
Automated Performance Evaluation of Intent-based
Virtual Network Systems

Kazuki Tanabe∗, Tatsuya Fukuda∗ and Takayuki Kuroda∗
∗NEC Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211–8666, Japan
Email: {kazuki-tanabe, t fukuda1987, kuroda}@nec.com

Abstract—We propose an automation method for the testing
phase of system integration. The method automatically generates
an evaluation program for determining if the target system design
satisfies the system requirements. We model both system require-
ments and system design as graph structures and define the test
templates that contain abstract test commands and search methods
of their syntax parameters. After referring to the test templates
and acquiring parameters from the system design graph according
to search methods, test commands are translated into concrete
test scripts, which are compatible for different environments
such as OS type and network configuration, by referring to the
command templates. We conducted evaluation experiments on
the effectiveness of our method. The results indicate that the
method can flexibly generate an evaluation program in a short
time and the evaluation program can determine the satisfaction
of system requirements for the deployed system design based on
their evaluation units.

I. INTRODUCTION

According to the recent rapid growth in virtualization tech-
nologies of network infrastructures, the demand for ICT system
integration (SI) based on virtualization technologies has been
increasing. On one hand, these technologies are applicable to
various scales of network environments, and enable easier and
more flexible configuration and deployment for clients. On the
other hand, such technologies may put a heavier burden of
engineers and lead to a network configuration depended on the
engineers’ specific proficiency because management of such
systems requires a wide range of advanced knowledge.

To reduce the duration of system designing and configura-
tion, there have been several studies on automation technologies
for each phase of SI. These studies have mainly focused on the
requirement-definition, designing and deployment phases. We
developed an automated network configuration designer called
Weaver [1] and an automated provisioning planner and de-
ployment tool [2]. Weaver follows the concept of Intent-based
Networking (IBN), in which network management is based on
users’ abstract intent for output ICT systems. Meanwhile, for
application-level testing phase, automation technologies have
been actively studied and several CI/CD testing tools such as
Jenkins [3] have been developed. However, there have been few
studies of network-level system-test automation technology.

For application-level automation of the testing phase, there
have been studies of Web frameworks targeted at Web-oriented
services [4] [5]. Wang et al. proposed an automation framework
to execute input test scenarios and determine the testing results

[4]. Guo et al. proposed a test automation web framework [5]
in which performance tests of web applications are automated
by referring to test scenarios, which are defined in XML-based
Web Services Description Language (WSDL) format.

In the general testing phase of SI, system requirements of
clients are divided into several evaluation units, which generally
correspond to clients’ intents in the SI for IBN-based systems.
To determine that the deployed network system satisfies the
requirements, evaluation programs are created and executed for
each evaluation unit. When these programs are created from
abstract requirements on the IBN-based network environment,
both the system requirements and deployed network topology
(system design) need to be referred and some commands of the
evaluation program need to be modified according to the system
design (e.g. available packages on each OS and arguments of
commands, such as IP address or URL). Therefore, different
evaluation programs need to be created for each system design,
which puts a heavy burden on engineers.

Net-Tester [6] is a conventional opensource tool for automat-
ing the network-level testing phase. It is based on Cucumber
[7], which is a framework of Behavior Driven Develop (BDD),
in which test scenarios are described with the behavior of the
system in a natural language. However, it still has some room
for improvement from the viewpoint of reusability because
some information, such as IP addresses and port numbers, still
needs to be manually described at the test scenario. Li et al.
have had a survey on network verification and testing methods
by using formal methods in Software Defined Networking
(SDN) [8]. They concluded that the verification of Boolean
invariants e.g. the reachability on Data plane (D-plane) is fast
enough for applying to large networks [9] [10] [11], but the
verification of quantitative invariants, e.g. latency, packet loss,
and bandwidth is still a challenge for future work.

In this study, we propose an automation method of the
network-level testing phase of SI for IBN-based ICT systems.
Our method automatically generates evaluation programs from
system requirements, which consist of clients’ abstract intents,
and a system design derived from the requirements. The target
systems are modeled as graph structures, and the method
compares the system requirements and system design and
searches the parameters of the evaluation program in the system
design graph. Thus, it enables flexible generation of appropriate
evaluation programs according to each client’s intent.

