the microservices version of the
studied web application, assuming realistic patterns of user
visits. Additionally, it investigates the potential of alternative
application deployments to handle a large number of users with
tolerable performance, while reducing significantly the cloud
resource expenses.

B. Techno-Economic Analysis

Our analysis consists of two basic steps: (i) a comparative
experimental analysis between different service architectures
and elasticity strategies, assuming a viral number of users;
and (ii) cost calculations producing estimated infrastructure
costs for the different application deployment configurations.
We consider three different cases of the studied service: (i) a
Monolithic version that utilizes enough containers to support
the given number of users without violating the SLO; (ii) a
CPU-based MA deployment that scales the microservices based
on a 80% CPU threshold, i.e., a typical configuration in Ku-
bernetes; and (iii) an SLO-based MA deployment that attempts
to maximize cost savings through scaling the microservices
according to the chosen 3 sec SLO value. The goal of each
application deployment case is to keep the 95% of the RTs
less than 3 sec. Practically, we add new containers whenever
the latter rule is violated for all cases or a container is utilizing
more than the 80% of its CPU in the CPU-based MA.

In the first series of our experiments, we emulate 17,500
requests in total by 175 active Apache JMeter threads, while 8
CPU cores are available for each experimental run. The dura-
tion of experiments is around 15 min. For simplicity, our exper-
iments are particularly focusing on the Articles functionality of
the application, i.e., delivering viral articles. Consequently, we
allocate bare minimum resources to all microservices, except
the Nginx (i.e., handling all incoming requests), Articles and
Monolithic services.

In table I, we show the CPU Cores required for the 3
application deployments. We see that the Monolithic service

requires 5 CPU cores, while the CPU-based MA 1.80 and the
SLO-based MA 1.40. This advantage of MAs derives mainly
from the Single Responsibility Principle (SRP) characterizing
them, since they adapt to the diverse demands among services.

TABLE I
CPU CORES PER SERVICE DEPLOYMENT

Services Monolithic CPU-based MA SLO-based MA
Monolithic 5.00 0.00 0.00

Articles 0.00 0.50 0.10
Site Admin 0.00 0.10 0.10
Comments 0.00 0.10 0.10
Main Page 0.00 0.10 0.10

Nginx 0.00 1.00 1.00
Total 5.00 1.80 1.40

In table II, we present the experimental results for the 3
service deployment cases, i.e., Monolithic, CPU-based MA,
and SLO-based MA, in terms of CPU Cores consumed and
statistical data related to the measured RT (RT). The RT
measurements have been collected by the JMeter load testing
tool, are in ms and express the average and median RT from all
the requests. The 95% Line expresses the time, in ms, which
was not exceeded by the 95% of the requests (i.e., the 95%
percentile) and the error presents the percentage of failed / non-
served requests. In these results, we observe an inverse relation
between the CPU Cores consumed and the RT, i.e., a quick
response to the requests should be supported by significant
processing resources. In addition, the RT remains in all cases
below 3 sec and there are no errors. We note that our techno-
economic analysis is based on the assumption that the user
QoE depends on the average RT.

TABLE II
EXPERIMENTAL RESULTS

Deployment CPU Cores Avg. Med. 95% Line Er. %
Monolithic 5 76 70 138 0

CPU-based MA 1.8 648 606 1,233 0
SLO-based MA 1.4 1,529 1,575 1,814 0

However, considering this assumption and comparing the
first two deployments (i.e., Monolithic & CPU-based MA),
the observed 572ms increase in RT is tolerated, since it is
around the 1

4 of the SLO and produces significant cost savings
(i.e., a 64% reduction in the CPU usage). We also highlight in
the same results the flexibility offered by the MA, since not
all microservices consume significant resources. An efficient
service orchestrator needs to scale up the Nginx and Articles
microservices only, in this particular example. In Monolithic
case, the entire application needs to be scaled up, leading to
inefficient resource management.

Comparing the third service deployment with the other two,
we observe that there is even more space to trade service
performance (i.e., RT) for more efficient resource management.
In such a case, we are approaching closer to the SLO, but
achieve a 74% reduction of CPU usage. Although in demand-
ing real-time applications this strategy may cause instabilities,
it highlights the significant cost benefits of a system that

implements service-quality driven elasticity, especially with
conservative performance goals.

