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Abstract—The cloud-native paradigm has become a well-
known approach to ensure the elasticity and reliability of appli-
cations running in the cloud. One recurrent motif is the stateless
design of applications, which aims to decouple the life-cycle of
application states from the life-cycle of individual application
instances. Application data is written to and read from cloud
databases, deployed close to the application code to ensure low
latency bounds on state access. When applying a stateless design,
the performance of the cloud service is often limited by the
cloud database. In order not to become a bottleneck, database
instances are distributed on multiple hosts, and strive to ensure
data locality for all application functions. However, the shared
nature of certain states, and the inevitable dynamics of the
application workload necessarily lead to inter-host data access.
If the service is geographically distributed, this is even across
data centers and edge servers resulting in a significant delay. To
minimize the service performance loss due to the stateless design
of applications, we propose a latency and access pattern aware
state storage method, called state-layer, that can be easily applied
in any kind of key-value store with the ability of deciding where to
store replicas in the cluster and measure networking/computing
delay. By adapting our solution to Anna, a key-value store from
academia, we show the proposed state-layer is ideal to use as a
cloud database for storing application states. To foster further
research in this area, we make our proof-of-concept solution
open-source.

I. INTRODUCTION

The suitability of monolithic applications or Network Func-
tions (NFs) in the telco field has reduced in recent years.
The two most critical problems are i) the specific hardware
dependency, and ii) the lack of auxiliary functions, such as
load balancing already available for cloud applications. The
former causes deployment flexibility issues, while the latter
typically increases the development and the operation costs of
the applications/NFs. In order to avoid these issues, a modern
Network Function Virtualization (NFV) ecosystem must be
fundamentally stateless; if the virtual NFs do not maintain
persistent state on their own, then scale-in/scale-out, and even
fail-over events, are less complex to handle, improving overall
elasticity, scalability, resiliency, and upgradability [1]-[6]. This
is especially true for the carrier-grade telco NFV ecosystems
since they must maintain a level of consistent performance in
order to meet strict Service-Level Objectives (SLOs), at the
order of 1-10 ms delay requirement [5].

Although the performance overhead of the stateless design
depends on various factors (such as an application’s state
access pattern, the performance of the underlying data store
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and the deployment characteristics), according to our research
[5] we can anticipate that the cost of external state access
may easily become the limiting factor in the overall NF
performance. NFs might use externalized state either for their
control or data plane operations. In the latter case, NFs are to
access such state for each incoming packets, which may result
in a severe performance deterioration in their PPS through-
put. Furthermore, this is especially true for edge computing
systems where the NFs are distributed geographically and an
external access may result in delays of the order of hundreds of
milliseconds to core functionality [7]. That is why considering
the network latency between NFs and their states is essential
when it comes to state externalization.

The operation lag can be decreased by locating data as close
to the application instances as possible in terms of latency.
Many public cloud databases, both from academia and from
industry, offer in-memory state storage for cloud applications,
but they typically do not take into account the underlying net-
work properties [8]-[10]. The placement of application states,
taking into account the locations of already deployed database
instances and NF applications, is of paramount importance to
improve application performance.

II. OUR PROOF OF CONCEPT PROTOTYPE

In this section we introduce the cloud and/or edge based
system where the stateless cloud-native NF instances might
run, and propose our latency and access pattern aware state
storage architecture that could be used as a state handling
service, called state-layer, for stateless applications. Let us
consider a general cluster of hosts, e.g., physical servers,
virtual machines, Kubernetes pods or Docker containers. Each
of these hosts may run the user’s NFs, and include a database
(DB) server instance of the distributed cloud database, i.e., the
state-layer over the cluster. In order to make the application
elastic and resilient, the NFs’ internal states need to be
externalized into this state-layer.

