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Abstract—Network Function Virtualization is known for its
ability to reduce deployment costs and improve the flexibility
and scalability of network functions. Due to processing capacity
limitation, the infrastructure provider needs to instantiate one
or more instances of a particular network function when the
amount of traffic increases. Most of network functions are
stateful, which means that they keep a state that may be
frequently read or updated (e.g., statistics like number of packets
or bytes per flow). As a result, the instances of the same virtual
network function should constantly share the same state to
prevent incorrect operation. In this context, a major challenge is
how to efficiently ensure the consistency among instances while
minimizing communication cost for synchronizing their state
and ensuring the synchronization delay does not exceed a certain
bound set by the operator.

In this paper, we propose a technique to identify the opti-
mal communication pattern between the instances of the same
network function in order to minimize their synchronization
cost. Moreover, we propose to use a special network function
named Synchronization Function to ensure consistency among
a set of instances and to minimize the synchronization cost.
We first mathematically model the problem of finding the optimal
synchronization pattern and the optimal placement and number
of synchronization functions as an integer linear program that
minimizes the synchronization cost and ensures a bounded
synchronization delay. Last, we put forward three algorithms
to cope with large-scale scenarios of the problem. Extensive
simulations show that the proposed algorithms efficiently find
near-optimal solutions with minimal computation time.

I. INTRODUCTION

The emergence of Network Function Virtualization (NFV)
technology is currently transforming the way networks are
designed, deployed, and managed as it provides operators to
deploy network services at low cost and high flexibility [1]–
[3]. The NFV technology allows to create Virtual Network
Functions (VNFs) (e.g., Load balancer, Firewall, IDS, NAT)
and connect them to create Service Function Chains (SFC).

As a matter of fact, the traffic may rise occasionally because
of higher demand. In this case, the infrastructure provider
might be required to implement the same VNF in multiple
virtual machines instances due to limited processing capacity,
resource cost or location constraint [4]–[9]. However, running
the same network function in a distributed manner over
multiple instances is challenging.

Indeed, network functions are either stateless or stateful.
When a network function is stateless, it can operate with-
out maintaining any state [10], [11]. Hence, all instances
implementing this function can operate independently and
successfully without sharing any information. In this case,
no data synchronization among them is required. On the
other hand, when a network function is stateful, all instances
should maintain the same state (e.g., statistics like number
of packets or bytes per flow, list of available ports, per-
connection port mapping) that should be frequently read and
updated. Ideally, all these instances should work like a single
one, regardless of their number and location [12]. Thus, all
instances of the network function need to have the same state
to operate normally, and, hence, data synchronization between
the instances becomes mandatory [11], [13], [14]. In this case,
there is a compelling need to ensure a synchronization among
them with minimal cost and acceptable delay.

In this context, the synchronization cost is defined as the
number of messages exchanged between the instances of the
same network function. Synchronization delay is the amount
of time needed to exchange these messages among these
instances and reach data consistency. Of course this delay is
high, the performance and operation of the network function
may be impacted as it may result in state inconsistency among
the instances leading to late or inaccurate decisions [15].

Several studies have recently focused on the state synchro-
nization challenge. For instance, the authors in [11], [16]
suggested to set up a common repository for persistently
storing and managing state shared among instances. The
authors in [17], [18] have considered a different technique
where each instance broadcasts its state to the other instances.
Unlike previous work, our work does not only target to
carry out synchronization but aims at minimizing the syn-
chronization cost between the instances and ensuring that the
synchronization delay does not exceed a certain bound to
ensure normal operation of the function. To the best of our
knowledge, no previous work considered minimizing the state
synchronization cost and delay of VNF instances.

In this paper, we propose a technique that identifies the
optimal communication pattern between the instances in or-
der to minimize the synchronization cost and to ensure a
bounded synchronization delay. We also introduce the use978-3-903176-31-7 © 2020 IFIP



a new function called Synchronization Function that ensures
consistency among a set of instances and allows to further
reduce the synchronization cost. We first formulate the prob-
lem of finding the optimal communication pattern, the optimal
placement for the synchronization functions, and number of
synchronization functions as an Integer Linear Program (ILP)
aiming at minimizing the synchronization cost. We also devise
three algorithms, called SPT, SSF, and MSF, respectively, that
are able to efficiently explore the solution space for large-scale
scenarios within a reasonable timescale.