We attempt to extend our findings with a cost analysis based
on real cloud prices and user requests values. According to the
Amazon Web Services website [15], a typical cloud server with
32GB of RAM, 30GB SSD, 8 CPU Cores, 24/7 peak availabil-
ity and Linux OS, costs $747 per month. We consider a high
workload scenario with over 2 bil. visits per month to resemble
viral conditions. For this reason, we assume having similar
traffic with Netflix. Netflix received 2 bil. visits in February
2020, according to SimilarWeb [16], in which approximately
4 pages have been browsed per visit. This is equivalent to
2,873,563 requests per 15min. Moreover, we simplify our
analysis and consider no additional technical limitations and
costs by scaling up our results with the number of visits from
Netflix, i.e., multiplying the required amount of resources in
our experiment by 165 (i.e., ∼=2,873,563/17,500). Table III
presents the overall costs produced by these calculations.

TABLE III
CLOUD COST ANALYSIS

Deployment Exp. Cores Pred. Cores Servers Cost
Monolithic 5 825 104 $77,688

CPU-based MA 1.8 297 38 $28,386
SLO-based MA 1.4 231 29 $21,663

The column Exp. Cores lists the required CPU resources
for the 17,500 visits in our experiment, while the Pred. Cores
those predicted for the considered large amount of users, i.e.,
calculated by multiplying the Exp. Cores column with 165. The
third column, i.e., Servers, is produced by dividing the previous
column with the 8 CPU Cores of the Cloud Providers’ plan,
which calculates the number of demanded Cloud Servers. The
Cost is produced by the multiplication of column Servers with
the amazon server price of $747. These numbers could have
been significantly higher with a more complex service, rather
than our toy web site implementation.

The table III, at least in a theoretical level, indicates that
the cloud resource costs in the case of Monolithic service
deployment is 2.74 and 3.59 times higher than the CPU-based
MA and SLO-based MA deployments, respectively.

We complement our analysis with an additional experiment
that now emulates all user visits, i.e., to validate our previous
findings. We set the following parameters in the experiment: (i)
375,000 visits to the web application; (ii) 750 JMeter threads
run in parallel; and (iii) a 15 min experiment duration. This
number of visits is around the double of google.gr in Feb. 2020.

In table IV, we present the results of our experiment,
focusing on the containers requiring significant resources,
i.e., the Monolithic, Articles and Nginx. The average time in
Monolithic configuration is lower by 194ms, but requires the
double amount of resources, in terms of CPU Cores, compared
to SLO-based MA configuration. The 95% Line metric confirms
again the adherence to the SLA.

Table V provides a cloud cost analysis based on the as-
sumption that some additional CPU cores are required for the

TABLE IV
EXPERIMENTAL RESULTS

Deployment Containers Avg. 95% Line
Monolithic 10 Monolithic 1,737 2,611

SLO-based MA 3 Articles - 2 Nginx 1,931 2,309

rest of microservices, as well as 2 Cores for the OS. Since
we assume 8 CPU Core servers, the Total Cores become 16
(i.e., requiring two physical servers) and 8 in Monolithic and
SLO-based applications, respectively.

TABLE V
CLOUD COST ANALYSIS

Deployment Cores Total Cores Servers Cost
Monolithic 10 16 2 $1,494
SLO-based 5.3 8 1 $747

This supports the same conclusions identified earlier, since
there is an equal 50% reduction in both CPU cores cloud
costs. Of course, this requires more extensive experimentation
but highlights, even in this setting, that MA can produce
significant cost savings, which can be further increased with
service-oriented elasticity strategies and conservative service
performance goals that may be unnoticeable from the users.