Existing key-value stores, such as [10]-[15], either concen-
trate on a single-node setup or use hash functions to place
data. In contrast, we argue that placement needs to be delay-,
and access-pattern aware to minimize the access time of the
externalized states. To meet this goal, we have extended a
key-value store called Anna [10] from academia with a State
Placement module, a Replacement initiator, and Infrastructure
monitors to create a latency and data-access-pattern aware,
distributed cloud database that enables the state-layer we
envisioned. We call it AnnaBellaDB.
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Figure 1. Proposed state-layer architecture

Fig. 1 shows an example cloud-based system. The cluster
consists of n hosts where stateless NF instances run, e.g.,
VPN, Firewall, Gateway, and Load Balancer. Besides the ap-
plications, each host contains an AnnaBellaDB server instance
(white squares). Two types of DB servers can be distinguished
in the AnnaBella cluster: a single privileged Bootstrap server
and the others, ordinary Key-Value servers. Both types in-
clude Routing, KVS (Key-Value Store), Access pattern monitor
and Infrastructure monitor architecture elements, while the
Bootstrap server further contains State Placement module and
Replacement initiator.

The Infrastructure monitors ping each other to measure
the perceived latency between cluster hosts, and periodically
report them to the Bootstrap server. The measured latency
includes both network and computational delay between
AnnaBellaDB servers, consequently, the effect of high load
is also monitored. The Access pattern monitors track the
number of reads and writes of each data entry stored in
the local KVS individually, and report these access patterns
to the Replacement initiator. The report frequency of both
monitor components is configurable by the state-layer operator
in order to fine-tune the reaction time of AnnaBellaDB for
infrastructure and data access changes.

NF instances, e.g., Load Balancer, ask the Routing com-
ponent for the location of the requested value. This module
returns the address of the AnnaBellaDB server instance where
the certain state can be found. If a key-value store client library
is applied in the application, it can take care of caching the
address for future requests, and targets the appropriate KVS
instance to perform the access operation (read or write). If
the requested state has not been stored yet (e.g., it is the first
write of a data), the Routing component returns the address of
the Bootstrap server, where the State Placement module runs,
waiting for new entries to be stored.

The State placement module contains the data location
optimization logic, detailed in [4], that decides where to store,
i.e., in which KVS of the cluster, the requested data, based
on i) the latency across cluster elements and ii) the historic
access pattern of the requested state. For new entries the latter
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Figure 2. Flow chart of how reads (green) and writes (red) are performed in
AnnaBellaDB

information does not exist, but as time passes the Access
pattern monitors collect this metadata. The access pattern
plays an important role in the reoptimization of data locations,
when we want to migrate the - typically shared - state within
the cluster to minimize its access time. Our applied migrating
heuristic method is based on a QP optimization problem,
published in [4], which is proven to be NP-hard. The State
placement module also reports the target KVS address(es) to
each Routing component. It is easy to see the less frequently it
reports, the more likely Routings hold invalid addresses where
the data is located.

The Replacement initiator triggers data migration within
the DB cluster. When data access pattern changes exceed
a predefined threshold (e.g. the access rate of a data is
increased or decreased more than 20%), this element initiates
the migration of the affected entries. This module ensures the
mobility of the states and enables us to move data close to the
application instances from where they are accessed the most
frequently.

For the ease of understanding how reads and writes are
performed in AnnaBellaDB, we present the operational steps
in a flow chart in Fig. 2. The red lines represent the execution
flow of writes, while the green ones depict the read process.
The NF executes the operations in yellow and the Routing
module is responsible for the blue components.



The first step of accessing, e.g., reading or writing, a data
entry is checking if the target KVS address, where the data is
located, is stored in the local cache or not. If it is not stored,
AnnaBella client sends an address request message to the local
Routing component. The Routing checks whether the data
already exists in the DB cluster and returns the responsible
server address if it does. Otherwise, in case of a write, this is
the moment to save new data into the DB cluster, so it returns
the Bootstrap server address. In case of a read, it returns an
error as the NF tries to read a non-existing entry.