The remainder of this paper is organized as follows. Section
II presents some examples to better highlight the importance
of data synchronization among instances. Section III provides
a detailed description for the problem of finding the optimal
communication pattern. Section IV presents the mathematical
formulation of the addressed problem. We then describe the
proposed heuristic solutions in Section V. Section VI presents
the experimental results. The related work is presented in
Section VII. Finally, in Section VIII, we conclude the paper
and provide some future work.

II. MOTIVATIONAL EXAMPLES

Ideally, if a stateful network function is implemented in
multiple instances, the instances should share the same state
as they should operate like a single instance regardless of their
number and location. However, the state synchronization may
be costly and need also to be carried out in a bounded delay to
ensure correct and quick operation. In the following, we pro-
vide two examples of VNFs and show how the synchronization
could be costly and how the could impact the performance of
the network function itself.

Example 1 : let’s consider an Intrusion Detection System
(IDS) as an example to demonstrate the importance of state
consistency and synchronization delay among multiple in-
stances of the same network function. Fig. 1 shows an example
of an IDS implemented in two instances. For example, a Deny-
of-Service attack is detected when the number of received
TCP SYN packets reaches a threshold k. Each IDS instance
maintains a counter for the number of received packets. The
attacker may send the malicious traffic from two sources (k/2
from first source and k/2 from the second) and hence each
IDS instance process only half of the traffic. If the two IDS
instances collaborate to synchronize the state (i.e., the number
of packets) in a timely manner, the counters will be updated
to k, and hence, the attack will be detected by both instances.
Any delay in the synchronization will result in a late decision,

Fig. 1: State synchronization between two IDS instances.

which may impact the network and service performance. The
problem is even more challenging when multiple instances are
deployed and when they are located in a geographically distant
locations.

Example 2 : In the context of Content Delivery Networks
(CDN), multiple CDN instances may host large amounts of
content. If these instances have to synchronize their content,
this may consume significant amount of bandwidth. It is
therefore of utmost importance to find the best synchronization
pattern (e.g., paths, synchronization functions) to carry out
synchronization with minimal bandwidth consumption.

III. PROBLEM DESCRIPTION

As previously mentioned, a VNF could be implemented
in multiple instances. Each instance corresponds to a virtual
machine or a container running on top of the hardware
networking infrastructure [19]. These instances may be place
in geographically distributed locations (e.g., Fig. 2) and there
are different communication patterns that could be defined to
ensure they can exchange data and synchronize their state. A
communication pattern defines the way data is exchanged (i.e.,
the order at which data is sent) as well as the paths that should
be taken to deliver it to the involved instances. The goal of the
following example is to show how the communication pattern
impact the cost and the delay of the synchronization.

Fig. 2 shows four different communication patterns (i.e.,
a, b, c, d) that could be used to carry out synchronization
among instances of a function (NF1). We can see that there
are three instances of function NF1 distributed in different
physical nodes and synchronizing their state (see red, blue,
and green dotted arrows).

Fig. 2(a) illustrates how instances of function NF1 syn-
chronize the same state with each other periodically at the
same time. In this communication pattern, the synchronization
operations are achieved in one step. For example, the instance
that is located in node 10, NF1(10), synchronizes the same
state with the other instances NF1(8) and NF1(12) by using
the paths 10 → 13 → 8 (the sync cost is 2 messages and
the delay is 11 ms) and 10 → 7 → 12 (the synch cost is 2
messages and the delay is 7 ms). Similarly, all other instances
NF1(8) and NF1(12) will follow up the same procedure. As
a result, the total synchronization cost between instances is
the number of messages exchanged between them which is 12
messages and the delay will be represented by the path that
has the highest delay which is 16 ms.