IV. CONCLUSIONS AND NEXT STEPS

Cloud providers offer elastic resource allocation that could
be matched from flexible microservices-based architectures, to
boost performance and reduce infrastructure expenses. In this
paper, we conducted a techno-economic study and concluded
that: i) although microservices may introduce communication
and containerization overhead, the flexibility introduced ex-
ceeds this barrier and offers efficient resource management,
leading to significant cost savings for the service provider; and
ii) an elasticity threshold based on client RT and a targeted
conservative value can further reduce over-provisioning of
resources and maximize the cost savings, with a negligible
impact on the customer satisfaction. Our next plans include:
i) an extension of this study based on larger deployments and
more complex applications (e.g., multimedia services); ii) the
implementation of a microservices orchestration platform that
predicts dynamic load and performs elasticity to maximize
infrastructure cost savings for a given service performance
target, as well as experimentation in novel large-scale test-beds,
including EdgeNet [17].

ACKNOWLEDGMENT

This work is partially supported by the "GSRT FUNDING
FOR THE YEAR 2018 (Award for the participation in competi-
tive E.U. projects) [Measuring Mobile Broadband Networks in
Europe (MONROE)]" which is funded by the Ministry of De-
velopment and Investments- General Secretariat for Research
and Technology as a reward for the implementation of the
project «Multi-homing with Ephemeral Clouds on the Move
(MONROE-MEC)- HORIZON 2020, GA -Project Number:
644399» funded by the European Commission.

REFERENCES

[1] M. Armbrust, et al., "A view of cloud computing", Commun. ACM, vol.
53, no. 4 pp. 50-58, 2010.

[2] “Microservices a definition of this new architectural term”. [Online].
Available: http://martinfowler.com/articles/microservices.html

[3] Al-Dhuraibi, Yahya, et al. "Elasticity in cloud computing: state of the art
and research challenges." IEEE Trans. Services Comput., vol. 11, no. 2,
pp. 430-447, 2017.

[4] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R.
Casallas, and S. Gil, “Evaluating the monolithic and the microservice
architecture pattern to deploy Web applications in the cloud,” In Proc.
of CCC 2015, pp. 583-590, 2015.

[5] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M.
Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang,
“Infrastructure cost comparison of running web applications in the cloud
using AWS lambda and monolithic and microservice architectures,” In
Proc. of CCGrid 2016, pp. 179-182, 2016.

[6] V. Singh and S. K. Peddoju, “Container-based microservice architecture
for cloud applications,” 2017 Int. Conf. Comput., Commun. Automat.
(ICCCA), pp. 847–852, 2017.

[7] Ueda, Takanori, T. Nakaike, and M. Ohara. "Workload characterization
for microservices." 2016 IEEE Int. Symp. Workload Characterization
(IISWC). IEEE, pp. 1-10, 2016.

[8] Al-Debagy, Omar, and P. Martinek. "A Comparative Review of Microser-
vices and Monolithic Architectures." 2018 IEEE 18th Int. Symp. Comput.
Intelligence Inform. (CINTI). IEEE, pp. 149-154, 2018.

[9] H. Kang, M. Le, and S. Tao, “Container and Microservice Driven Design
for Cloud Infrastructure DevOps,” In Proc. of IC2E, pp. 202-211. 2016.

[10] Prachitmutita, Issaret, et al. "Auto-scaling microservices on IaaS under
SLA with cost-effective framework." 2018 Tenth Int. Conf. Adv. Comput.
Intelligence (ICACI). IEEE, pp. 583-588, 2018.

[11] Agarwal, Preyashi, and J. Lakshmi. "Cost Aware Resource Sizing and
Scaling of Microservices." Proc. of 2019 4th Int. Conf. Cloud Comput.
Internet of Things, pp. 66-74 , 2019.

[12] Daniel An, "Find out how you stack up to new industry
benchmarks for mobile page speed". [Online]. Available:
https://www.thinkwithgoogle.com/marketing-resources/data-
measurement/mobile-page-speed-new-industry-benchmarks/

[13] “Apache JMeter - Apache JMeterTM”. [Online]. Available:
https://jmeter.apache.org/

[14] “Empowering App Development for Developers | Docker.” [Online].
Available: https://www.docker.com/

[15] “Amazon Web Services, AWS Cloud”. [Online]. Available:
https://calculator.aws//estimate

[16] “Similarweb.com - Digital World Market Intelligence Platform,”. [On-
line]. Available: https://www.similarweb.com/

[17] “EdgeNet | A Kubernetes-based internet edge testbed.” [Online]. Avail-
able: https://edge-net.org/