978-3-903176-31-7 © 2020 IFIP

Fig. 1. Example of system requirement graph
Greq .

HTTP[App->App]:
src: App1
dest: App2

Bandwidth[App->App]≥500Mbps:
src: App1
dest: App2

Fig. 2. Example description of Greq . Fig. 3. Example of system design graph G.

App1:
type: App
requirements:
OS: [OS1, Wire:OS]

App2:
type: App
properties:
URL: http://www.example.com/

requirements:
OS: [OS2, Wire:OS]

OS1:
type: OS
properties:
Type: Ubuntu

requirements:
Ansible: [Ansible, OSAgent]
Machine: [Machine1, Wire:Machine]

...

Fig. 4. Example description of G.

The rest of this paper is organized as follows. In Section II,
we describe the model definition of our target ICT systems and
purpose of this study. In Section III, we explain our proposed
method, which is based on a graph-based parameter-search
algorithm. In Section IV, we present the results of an evaluation
experiment on the effectiveness of our proposed method. We
conclude this paper and discuss future work in Section V.

II. MODEL SETTINGS

In this section, we give the model definition of our target
ICT systems and explain the purpose of this study.

The network topology and configuration of an ICT system
(system design) is modeled as a directed graph G = (V,E).
The G is composed of a set of nodes V and set of edges E.
Set V consists of system element vi, which includes not only
network appliances, such as routers, switches, and firewalls, but
also physical machines (PMs), virtual machines (VMs), OSes
running on machines, middleware, and applications running on
the OSes. Set E consists of a connection ei,j = {vi, vj} from
a node vi ∈ V to another node vj ∈ V . In addition, each
vi consists of properties such as the configuration value of
applications, IP address of a network interface, and OS type.

System requirements consist of abstract intents that the client
requires for the ICT system. These intents are composed of
functional requirements and non-functional requirements, e.g.,
reliability, performance, and security. We also model the system
requirements as a directed graph Greq = (V req, Ereq). The
Greq is composed of a set of nodes V req and set of edges
Ereq . Set V req consists of a system element vreqi , and Ereq

consists of a connection ereqi,j = {vreqi , vreqj } from a node vreqi

to another node vreqj .
Examples of Greq and G are shown in Figs. 1 and 3, re-

spectively. System requirements consist of an HTTP connection
from a client application (App1) to a server application (App2)
and minimum bandwidth of 500 Mbps. A system design is a
concrete network configuration on an Openstack [12] virtual
environment and is automatically generated from the system
requirements in Fig. 1 by using Weaver. App1 and App2 are
hosted on different Ubuntu Linux OSes on independent VMs
(Virtual Development Units: VDUs) respectively. Each VDU
connects to the same virtual subnet (Virtual Link: VL), which is

operated by a virtual router (vRouter) via each virtual network
interface (Connection Point: CP). Ansible provisioning tools
[13] have also been installed on both Ubuntu OSes and App2
contains the Web URL of the website as a property.

Finally, the definitions of Greq and G are shown in Figs.
2 and 4. The definition of Greq describes the elements and
connections that are required on the ICT system. For example,
the Greq in Fig. 1 contain two requirements as items, and each
item defines the source (src) and destination (dest) of the
connection. The definition of the G is based on the TOSCA
format [14], which is a standard by OASIS for defining ICT
system configurations. The G is described as a list of nodes vi
that contains supplemental information as their properties. As
shown in Fig. 4, the type field defines the type of each node
and properties field defines the properties of each node.
The requirements field defines the ID of node instance
that can be connected from the node and type of connection.

We model target network systems as graph structures with the
above settings. Our goal is to automate the network-level testing
phase of SI by automatically generating evaluation programs
that determine the G’s satisfaction of Greq , from abstract
input intents. To automate evaluation-program generation, an
evaluation script needs to be generated for each evaluation unit,
and the agents and parameters of the evaluation script need to be
determined by referring to the relationship between the system
requirements and the system design. Our proposed method
searches and acquires the required agents and parameters in
the G for each evaluation unit, as discussed in the next section.

III. PROPOSED METHOD

In this section, we explain our proposed method to generate
evaluation programs for the network-level testing phase.