Fig. 2(b) shows that each instance synchronize the same
state to the next instance sequentially. In this communica-
tion pattern, the synchronization operations are achieved in
multiple steps. This means, the instances take turns sending
and receiving the same state. The receiving instance reads
the state addressed to it and then passes the state and any
additional update to the next instance. This continues until the
same state reaches the desired receiving instance. For example,
the instance NF1(10) synchronizes the same state with the
next instance NF1(8) by using the path 10 → 11 → 8 (the
sync cost is 2 messages and the delay is 16 ms). Similarly,



(a) (b)

(c) (d)

Fig. 2: Different possible communication patterns to synchronize NF1 instances

all other instances will follow the same procedure. The total
synchronization cost for the instance NF1(8) is 4 messages
and the delay is 28 ms by using the paths 8 → 13 → 12
(the sync cost is 2 messages and the delay is 10 ms) and
8 → 7 → 10 (the sync cost is 2 messages and the delay is
18 ms) respectively. The synchronization cost for the instance
NF1(12) is 2 messages and the delay is 17 ms. As a result,
the total synchronization cost between instances is the number
of messages exchanged between them which is 8 messages
and the delay is the amount of time needed to exchange these
messages which is 61 ms.

Fig. 2(c) illustrated a communication pattern that benefits
from a single synchronization function. In this communication
pattern, the synchronization operations are achieved in two
steps. The first step, the instances synchronize the same state
to the synchronization function periodically at the same time.
The second step, the synchronization function consolidates and
distributes the same state to the all instances periodically at
the same time. For example, the instance NF1(10), NF1(8),
and NF1(12) synchronize the same state to the synchronization
function that is located in node 13, SyncFn(13). Then, the syn-
chronization function SyncFn(13) consolidates and distributes
the same state to all instances by using the same procedure.
The synchronization cost and the delay for both steps is
depicted in Fig. 2(c). As a result, the total synchronization cost
is the number of messages exchanged between instances and
synchronization function which is 6 messages and the delay is
the amount of time needed to exchange these messages which
is 16 ms.

Fig. 2(d) depicts a communication pattern that benefits
from multiple synchronization functions. The synchronization
function can work as follows: serve a set of instances, or
serve a set of synchronization functions, or it can do both
at the same time. In this communication pattern, the syn-

chronization operations are achieved in three steps. The first
step, the instances synchronize the same state to the closest
synchronization function periodically at the same time. The
second step, the synchronization functions synchronize the
same state with each other periodically at the same time.
The third step, the synchronization functions distributes the
same state to all instances periodically at the same time.
For example, NF1(10) and NF1(12) synchronize the same
state to SyncFn(13), also NF1(8) synchronizes the same state
to SyncFn(8). Furthermore, SyncFn(8) and SyncFn(13) syn-
chronize the same state with each other by using the same
procedure. Finally, SyncFn(8) and SyncFn(13) distribute the
same state to their instances by using the same procedure. The
synchronization cost and the delay for all steps depicted in Fig.
2(d). As a result, the total synchronization cost is the number
of messages exchanged between instances and synchronization
functions which is 6 messages and the delay is the amount
of time needed to exchange these messages which is 14 ms.

It is clear from the above-described example that the com-
munication pattern significantly impacts the synchronization
cost and delay and that synchronization functions could further
reduce such cost and delay. In this paper, we focus on how
to find the optimal communication pattern to synchronize the
instances, and the optimal placement for the synchronization
functions in a way that minimizes synchronization cost (i.e.,
number of exchanged messages) while ensuring that the syn-
chronization delay does not exceed a certain bound.

IV. PROBLEM FORMULATION

In this section, we formulate the problem of finding the
optimal communication pattern as an Integer Linear Program
(ILP) aiming at minimizing the synchronization cost while
ensuring the required synchronization delay does not exceed
a certain bound. Furthermore, the ILP finds the optimal com-



munication pattern to synchronize the instances, the number
of the synchronization functions and their optimal placement
of in the infrastructure.

The physical infrastructure consists of multiple nodes lo-
cated in different geographical locations modeled by a graph
G = (N,L) where N indicates the set of physical nodes
that are connected via physical links L. We also define wuv

is the value of the weight of the link (i.e., cost) between
two physical nodes u and v. We define by duv the value of
the synchronization delay of the link between two connected
physical nodes u and v. We also denote by β the maximum
synchronization delay that can be tolerated between any two
VNF instances.