The NF saves the given target address and sends the
read/write request to the proper KVS instance. At this point,
there are three possible events: 1) the request is sent to the
Bootstrap server where the State placement module stores the
data successfully, 2) it is sent to the relevant server which
preforms the requested operation, and 3) the read/write request
is sent to a server which is no longer responsible for the data,
e.g., the data was migrated to another KVS. In this last case,
the access fails, so the NF deletes the cached address related
to the data, and restarts the process by requesting from the
local Routing. Since the State placement module periodically
reports the Routings about any modification of data placement
in the DB cluster, the access will be successfully performed
eventually.

III. PERFORMANCE EVALUATION

In order to identify corner cases in which performance
differences appear between the existing solutions and the pro-
posed AnnaBellaDB, we made some synthetic measurements
highlighting the advantages of delay and access-pattern aware
data placement over the legacy hash function based solutions.
Since our prototype is based on Anna which places data
according to a hash function and not to their access pattern,
we consider its performance as a proper basis for comparison.
Our goal is twofold: i) show the performance of AnnaBellaDB
in terms of the access time of a data and ii) examine which
type of infrastructure (cloud or edge computing systems) is a
good context for our solution to maximize its benefits.

We emulated two types of cluster topologies in terms of
network latency: i) a geographically distributed edge/cloud
network called interDC, and ii) a data-center network named
as intraDC. Between the hosts we apply 5 ms delay in the
former, while for the intraDC network, according to [16], 300
ws was used. With these latency characteristics, both cluster
setups included four Docker container hosts (kvsl - kvs4),
on which the NF instances are launched one by one. Each
host runs an AnnaBellaDB instance which altogether form the
state-layer service for the NFs.

In order to get the analysis of the proposed state store, we
made emulation measurements on a 24-core Intel Xeon ES-
2620 @ 2.00GHz server with 64 GB RAM. All containers
(with the NFs and AnnaBellaDB components in them) run
on this single physical machine and we applied the traffic
control on the containers’ network interfaces to enable the
above described delays between node pairs. We used syn-
thetic measurements and NFs in which we emulated cloud
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Figure 3. The average access times of NFs

manager-triggered NF scale-out events, resulting in access-
pattern changes in time. In the emulations we measured two
metrics of the state-layer to quantify its performance: data
access time, i.e., how much time is necessary to access (read or
write) the data, and throughput [number of accesses/second],
i.e., how many successful accesses happened within a second
by the NFs. The shorter the access time, the more suitable
our solution is for a state-layer: in case of negligible added
latency, stateless NFs reach the performance of stateful ones.

A. Data access time in interDC network

In our first measurement, we used NFs which read ten
times and write one time (a certain state) from/to the state-
layer. We launched the NF instances one after another: NFO
on kvsl, NFI and NF2 on kvs2, and from NF3 to NF8 on kvs3.
The performance results are shown in Fig. 3 where the x-axis
depicts the time in seconds. The dashed vertical lines represent
the moments when a NF has been launched, i.e., the first NFO
was started at time O, while the last one NF8 was launched
at the 325th second. Finally, the y-axis shows the average of
all access times of all NFs in a 2s wide sliding window. The
red line represents the Anna access time, and the green one
is the result of AnnaBellaDB. As a reminder, the lower the
value, the more efficient the database as a state-layer. The
measurement can be divided into three phases: 1) between 0
and 40 seconds, 2) between 40 and 200 and 3) from 200 sec. In
the first phase, the placement module of AnnaBellaDB decided
to save the state locally (in kvs/) contrary to Anna: it was
stored in kvs2 resulting in longer access time. In the second
phase the two solutions more or less operated similarly. Within
this time, the data is stored in kvs2 (in case of AnnaBellaDB,
thanks to the replacement initiator, the data was migrated from
kvs1 resulting in a spike in the access time after the third NF
deployment). After the fifth NF instance has launched, our
solution migrated the data to kvs3 from where the majority of
accesses (NF3, NF4 and NF5) originated, resulting in lower
average access time of the NFs.
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Figure 4. Throughput (maximum number of data accesses per second)