First, an evaluation program is composed of several eval-
uation scripts, each of which refers to each evaluation unit.
The method requires two inputs: the Greq and a G, which is
derived from the Greq . The method then refers to the evaluation
template, which is defined for each evaluation unit in advance,
and generates an abstract evaluation command related to each
evaluation script.

Table I shows the definition example of evaluation templates.
Each evaluation unit has two types of arguments: type of target

TABLE I
DEFINITION EXAMPLE OF EVALUATION TEMPLATES

Evaluation Unit Value Search Method
HTTP[<a:App> -> Command Run http(Agent, OS.Type, App2.URL)
<b:App>] Parameter Agent <a>(reference, HostedOn, OS)+(service, OSAgent, Agent)

OS.Type <a>(reference, HostedOn, OS)
App2.URL (reference, HostedOn, App)

Bandwidth[<a:App> -> Command Run bandwidth(Agent1, OS1.Type,
<b:App>, x[Mbps]] Agent2, OS2.Type, CP2.ip, x)

Parameter Agent1 <a>(reference, HostedOn, OS)+(service, OSAgent, Agent)
OS1.Type <a>(reference, HostedOn, OS)
Agent2 (reference, HostedOn, OS)+(service, OSAgent, Agent)
OS2.Type (reference, HostedOn, OS)
CP2.ip (reference, HostedOn, VDU|Container)+(service, HostedOn, CP)

TABLE II
DEFINITION EXAMPLE OF COMMAND TEMPLATES

Commands Order Conditions Agents Scripts
http(Agent, OS.Type, URL) 1 OS.Type == "Windows" Agent Invoke-Restmethod -url {{URL}}

OS.Type == "Ubuntu" Agent curl {{URL}}
bandwidth(Agent1, OS1.Type, 1 OS2.Type == "Windows" Agent2 iperf -sD
Agent2, OS2.Type, CP2.ip, x) OS2.Type == "Ubuntu" Agent2 iperf -sD

2 OS1.Type == "Windows" Agent1 iperf -c {{CP2.ip}}
OS1.Type == "Ubuntu" Agent1 iperf -c {{CP2.ip}}

TABLE III
DESCRIPTION EXAMPLE OF EVALUATION PROGRAM

Evaluation Units Order Agents Scripts Constraints
HTTP[App->App] 1 Ansible1 curl http://www.example.jp/
Bandwidth[App->App]≥500Mbps 1 Ansible2 iperf -sD

2 Ansible1 iperf -c 192.168.1.102 bandwidth ≥ 500[Mbps]

nodes in the system design and constraints for determining the
evaluation results. Each evaluation template is mapped to each
evaluation unit and consists of an abstract evaluation command,
parameters of the command, and search methods for acquiring
parameters in the G. Each search method consists of the starting
node and search steps listed in execution order. Each search step
is defined as a tuple of three arguments: search direction of edge
ei,j ∈ E in the G (reference: forward, service: backward), type
of traversable edges, and type of destination node.

The parameter acquisition algorithm of the proposed method
is shown in Algorithm 1, and Fig. 5 shows an example of search
procedure when Algorithm 1 is applied to the G. The inputs
of Algorithm 1 are the G, starting node vstart, and an array
of search steps steps. Each search step stepi ∈ steps is a
tuple of search direction relationi, type of traversable edges
wireTypei, and type of destination node nodeTypei. Parame-
ter search is executed as a recursive call of function Search,
and edge traversal is conducted for every edge the type or the
parent edge’s type of which is equal to wireTypei and which is
connected to the current node vcurrent in relationi. Search step
stepi is repeated until the destination node, the type of which
is nodeTypei, is found. If the destination node is found at the
final search step stepn−1 and has the parameter param in the
properties field, Algorithm 1 returns the param value as
the output value. Otherwise, it returns None, which means that
the search failed. Function FindEdge is a subprocess function
used in function Search and determines the existence of an
edge ei,j = {vi, vj} whose source node vi, destination node
vj , type of edge ei,j or its parent edge is equal to src, dest,
and wireType, respectively.