We define I = {1, ..., |I|} as the set of physical nodes
hosting the instances of the same network function that should
be synchronized. Each node of the set I is considered as a
source and a destination as it has to generate and receive
data. Any subgraph that connects the nodes of the set I
can be considered as a communication pattern. The weight
of a subgraph is defined as the sum of the weights of
the subgraph’s links. This weight corresponds to the total
synchronization cost of the communication pattern associated
to that subgraph. As our ultimate objective is to minimize the
total synchronization cost, the goal of the following ILP is
to find the subgraph Ḡ extracted from the original graph G
that necessarily includes all the nodes of I and having the
minimum total weight. As such, the subgraph Ḡ corresponds
to the optimal communication pattern.

The subgraph Ḡ can also be seen as a set of paths that
connects all nodes of I while the weight of the resulting
subgraph is minimal. The proposed ILP finds these paths
while minimizing the weight of the generated subgraph. In
the following, we define the decision variables and constraints
of the ILP.

• Decision variables: we define two decision variables as
follows:
• xstuv ∈ {0, 1} indicates whether the link uv (u ∈ N and
v ∈ N ) is part of a path between a source s ∈ I and a
destination t ∈ I .

• yuv ∈ {0, 1} indicates whether the link uv is used in
the path between any source s ∈ I and any destination
t ∈ I . In other words, yuv is equal to 1 only if the link
uv belongs to the subgraph Ḡ.

• Objective function: our main objective is to minimize
the synchronization cost among instances while ensuring the
required synchronization delay does not exceed a certain
bound. The objective function can be expressed as follows:

min

(∑
u∈N

∑
v∈N

yuvwuv

)
(1)

• Constraints: while finding the optimal solution, several
constraints must be satisfied. For instance, we need to ensure
that there is a link leaving any source s ∈ I:

∑
t∈I

∑
v∈N

xstsv −
∑
u∈N

∑
t∈I

xstus = 1 ∀s ∈ I (2)

Where the first term is the number of links leaving s, and
the second one is the number of links entering to the node s.

We also need to ensure that there is a link entering any
destination t ∈ I:∑

u∈N

∑
s∈I

xstut −
∑
s∈I

∑
v∈N

xsttv = 1 ∀t ∈ N (3)

Where the first term is the number of links entering t, and
the second term is the number of links leaving t.

Furthermore, there must be a path between between any
source s ∈ I and destination t ∈ I . In other words, we must
ensure that for any node on the path between s and t, the
number of links entering that node is equal to the number
of links leaving it (as it is a path). This can be expressed as
follows:∑

u∈N
xstuz −

∑
v∈N

xstzv = 0 ∀s, t ∈ I ∀z ∈ N\{s, t} (4)

Where the first term is the number of links entering a node
z ∈ N\{s, t} that lies in the path between the source s ∈ I
and the destination t ∈ I , and the second term is the number
of links leaving z ∈ N\{s, t} in the same path.

Furthermore, we need to ensure that, if there are common
links between the paths, they should be considered once in
the constructed subgraph. In other words, a link uv should
be counted only once in the generated subgraph. This can be
expressed as follows:

yuv ≥ xstuv ∀s, t ∈ I ∀u, v ∈ N (5)

Additionally, the delay of the path between any source s ∈ I
and t ∈ I should not exceed the maximum synchronization
delay β. This constraint can be written as follows:∑

u∈N

∑
v∈N

xstuvduv ≤ β ∀s, t ∈ I (6)

• ILP Output: the resulting values of the decision variable
yuv will define the links of subgraph Ḡ as well as its nodes.
The variable xstuv defines the path that should used to
synchronize data between nodes s ∈ I and t ∈ I .

Furthermore, to find the number of the synchronization
function and their optimal placement, we assume that any
physical node in Ḡ being connected to more than two links
(i.e., the degree of this node is higher than two and such
a node is called hereafter a common node) should host a
synchronization function. This is because a node connected
to only two links has only to forward the synchronized data
from one link to the following. However, a node connected
to more than two links is able to aggregate the data coming
from two links and then forward it to the other ones. As a
result, synchronization functions are placed in common nodes
and have the same number as those nodes.