B. Data access throughput in interDC

In the second measurement, we examined the throughput of
our proposed DB, i.e., how many state access can be executed
during a second by the NF instances. In this case, the NF
we used reads a state 260 times and writes it 26 times per
second. This type of NF instances are launched periodically:
one on kvsl, two on kvs2, six on kvs3 and nine on kvs4.
The obtained results can be seen in Fig. 4, in which this
time the y-axis shows the sum of successfully completed data
accesses by all NF instances within the given second. The
higher the DB throughput, the more suitable the DB solution
for stateless NFs as a state-layer. Until the 9th launched NF,
the examined approaches are similar to each other, but like
in the previous measurement, when the Replacement initiator
of AnnaBellaDB moves the state to the appropriate host,
the number of local accesses significantly increases. At this
moment (350s), one NF is located on kvsl, two on kvs2 and
six on kvs3, consequently, when AnnaBellaDB migrated the
data from kvs2 to kvs3, six NF are capable of accessing it
locally at the same time. This is the reason for the significant
performance improvement in our proof-of-concept solution.
In contrast, Anna stored the data in kvs2 resulting in most of
the NF instances performing external accesses. However, the
remote accesses are limited by the network latency.

C. Data access time in intraDC network

We also examined how the proposed state-layer behaves in
the intraDC environment. First, we repeated the evaluation
described in Sec. III-A, but for now the preliminary network
delay was configured for 300 ps. We found, there is no
considerable difference in the two databases’ performance
since the low intraDC network delays are comparable to

Table 1
DATA ACCESS STATISTICS IN p8 IN CASE OF intraDC NETWORK.

min Q1 median | mean | Q3 max
Anna 0.146 | 0.236 | 0.517 0.477 | 0.558 | 22.99
AnnaBellaDB | 0.150 | 0.226 | 0.478 0.535 | 0.537 | 35.98
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Figure 5. The average access times of NFs

a processing latency of the servers. The obtained statistical
metrics of data access times during the entire measurement
are summarized in the Table I.

However due to the fact that AnnaBellaDB is optimised to
efficiently handle the dynamics of NFs, we also examined the
corner case when an NF is continuously moving from one
host to another. In this scenario, the NF instance was initially
deployed to kvsI and migrated forward every minute to kvs2,
kvs3, and finally to kvs4. We used the same NF as in Sec. III-A
that reads ten times and writes only once. The obtained results
are presented in Fig. 5. In this evaluation only one NF exists
and the vertical lines represent the instances when the appli-
cation was migrated between the hosts. Anna stored the data
in kvs2 during the measurement, while AnnaBellaDB initially
saved it into kvs/ and migrated it to the appropriate host on
every occasion when the NF was migrated. To conclude, in
the case of AnnaBellaDB, the NF always has the opportunity,
after it was migrated, to access the state locally, while in case
of Anna this happens only between 60 and 120 seconds.

To see more details, video and GitHub links are available
at https://netsoft.gsuite.tmit.bme.hu/demos/annabelladb.

IV. CONCLUSION

The existing key-value stores do not perform data migration
in order to minimize the data access time for the applications.
This fact gave us the motivation to create our own latency
and access pattern aware database solution that could be ideal
for telco use cases: our proof-of-concept prototype forms a
state-layer, where the cloud-native stateless NFs are able to
externalize their internal states to enable complete elasticity
and reliability. Comparing to another key-value store from the
academia, our proposed solution can achieve more efficient
state access time and state access throughput performance in
edge-cloud systems due to the data placement optimization.
In single cloud environments the two solutions differ only in
the case of moving NFs (e.g. due to a node failure or NF
migration initiated by the cloud provider).
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