Fig. 5 shows the procedure of searching for and acquiring
an IP address required to access the Web application in a

system design G. First, the search process starts at App1. In
the first search step {relation0= reference, wireType0=
HostedOn, nodeType0= VDU}, edges {App1, OS1} and
{OS1, VDU1} are traversed in the forward direction. The
types of these two edges(Wire:OS and Wire:Machine) are
derived from abstract edge type HostedOn, which means a
hosting relationship. In the final step {relation1 service,
wireType1= HostedOn, nodeType1= CP}, an edge {CP1,
VDU1}, whose type Wire:virtualBinding is also derived
from HostedOn, is traversed in backward direction. Finally,
destination node CP1, whose node type is CP, is found and
function Search returns the IP address of CP1.

Second, evaluation commands the parameters of which
are acquired from Algorithm 1 are translated into concrete
and executable evaluation scripts by referring to command
templates. Table II shows a example definition of command
templates. Each command template defines mappings from an
evaluation command to ordered tuples of evaluation scripts and
their agents. Each tuple of a script and agent has conditional
branches based on the input parameters. When a command
template is referred by an evaluation command with parameters,
these tuples are extracted in execution order, according to
parameter conditions. Extracted tuples becomes the output
evaluation script. Each example script in Table II is an essential
part of a whole evaluation script for simplicity, while the
actual evaluation scripts include pre-evaluation scripts and
post-evaluation scripts. For example, installation commands of
packages are executed before the evaluation, and termination
commands of evaluation tasks or uninstallation of temporary
packages are executed after the evaluation.

Finally, an evaluation program generated from the above
procedure and shown in Table III is defined as a list of

Algorithm 1 Search for parameter param
Input: G = (V,E), vstart ∈ V, steps = [step0, . . . , stepn−1]

(stepi = {relationi, wireTypei, nodeTypei})
Output: Value(param)

1: i← 0
2: vcurrent ← vstart
3: function SEARCH(vcurrent, i, steps, param)
4: if Type(vcurrent) == nodeTypei then
5: if i == n− 1 then
6: if param in Properties(vcurrent) then
7: return Value(param)
8: return None
9: end if

10: else
11: i← i+ 1
12: end if
13: end if
14: if relationi is ’reference’ then
15: for all vdest(j) s.t.

FindEdge(vcurrent, vdest(j), wireTypei) is True do
16: return Search(vdest(j), i, steps, param)
17: end for
18: else if relationi is ’service’ then
19: for all vsrc(j) s.t.

FindEdge(vsrc(j), vcurrent, wireTypei) is True do
20: return Search(vsrc(j), i, steps, param)
21: end for
22: end if
23: end function
24: function FINDEDGE(src, dest, wireType)
25: for all ei,j = {vi, vj} ∈ E do
26: if vi == src and vj == dest and (ParentType(ei,j) ==

wireType or Type(ei,j) == wireType) then return true
27: end if
28: end for
29: return false
30: end function

evaluation units and has ordered tuples of agents, scripts, and
constraints. Constraints to determine the evaluation results are
described in the tuple that contains the actual evaluation task,
e.g., connection test or performance measurement.

For example, to evaluate the evaluation unit
HTTP[App->App], which confirms an HTTP connection
between a client and server, an evaluation script is executed by
agent Ansible1 hosted on OS Ubuntu1. In the evaluation
script, an HTTP request is sent from Ubuntu1 to the URL
of the Website served by the server application App2, by
the curl command executed by Ansible1. The evaluation
result is determined by parsing the response body from App2.

For the evaluation unit Bandwidth[App->App]
≥500Mbps, which measures the communication bandwidth
between two applications, the evaluation result is determined
by the input constraint (minimum bandwidth: 500 Mbps).
First, the bandwidth-measurement tool iperf is executed
in server mode by Ansible2, on Ubuntu node Ubuntu2,
which runs the destination application App2. Second, iperf
is executed in client mode on Ubuntu node Ubuntu1 by
Ansible2, with an IP address of a virtual network interface
card (NIC) connected to Ubuntu2 as a parameter. Finally,
the measured bandwidth is extracted from the output of the

Fig. 5. Example of parameter search procedure.

iperf client mode, and the evaluation result is determined in
comparison with the constraint value of 500 Mbps.