V. PROPOSED HEURISTIC

In this section, we describe three heuristics that could find
the best communication patterns to synchronize the instances.
We call the first algorithm Shortest Path Tree (SPT) as the
algorithm does not use synchronization functions. The second
algorithm is called Single Synchronization Function (SSF) as it
uses only one synchronization function in the physical infras-
tructure to serve multiple instances of the same network func-
tion. The third algorithm is called Multiple Synchronization
Functions (MSF) as it tries to place multiple synchronization
functions with each serving a different set of instances of the
same network function. In the following, we present the three
proposed algorithms in details:
• Algorithm SPT: it is a modified version of the shortest

path tree algorithm. Each instance synchronizes the same state
with the other instances periodically at the same time using
its shortest path tree.

We first consider a set of instances located in different
physical nodes n. As shown in Algorithm 1, we compute
the shortest paths for each instance with the other instances.
Then, each instance merge the computed paths to build its
own shortest path tree therefore we will have many common
nodes ncn (i.e., common nodes share by more than one path).
However, we can consider n as a common node if there is
more than one path cross it (Lines 6-9). To minimize the
synchronization cost, we can configure all the common nodes
ncn to automatically duplicate the messages that go through
them, therefore we can ensure there is no duplicate messages
between multiple paths (Lines 10-12).

We compute the delay tl̄, which is the time required to
exchange the messages between all the instances. This delay
would be represented by the path that has the highest delay
(lines 13-17). The delay tl̄ should not exceed the delay
constraint β to compute the synchronization cost (lines 18-
20). Finally, the whole process is repeated for instances of
another network function.
• Algorithm SSF: Algorithm 2 aims to allocate a single

synchronization function for instances of the same network
function. Assuming we consider a set of instances are located
in different physical nodes n. We first need to get the common
nodes ncn between the instances. To do so, we compute the
shortest paths for each instance with the other instances. Then,
each instance merges the computed paths to build its own
shortest path tree. Hence, we will have many common nodes
(i.e., common node shares by more than one path) and each
common node has different score (i.e., common node score
defines the number of paths that cross this node). However,
we can consider n as a common node, if its score is greater
than one. Otherwise, it will not be considered as a common
node (Lines 7-14).

To minimize the synchronization cost, we choose the com-
mon node ncn that has the higher score sncn

, and enough
resources cncn , to be the hosting node of the synchronization
function (Lines 15-20). Having no common nodes for all
physical nodes mean that either is no enough resources to

Algorithm 1 SPT

1: Inputs
2: N : set of physical nodes
3: V : set of VNFs
4: β : delay constraint
5: for v ∈ V do
6: for each instance of type v = {i1, i2, i3, ...i|v|} do
7: SPList(v)← get shortest path tree(iv) .
SPList is the list to store the shortest path tree for each
instance of type v

8: CNodeList(ncn)← get CNodes(SPList(v)) .
CNodeList is the list to store the nodes that share by
more than one path in the shortest path tree

9: end for
10: for j ∈ CNodeList() do
11: configure Common Nodes(j) . Config-

uring the common nodes j to duplicate the messages to
minimize the synchronization cost

12: end for
13: for each instance of type v = {i1, i2, i3, ...i|v|} do
14: ivDelay ← compute Delay(iv) .

ivDelay is variable to store the synchronization delay for
each instance of type v

15: DelayList(v)← ivDelay . DelayList(v) is the
list to store the synchronization delay for all instances of
type v one by one

16: end for
17: tl̄ = maxivDelay(DelayList(v))
18: if tl̄ ≤ β then
19: compute SyncCost(v)
20: end if
21: end for

host the synchronization function or there is no instances of
network function.

We compute the delay tl̄, which is the time required for
a messages to travel from instances to a synchronization
function and back again. To this end, we assume that all
instances synchronize the same state to the synchronization
function periodically at the same time. We compute the delay
between instances and the synchronization function tv̄,s̄f ,
which represents by the instance that has the highest delay
(function compute SyncDelay in Line 21). We also compute
the delay between synchronization function and all instances
ts̄f,v̄ , which represents by the highest delay between them
(function compute SyncDelay in Line 22). The tl̄ should not
exceed the delay constraint β to compute the synchronization
cost (Lines 23-27). Finally the whole process is repeated for
instances of another network function.
• Algorithm MSF: In this algorithm, our goal is to

maximize the number of synchronization functions that serve
multiple instances of the same network function to minimize
the synchronization cost.

As shown in Algorithm 3, we compute the shortest paths
for each instance with the other instances. Then, each instance



Algorithm 2 SSF

1: Inputs
2: N : set of physical nodes
3: V : set of VNFs
4: cn: remaining capacity in each physical node n ∈ N
5: β : delay constraint
6: for v ∈ V do
7: for each instance of type v = {i1, i2, i3, ...i|v|} do
8: SPList(v)← get shortest path tree(iv) .
SPList is the list to store the shortest path tree for each
instance of type v

9: CNodeList(ncn)← get CNodes(SPList(v)) .
CNodeList is the list to store the nodes that share by
more than one path in the shortest path tree

10: end for . find common nodes score
11: for j ∈ CNodeList(ncn) do
12: sn ←0
13: CNScoreList(ncn, sncn)← get Score(j, sj) .

CNScoreList is the list to store the common nodes ncn
and their scores sncn

14: end for
15: ncn = maxsncn

(CNScoreList(ncn, sncn
))

16: if cncn > 0 then
17: Allocate(SyncFn, Instances, ncn)
18: else
19: Move to the second highest common node
20: end if
21: tv̄,s̄f ← compute SyncDelay(v, sf)
22: ts̄f,v̄ ← compute SyncDelay(sf, v)
23: tl̄ = tv̄,s̄f + ts̄f,v̄
24: if tl̄ ≤ β then
25: compute SyncCost(v, sf)
26: compute SyncCost(sf, v)
27: end if
28: end for

merge the computed paths to build its own shortest path tree
therefore we will have a set of common nodes ncn (i.e.,
common nodes shares by more than one path) (Lines 7-10).
Then, each instance try to find the closest common node
cnclose. To this end, we compute the number of hops h,
and the delay t̄ between each instance and all the common
nodes (Line 11-16). For each instance, the algorithm selects
the closest common node cnclose that has the lowest number
of hops h, less delay t̄, and enough resources ccnclose

to be
the hosting node of the synchronization function (Lines 17-
26). We also assume that we can not place more than one
synchronization function in the closest common node to serve
multiple instances of the same network function (Lines 20-22).

Furthermore, the algorithm synchronizes the same state
between multiple synchronization functions for consistency
purpose. Thus, each synchronization function synchronizes the
same state with the others based on the lowest number of hops
h, and less delay t̄.

We compute the delay tl̄, which is the time required for

Algorithm 3 MSF

1: Inputs
2: N : set of physical nodes
3: V : set of VNFs
4: cn : remaining capacity in each physical node n ∈ N
5: β : delay constraint
6: for v ∈ V do
7: for each instance of type v = {i1, i2, i3, ...i|v|} do
8: SPList(v)← get shortest path tree(iv) .
SPList is the list to store the shortest path tree for each
instance of type v

9: CNodeList(ncn)← get CNodes(SPList(v)) .
CNodeList is the list to store the nodes that share by
more than one path in the shortest path tree

10: end for
11: for each instance of type v = {i1, i2, i3, ...i|v|} do
12: for j ∈ CNodeList(ncn) do
13: h← compute NumHops(iv, j)
14: t̄← compute SyncDelay(iv, j)
15: CAND(v, ncn, h, t̄)← {iv, j, h, t̄} .

CAND is the list to store the number of hops and the
delay between each instance of type v and all the common
nodes.