IV. EVALUATION

We have conducted evaluation experiments according to the
model settings described in Section II. We implemented the
proposed method and its algorithm, and associated them with
Weaver, our provisioning planner, and deployment tool so that
a major part of IBN-based SI, from designing phase to testing
phase, can be automated in sequence. Weaver generates a
system design from the input system requirements, and the
parameters acquired from Algorithm 1 are combined with the
definition of system design into an expanded TOSCA format.
An evaluation program is generated as a workflow from the
expanded TOSCA format by our provisioning planner and
executed by our deployment tool. The result indicates the
advantages of our method: flexible generation of evaluation
programs and time reduction in testing phase.

A. Parameter Search

We first conducted an experiment for Algorithm 1. With
Algorithm 1, parameters of evaluation programs are acquired
in the system design and abstract intents can be concretized
into actual evaluation scripts. In this experiment, we applied
Algorithm 1 for several situations in the same system design
and found that different parameters can be correctly acquired.

Figs. 6 and 7 show the structure of the target system require-
ments Greq and system design G. These graphs are expansions
of the ones shown in Figs. 1–4. In addition to two applications
Client1 and Server1, another client application Client2
and server application Server2 are required to join the
independent docker infrastructure. The system requirements
also include two evaluation units HTTP[App->App] and
Bandwidth[App->App]≥500Mbps for each connection
from a client application to server application. In the system
design in Fig. 7, docker is running on both OS1 and OS2.
Each docker container runs Red Had Enterprise Linux (RHEL)
as a base OS and hosts another client application Client2
and server application Server2, respectively. Each docker
container is connected to the same VL subnet via the virtual
interface macvlan of each host OS.

Fig. 6. System requirements Greq including
docker containers. Fig. 7. System design G including docker containers.

TABLE IV
RESULTS OF PARAMETER SEARCHES

src dest http(Agent, OS.Type, App2.URL) bandwidth(Agent1, OS1.Type, Agent2, OS2.Type, CP2.ip, x)
Agent OS.Type App2.URL Agent1 OS1.Type Agent2 OS2.Type CP2.ip

client1 server1 Ansible1 Ubuntu http://www.serv1.net Ansible1 Ubuntu Ansible2 Ubuntu 192.168.1.102
client1 server2 Ansible1 Ubuntu http://www.serv2.com Ansible1 Ubuntu Ansible4 RHEL 192.168.1.152
client2 server1 Ansible3 RHEL http://www.serv1.net Ansible3 RHEL Ansible2 Ubuntu 192.168.1.102
client2 server2 Ansible3 RHEL http://www.serv2.com Ansible3 RHEL Ansible4 RHEL 192.168.1.152

In this network topology, we executed Algorithm 1 for
every connection pattern. Table IV shows the results of
parameter search for evaluation units HTTP[App->App] and
Bandwidth[App->App]≥500Mbps. Algorithm 1 acquired
the correct parameters of evaluation commands for every
connection pattern. For example, target URL of the evaluation
command http(Agent, OS.Type, APP2.URL) was
correctly obtained from the target Web server application given
in dest, and the target IP address of the evaluation command
bandwidth(Agent1, OS1.Type, Agent2, OS2.Ty
pe, CP2.ip, x) was also correctly obtained from the
virtual NIC connected to the VM or docker container, which
runs the target Web server. As these results indicate, search
methods for each parameter defined in evaluation templates
enable flexible evaluation-program generation.

B. Results of Evaluation Programs

We deployed the G shown in Figs. 3 and 4 on Openstack vir-
tual environments and executed the evaluation program gener-
ated with the proposed method on these network environments.
The evaluation program determines if the G satisfies the Greq

in Figs. 1 and 2, including the following two evaluation units:
• HTTP connection from App1 to App2 can be made
• Communication bandwidth between applications App1

and App2 is more than or equal to 500 Mbps
Fig. 8 shows the deployed network environment with the re-

lationship of connections and agents on the evaluation program.
In the evaluation environment 1, two VMs (VDU1, VDU2) are
running, and each VM has a single-core single-thread CPU
and 1 GBytes of virtual RAM. Each VM also runs Ubuntu
OS provisioned by Ansible. The Ubuntu1 OS runs a client
application corresponding to App1 and ubuntu2 runs nginx
to host a website, as an example of App2. In addition, each
VM is connected to the same virtual subnet (VL) via its virtual
NIC (CP), and a virtual router (vRouter) runs on the subnet.