16: end for
17: cnclose = minh,t̄(CAND(v, ncn, h, t̄))
18: if ccnclose

> 0 & SyncFn 6∈ cnclose then
19: Allocate(SyncFn, Instances, cnclose)
20: else if (SyncFn ∈ cnclose) then
21: Use existing synchronization function
22: else
23: Move to the second closest common node
24: end if
25: end for
26: end for
27: tv̄,s̄f ← compute SyncDelay(v, sf)
28: ts̄f,s̄f ← compute SyncDelay(sf, sf)
29: ts̄f,v̄ ← compute SyncDelay(sf, v)
30: tl̄ = tv̄,s̄f + ts̄f,s̄f + ts̄f,v̄
31: if tl̄ ≤ β then
32: compute SyncCost(v, sf)
33: compute SyncCost(sf, sf)
34: compute SyncCost(sf, v)
35: end if

a messages to travel from instances to the synchronization
functions and back again. To this end, we compute the delay
between instances and the synchronization functions tv̄,s̄f ,
which represents by the instance that has the highest delay.
We also compute the delay between synchronization functions
ts̄f,s̄f , which represents by the synchronization function that
has the highest delay. Similarly, we compute the delay between
the synchronization functions and the instances ts̄f,v̄ (Lines
27-30). The tl̄ should not exceed the threshold β to compute
the synchronization cost (Lines 31-35). Finally, the whole
process is repeated for instances of another network function.



VI. SIMULATION AND RESULTS

In this section, we evaluate the performance of the pro-
posed algorithms through extensive simulations. We basically
compare the performance of those algorithms with the optimal
solution provided by CPLEX and compare the obtained syn-
chronization cost, delay, as well as the algorithms’ execution
time.

A. Simulation Setup

In order to evaluate the proposed solutions, we developed
a C/C++ simulator that simulates the entire environment
including the physical infrastructure, the embedded functions,
and the three proposed algorithms. We considered a topology
with 24 physical nodes connected through 52 physical links
that were randomly generated. We assume that each physical
node has different computing capacity randomly generated
from 40 to 120 virtual machines. We assume that all virtual
machines have the same resource capacities. We also assume
that each link has different propagation delay randomly gen-
erated between 5 ms to 20 ms. In our experiment, we assume
that the VNF instances in there are already embedded. Hence,
we considered 8 different scenarios where the instances of the
same network functions has been randomly distributed in the
infrastructure. Furthermore, we fixed the required synchroniza-
tion delay for the VNFs to 110 ms.

B. Synchronization cost

Fig. 3 compares the average synchronization cost found with
the proposed algorithms with the optimal solution generated
by CPLEX for each scenario. We can see that for all scenarios
(i.e., S1-S8) SSF and MSF outperforms SPT and generate a
slightly higher number of messages compared to the optimal
solution provided by CPLEX. This indicate that the com-
munication patterns provided by SSF and MSF are close to
the optimal ones. To explain these results, SPT achieves the
synchronization operation where each instance synchronizes
the state with the other instances using its shortest path tree. In
this case, the synchronization cost will be high as the number
of hops between the instances is high. Therefore, the messages
will travel through a high number of hops to share the state.

Unlike SPT, SSF and MSF find common nodes between
the instances to provision synchronization functions therein
to minimize the number of message. Indeed, synchronization
functions consolidate received messages (so their number are
reduced) and then distribute them to all instances at the same
time.

C. Synchronization delay

Fig. 4 compares the average synchronization delay found
with the proposed algorithms and the optimal solution gen-
erated by CPLEX for each scenario. It clearly shows that
SSF and MSF outperform SPT and provide a near optimal
results. To explain these results, the synchronization delay can
be controlled by the number of hops between the instances.
Therefore, the more we minimize the number of hops, the
more the synchronization delay decreases. Hence, SSF and

Fig. 3: Average synchronization cost

MSF succeeded in reducing the synchronization delay by pro-
visioning synchronization functions that minimize the number
of hops between instances. The results show that, for SPT, SSF
and MSF algorithms as well as CPLEX, the synchronization
delay is below the synchronization delay threshold β specified
as input to all solutions (β is equal to 110 ms in our
experiments).

Fig. 4: Average synchronization delay

D. Execution Time

Fig. 5 depicts the execution time for the proposed algo-
rithms compared to that of CPLEX. The figure shows that
the execution time for CPLEX is between 46 seconds to 29
minutes depending on the number of instances and the distance
between them. The reason behind that is that the number of
variables in the ILP increase (e.g., the number of instances of
the network functions, and that the number of hops between
instances), which makes the problem harder to solve and
takes more time to solve because of a larger solution space.
However, the figure shows that the execution time for SPT,



SSF, and MSF does not significantly change for all scenarios
and regardless of the number of instances and their placement.

Fig. 5: Execution time.

E. Discussion

The performed simulations show that SSF and MSF are able
to find near-optimal synchronization cost and delay, while SPT
is so far from optimal one. Indeed, compared to the optimal
solution, the average synchronization cost and delay gaps for
SPT are up to 80% and 37%, respectively, which is far from the
optimal one. However, the average synchronization cost and
delay gaps for SSF are up to 12% and 15% respectively, which
is close to the optimal one. They are even less than 5% and
7%, respectively, for MSF, which is much closer to the results
of the optimal solution. Furthermore, the execution time for the
three proposed algorithms are up to times faster than CPLEX
used to find the optimal solution. We can conclude that MSF
finds the best trade-off between complexity and performance

VII. RELATED WORK

In this section, we briefly present recent research work
addressing the state synchronization problem. For instance,
Khalid and Akella [11] propose a NFV framework to support
state synchronization among stateful network functions. They
leverage a data store to ensure the state consistency among
multiple instances of network function. Each instance records
a callback function with the data store. This function is used
by the data store to update the state of the instance on behalf
of the others. This work does not consider synchronization
cost and delay.

Satapathy et al. [16] propose a network state manage-
ment system, which introduces two different solutions to
ensure state synchronization. In the first solution, an instance
synchronizes the state at the receipt of each single packet
whereas in the second the state is synchronized after receiving
multiple packets. However,the first solution obviously has a
high synchronization overhead whereas the second may incur
additional delay.

Peuster and Karl [20] propose E-State management frame-
work to synchronize the state of all instances of the same net-
work function. They use a publish/subscribe communication
pattern to share the state. Subscribers are the Instances who
subscribe to a same state, and Publishers are the instances
who publish the state. However, this solution does not take
into account the synchronization cost and delay.

Rajagopalan et al. [21] propose a state management system,
which classifies state inside network function into internal and
external. Internal state is required for a given instance to run
and has of no effect outside that instance’s execution. External
state is the state that is shared across all instances of the same
type. It needs to be maintained consistently between the same
function’s instances. This system provides a shared library
used by instances to share the external state among them.
This shared library supports a callback function, where each
instance registers a callback function that is invoked automati-
cally by the library when another instance updates its external
state. This work also does not consider the synchronization
cost and delay.

Xie et al. [22] propose a framework named Dual to address
the synchronization problem between instances of the same
network function. An approximation algorithm is designed
to minimize the synchronization traffic between the instances
by placing the instances close to each other in the physical
infrastructure. However, this work take into consideration the
synchronization delay.

Ma et al. [17] propose an algorithm for intrusion de-
tection systems that can operate across multiple instances.
This algorithm works by synchronizing processing, which
means directly sharing state and waiting on other instances
to complete processing as needed. This work does not use
specific communication pattern for the data synchronization
and does not consider the synchronization delay, which may
lead to high delay in detecting potential attacks.

Unlike previous work that looked only on the way synchro-
nization can be carried out, the novelty of our solution lies
in the idea of considering how to minimize the cost of this
synchronization while ensuring the synchronization delay does
not exceed a certain bound in order to ensure that the network
function is able to operate normally.

VIII. CONCLUSION

This paper addresses the problem of finding the optimal
communication pattern to synchronize the instances in a way
that minimize the synchronization cost while ensuring the
required delay does not exceed a certain bound has been
proposed. The problem was formulated as an ILP implemented
in CPLEX and three heuristic algorithms (i.e., SPT, SSF,
and MSF) were proposed to deal with large-scale scenarios.
Though three algorithms shows much lower computational
time compared to CPLEX, MSF is the one that significantly
reduces execution time and provides near optimal solution.

As a future work, more optimizations techniques should
be considered in order to further reduce the algorithms’
complexity.
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