Table V list the execution results of the evaluation
program on evaluation environment 1. Evaluation unit
HTTP[App->App] was determined to be PASS because

a normal HTTP response from nginx was retuned as the
program output, which means successful HTTP connec-
tion from Ubuntu1 to the website. The evaluation unit
Bandwidth[App->App]≥500Mbps was also determined
to be PASS because the iperf client returned the measured
bandwidth as 818 Mbps, which satisfies the input constraint for
the minimum bandwidth of 500 Mbps.

We added two VMs on the evaluation environment 2 as
shown in Fig. 9, to generate background traffic on the virtual
subnet VL. Background traffic is continuously generated from
these two VMs to the ubuntu2 OS by large file transfer of the
scp command. We executed the same evaluation program in
this situation. Table VI lists the evaluation results. Evaluation
unit HTTP[App->App] had the same result as in evalua-
tion environment 1 and was determined to be PASS, while
evaluation unit Bandwidth [App->App]≥ 500Mbps was
determined to be FAIL because the iperf client returned
the measured bandwidth as 306 Mbps, which is below the
constraint for the minimum bandwidth. These results are due
to the heavy traffic load of background traffic and shortage
in computing resources of the ubuntu2 node because of
receiving large files.

These results indicates that the evaluation program auto-
mates the network-level testing phase in a target ICT system
based on evaluation units that consists of the client’s system

Fig. 8. Network topology of eval-
uation environment 1.

Fig. 9. Network topology of evaluation
environment 2.

TABLE V
EVALUATION RESULTS ON EVALUATION ENVIRONMENT 1

Evaluation Units Results Program Output
HTTP[App->App] PASS <!DOCTYPE HTML>

<html><head>
<title>Welcome to nginx!</title> ...

Bandwidth[App->App] PASS [3] local 192.168.1.101 port 45407 connected
≥ 500Mbps with 192.168.1.102 port 5001

[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 977 MBytes 818 Mbits/sec ...

TABLE VI
EVALUATION RESULTS ON EVALUATION ENVIRONMENT 2

Evaluation Units Result Program Output
HTTP[App->App] PASS <!DOCTYPE HTML>

<html><head>
<title>Welcome to nginx!</title> ...

Bandwidth[App->App] FAIL [3] local 192.168.1.101 port 45812 connected
≥ 500Mbps with 192.168.1.102 port 5001

[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 366 MBytes 306 Mbits/sec ...

requirements. We could also easily find the system elements or
connections to be improved, even though the deployed system
design did not satisfy the system requirements.

C. Evaluation-Program-Generation Time

Finally, we evaluated the time required for generating an
evaluation program. Our goal with the proposed method is to
automate evaluation-program generation at the network level
and reduce engineers’ burden for the testing phase of SI. We
measured the execution time of our implementation for different
pattern of system requirements and designs.

In this experiment, the number of client applications var-
ied from 1 to 5, while the number of server applications
was fixed to one. Each client node had two evaluation
units HTTP[App->App] and Bandwidth[App->App] ≥
500Mbps. We generated the system design for each system
requirement pattern by using Weaver.

We measured the evaluation-program-generation time for 10
trials for each pattern. The implementation program was exe-
cuted on a physical server with Intel©Xeon©E5-2420 CPU @
1.90 GHz and 48 GBytes of RAM. The measurement results of
TOSCA-format-generation time including parameter searches
and entire evaluation-program-generation time are shown in
Figs. 10 and 11, respectively. The horizontal axis shows the
number of evaluation units, and the vertical axis shows the
average time for evaluation program generation.

Fig. 10 shows the average time for generating an expanded
TOSCA format from input system requirements, including
parameter searches of Algorithm 1. This figure also shows
that the parameter-search process finishes within a second and
there is no noticeable difference in the number of clients and
evaluation units. This is because each client application is in
an independent relationship with the server, and an increase
in client applications has no effect on the parameter search of
each client applications.

Fig. 11 shows that the total program-generation time drasti-
cally increases as the evaluation units increase. This increase is
due to the workflow-generation procedure in our provisioning
planner. When the evaluation scripts generated from command
templates are combined into the evaluation program, our pro-
visioning planner calculates the execution order of scripts, in
consideration of dependencies between tasks. Although the

 0

 100

 200

 0 5 10

T
O

S
C

A
-f

o
rm

a
t-

g
e

n
e

ra
ti
o

n
 t

im
e

 [
m

s
e

c
]

Number of evaluation units

Fig. 10. Evaluation results on average
time for generating expanded TOSCA
format.

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 0 5 10

P
ro

g
ra

m
-g

e
n

e
ra

ti
o

n
 t

im
e

 [
s
e

c
]

Number of evaluation units

Fig. 11. Evaluation results on average
program-generation time.

number of scripts for each evaluation unit is the same for every
system design, the number of total scripts and their planning
time increase as more client applications are connected. We will
improve the workflow-generation procedure of our provisioning
planner so that the execution order of scripts can be determined
as referring to the command templates listed in Table II for
future work. Nevertheless, Fig. 11 shows that our proposed
method automatically generates an evaluation program in min-
utes or hours, even though the target system design becomes
larger and more evaluation units need to be evaluated.

V. CONCLUSION

We proposed a method of ICT system evaluation-program
generation for automating the network-level testing phase of
IBN-based SI. Our method refers to the evaluation templates
that define abstract commands and the command templates that
translate the commands into actual evaluation scripts according
to parameter conditions. By referring to these two templates,
the whole process of evaluation-program generation can be
sequentially automated and clients’ intents can be concretized
into corresponding programs. The evaluation results indicate
that the method correctly acquires the required parameters of
evaluation scripts and flexibly generates the evaluation program
in a practical time. We also confirmed that an evaluation
program can determine the satisfaction of system requirements
for the deployed system design based on their evaluation units.

In this study, we assumed that the parameters of evaluation
commands can be uniquely found by using search methods.
To use our proposed method in more complex system designs,
e.g., servers with multiple NICs and IP addresses, and network
topologies that contain redundant paths, its parameter-search
algorithm should be improved so that the appropriate parameter
value is chosen from the multiple search results. Moreover,
to indicate that our method is applicable for much larger ICT
systems, we should improve our implementation program so
that workflow-generation procedure is finished more rapidly.

ACKNOWLEDGMENTS

A part of this work was conducted as part of the project
entitled“Research and development for innovative AI network
integrated infrastructure technologies (JPMI00316),”supported
by the Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] T. Kuroda et al., ”Weaver: A Novel Configuration Designer for IT/NW
Services in Heterogeneous Environments,” in Proc. IEEE GLOBECOM
2019, Dec. 2019, pp. 1-6.

[2] T. Kuroda, M. Nakanoya, A. Kitano and A. Gokhale, ”The configuration-
oriented planning for fully declarative IT system provisioning automa-
tion,” in Proc. IEEE/IFIP NOMS 2016, Apr. 2016, pp. 808-811.

[3] ”Jenkins,” http://jenkins.io/
[4] F. Wang and W. Du, ”A Test Automation Framework Based on WEB,”

in Proc. IEEE/ACIS ICCIS 2012, June 2012, pp. 683-687.
[5] Xiao-yang Guo, Ying-hui Chen, Xue-song Qiu and Fan Tang, ”Design

and implementation of performance testing model for Web Services,” in
Proc. CAR 2010, Mar. 2010, pp. 353-356.

[6] ”NetTester,” http://github.com/net-tester/net-tester/
[7] ”Cucumber,” http://cucumber.io/

[8] Y. Li et al., ”A Survey on Network Verification and Testing With Formal
Methods: Approaches and Challenges,” in IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 940-969, Firstquarter 2019.

[9] H. Mai et al., ”Debugging the Data Plane with Anteater,” in Proc. ACM
SIGCOMM 2011, Aug. 2011, pp. 290-301.

[10] F. Le, G. G. Xie, and H. Zhang, ”Instability Free Routing: Beyond One
Protocol Instance,” in Proc. ACM CoNEXT 2008, Dec. 2008, p. 9.

[11] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese,
”Scaling Network Verification Using Symmetry and Surgery,” in Proc.
ACM PLDI, June 2014, pp. 69-83.

[12] ”Openstack,” http://openstack.org/
[13] ”Red Hat Ansible,” http://ansible.com/
[14] OASIS, ”TOSCA Simple Profile in YAML Version 1.3,”

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf

