
Graph Neural Network-based Virtual Network
Function Deployment Prediction
Hee-Gon Kim∗, Suhyun Park∗, Dongnyeong Heo‡,Stanislav Lange†,

Heeyoul Choi‡, Jae-Hyoung Yoo∗, James Won-Ki Hong∗

∗Computer Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
{sinjint, sh.park11, jwkhong, jhyoo78}@postech.ac.kr

†Information Security and Communication Technology, Norwegian University of Science and Technology,
Trondheim, Norway

stanislav.lange@ntnu.no
‡Handong Global University, Pohang, South Korea

{21931011, hchoi}@handong.edu

Abstract—Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) help reduce OPEX and CAPEX
as well as increase network flexibility and agility. But at the
same time, operators have to cope with the increased complexity
of managing virtual networks and machines, which are more
dynamic and heterogeneous than before. Since this complexity
is paired with strict time requirements for making management
decisions, traditional mechanisms that rely on, e.g., Integer Linear
Programming (ILP) models are no longer feasible. Machine
learning has emerged as a possible solution to address network
management problems to get near-optimal solutions in a short
time. In this paper, we propose a Graph Neural Network (GNN)
based algorithm to manage Virtual Network Functions (VNFs).
The proposed model solves the complex VNF management prob-
lem in a short time and gets near-optimal solutions.

Index Terms—Virtual Network Function, Machine Learning,
Graph Neural Network.

I. INTRODUCTION

Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) enable more efficient network manage-
ment by allowing administrators to manage the network cen-
trally and dynamically. The SDN controller and NFV manager
provide global views of the network and NFV environment,
and operators can use those to manage the network and service
orchestration. Also, they can prevent the over-provisioning of
resources and provide high availability by scaling and opti-
mizing Virtual Network Functions (VNFs). However, although
SDN/NFV enable efficient network management, they do not
provide the optimal management solutions we need.

Integer Linear Programming (ILP) is one of the optimization
methods for network management. ILP aims to minimize a
linear cost function and uses a set of linear equality and
inequality constraints to get an optimal solution. However,
finding the optimal solution based on ILP takes a relatively long
time, making it unsuitable for real-time network management.

Recently, Machine Learning (ML) is emerging as a new
paradigm to solve various networking problems and to automate
network management. ML provides models that automatically
learn and improve from experiences without being explicitly
programmed [1]. ML takes some time to learn, but takes little
time after learning. Also, ML is more effective in learning wide
and dynamically changing data than statistical methods [2].
However, while ML has these advantages, it is not easy to
apply ML to network management.

In order to apply ML to network management, it is necessary
to provide sufficient network data and corresponding optimal
management data as label data. Of course, well-designed ML
models are also needed. Currently, there are only dozens of data
available for network management, and these data target a small
range of network management. Also, most of the studies use
simple ML models for network management, and these models
cannot understand the network structures or topologies [3].
Thus, the current studies are limited to solving simple problems
and they do not show enough merit of ML compared to the
other ML research areas. In this paper, we generate dynamic
and diverse network data, and represent the network states as la-
bel data. We proposed to use Graph Neural Network (GNN) for
VNF management. Our model uses network data represented
by a graph and learns the state embedding [4] of nodes. This
model effectively learns the network structure and generates
near-optimal solutions in a short time.

This paper extends our previous work [5] in several direc-
tions. Firstly, we predict optimal VNF instance number rather
than changes of VNF instance number. Secondly, we improve
the prediction performance by up to 95% by changing the
structure of the model and using additional data. Thirdly, we
consider a more realistic environment where some nodes and
edges could fail. Fourthly, evaluations regarding the impact of
data size and complexity of services provide more deep insights
into the practicality and reproducibility of our methods.978-3-903176-31-7 ©2020 IFIP

II. RELATED WORK

In this section, we introduce several studies that are relevant
to our study. The orchestration of VNF is derived from [6].
It points out the execution time problem of ILP and proposes
a heuristic method. The proposed heuristic method shows fast
execution time, but it generates a sub-optimal solution. ML-
based VNF management is presented in [7]–[10]. These papers
target only simple problems such as optimal VNF instance
number [7], [8] and VNF chaining [9], [10]. There is an
approach to graph-based ML in [11]. The approach is a little
similar to GNN based network management, but it focuses more
on graph theory and introduces core concepts only. The GNN
based VNF resource prediction is proposed in [12]. It predicts
resource usage using GNN and scales resources sub-optimally.
Besides, the proposed ML-based resource scaling method is
validated by comparing it with the human manual scaling in
terms of the latency measured in post-scaling. However, this
study lacks to validate whether the result is optimal because
the proposed method does not compare itself with the optimal
scaling method. Although GNN can represent graph data well,
the method is not adequate to predict future data without
recurrent models. The models simply follow historical resource
data rather than predict future data.

Our model uses GNN to better represent network informa-
tion. Our proposed model produces more specific and more re-
alistic VNF management policies rather than merely predicting
the overall number of VNF instances or network resource usage.
We predicted optimal VNF instance number for all network
servers and VNF types.

III. PROBLEM DEFINITION

A. Physical Network

We represent the physical network as an undirected graph
G = (N,E), where N and E denotes the set of nodes and links.
We classify nodes into the server s ∈ N that can deploy VNFs
and the switch that cannot deploy VNFs. Supposing cs ∈ R+

is the number of CPU cores and Vs is the deployed VNFs on
s, server data D has Ds = (cs, DVs

) for all s, where DVs
is

the deployed VNF data on server s.
The physical links E have L and C denoted by link data and

connection data. For (i, j) ∈ E, the link has Lij ∈ L defined as
(mij , bij , dij), where mij ∈ R+, bij ∈ R and dij ∈ R+ is the
maximum bandwidth, available bandwidth and delay between
node i and j. The link also has Cij ∈ C, the indicator whether
the link is between the nodes.

Cij =

{
1 if i = j or there is a link between node i and j,
0 otherwise.

B. Virtual Network Function

Supposing T is the set of VNF types, each VNF has
different VNF type t ∈ T . The VNF type decides the
number of the required CPU cores, processing capacity, pro-
cessing delay, and deployment cost represented by Et ∈
R+, τt (in Mbps), δt (in ms), Ft ∈ R, respectively. We define
deployed t type VNF as Vst ∈ Vs. Vst has dedicated data

Dst. We assume that Ist ∈ R+ is the VNF instance number
and τt (in Mbps) , κst (in Mbps) is the maximum capacity and
used capacity. We represent the deployed VNF type data Dst

as follows:

Dst =

{
(Ist, τt, κst) if Vs has type t,
0 otherwise.

Now, the deployed VNF data DVs
can be expressed as⋃

t∈T Dst.

C. Service Request

Let the network receives many different service requests
by users. Ψ is the set of services, and a service is ν ∈ Ψ
represented by (wν , uν , dν , φν , pν , βν , γν). wν , uν ∈ N are
the ingress and egress switch, respectively. dν ∈ R+ is the
running time of the service and pν ∈ R is the penalty
cost of Service Level Agreement (SLA) violation. φν is the
service request type that represents ordered VNF sequence.
βν (in Mbps) , γν (in ms) are the bandwidth demand of the
traffic and max latency of SLA violation, respectively.

D. VNF Management

The objective of VNF management is to reduce network
OPEX while guaranteeing service requirements [6]. To achieve
this objective, the optimal number of VNF instances should
be deployed on optimal locations (servers) while considering
several requirements, i.e., service constraints and the physical
network. We regard this problem as a classification problem
and get optimal number of VNF instances for all servers and
VNF types.

IV. GRAPH NEURAL NETWORK

A. Graph Neural Network

ML is a promising technique in many research fields such
as natural language processing and computer vision. Most of
these fields use Euclidean domain data, and Convolutional
Neural Network (CNN) [13] and Feed Forward Neural Network
(FNN) are usually used to learn the data. Recently, ML is used
in chemistry and biology, but CNN and FNN cannot learn
their data because their data is usually non-Euclidean graph
data. This non-Euclidean graph data contains rich relational
information between each pair of neighboring elements and
represents many kinds of graph structure data, i.e., social
networks, physical systems [14]. Thus, the graph data gets
attention and motivates to derive GNN.

GNN is the generalized model of CNN. GNN uses graph data
as input, but it shares many things with CNN. While CNN uses
the local connection between data and shares weights to reduce
the computational cost [15], GNN uses the connection in the
graph and share weights [14]. GNN is also motivated by graph
embedding [4] that learns to represent graph information about
nodes, edges, and sub-graphs. However, graph embedding does
not share weights and it has a generalization problem [16].

The objective of GNN [17] is to learn state embeddings [4]
and obtain outputs. Let x and h denotes the input features and

hidden states. When co[v] is the set of edges connected to v
and ne[v] is set of neighbors of node v, we can define state
embedding and output using hv and ov as follows:

hv = f(xv, xco[v], hne[v], xne[v])

ov = g(hv, xv),

xv, xco[v], hne[v], xne[v] is the features of v, features of edges
connected to v, the states of neighborhood nodes of v, features
of the neighborhood nodes of v. f is transition function and g
is output function.
H,O,X,XD are stacking variable of all the states, outputs,

graph features and node features, respectively. F,G are global
transition function and global output function. The H is the
banach’s fixed point [18] and uniquely defined with contraction
map F .

H = F (H,X)

O = G(H,XD),

The function f and g can be a neural network (e.g, FNN,
CNN, RNN), and the model updates H until the learning
process is finished. We define target information and output
of node i as ri and oi, respectively. Then, the loss can be
represented as follows :

loss =
∑
i=1

(ri − oi)

B. GNN for VNF Management

Some studies try to use ML to manage VNFs. However,
they treat the network data as numeric data rather than the
graph data [7]–[9]. They just make one long table and put
all network data into the table. However, this table data is
just numeric values of network components and cannot fully
represent network structure. The data does not have connectivity
information among network components, and this deficiency
is one of the factors of the performance bottlenecks. In this
paper, we use GNN and treat network data as a graph. The
graph has connectivity information [14] and it can provide
the network structure data [14]. Compared to the other VNF
management studies [7]–[9], our VNF management problem
is much more difficult to solve. We decide the number of
instances and locations for all nodes and all VNFs types instead
of deriving the only optimal number of VNF instances. This is
not an easy task and requires abundant network information
and a useful learning model. However, we can get the solution
by using GNN. Also, our model can make VNFs management
decisions more specific and realistic.

C. Generalizability for VNF Management

Generalizability is one of the issues for AI [19]. Specifically,
the generalizability in the AI field means the model’s ability
to adapt to a variety of data. For example, if the model can
attain almost the same performance for different data which
are not used for training, the model can be said to have the

generalizability. To get the generalizability, the model is usually
trained with various data. Through learning, the model gets
to understand the difference and attains high performance for
the different data. However, there is a problem in the network
domain. When the specific network topology is given, a dataset
can be prepared by monitoring the network for a long time.
We also can generate various network data with as many
combinations of service requests on the topology as possible.
However, this model cannot be applied to the different networks
because the model learned only the one network topology. It
also means that the model cannot be applied when the target
network topology is changed because of network failures. The
solution to this problem might be to collect network data with
as many different types of topology as possible. However, if
the model cannot understand the characteristics of network
topology, the model cannot guarantee performance. GNN uses
graph data explicitly so that the model can factor in the network
structures. This fact provides GNN with the advantage of
generalizability for the network domain.

TABLE I
SERVICE CATALOG [7]

Service id Type (φ) Proportion
1 NAT - Firewall - IDS 0.2
2 NAT - Proxy 0.3
3 NAT - WANO 0.2
4 NAT - Firewall - WANO - IDS 0.3

V. DATA GENERATION

A. Service Request Generation

We generate service requests and request lists. Whenever a
new service request is generated, the list is also generated. The
request lists contain several service requests whose service time
d is not expired yet. These lists suppose a realistic network
situation where multiple services are provided simultaneously.
Supposing νnew is the newest generated request and µ is the
request list id and â is an arrival time of request, we can
represent the request list as follows:

πµ+1 = {νnew} ∪ πµ ∩ {x : dνx > âνnew − âνx}

We use internet2 traffic pattern for generating service re-
quests. Fig 1 is the one week traffic pattern that generated
from real networks [20]. We generate four week traffic pattern
by repeating the traffic pattern of Fig 1. We make 10 requests
per minutes according to proportion P of the request type φ in
Table I. Also, we discard 10 ∗ (1 − normalized traffic volume
in Fig 1) requests per minutes to follow the traffic pattern. We
suppose that the request lists can contain up to four requests.
We define request complexity as n(π) that is the number of
requests contained in the request list. We define service time
d to make the ratio of request complexity as π|(n(π)=1):0.48,
π|(n(π)=2):0.34, π|(n(π)=3):0.13, π|(n(π)=4):0.05.

We create two service request datasets, request set A and
B with different bandwidth ranges. The bandwidth values for

Fig. 1. Normalized traffic pattern of Internet2 network

the request set A are randomly set between 33 Mbps and
38 Mbps. The service requests of the request set B have a
bandwidth between 300 Mbps and 390 Mbps. We use VNF
catalog data from previous research [21], and Table II shows
the specifications. In the case of the request set A, each node in
the network requires up to one instance per a VNF type because
the bandwidth values of the service requests are much less than
the VNF processing capacities. In the case of the request set
B, the nodes require up to three instances per a VNF type.
Each request in both data has a different max latency for SLA,
and the max latency values are randomly set as between 700ms
and 750ms. We suppose all service requests have the same SLA
penalty ratio, 1E-7.

B. Network Data Generation

Fig. 2. Internet2 network topology

We use internet2 network topology in Fig 2. The topology
consists of 12 nodes and 15 edges. We suppose all nodes
are servers, and all nodes can be a source and destination of
services. Each server and edge has information of available
CPU cores, bandwidth, and delay.

We generate two datasets with different topology and name
them as topology set A and B. Both are derived from inet2
topology. To validate the generalizability of GNN, we set
the situation in which topology dataset A does not have any
structural changes in topology, while dataset B has a structural
change. In the best-case scenario, we should make the all dif-
ferent datasets covering every possible change in the topology.
However, this scenario requires a too huge amount of data to
handle, so we consider only a few local changes. In the dataset
B, we assume that node 8 is not working during the time period
between 36 and 48 hour time points (from total data of one
week which is 168 hours) due to the node failure and the three

links, (5, 6), (4, 7), and (9, 10) are disconnected between 72
and 108 hour time points.

Whenever a new request list is generated, we collect current
network data (D,L,C). Then, we use ILP to get optimal VNF
polices for the current network with the request list. When ILP
finds the optimal VNF polices, we change the current network
configuration to optimal network configuration. This process is
repeated until all of the generated data is handled.

TABLE II
VNF CATALOG [21]

Network
Function

CPU Required Processing
Capacity

Processing
Delay

Firewall 4 900Mbps 45ms
Proxy 4 900Mbps 40ms
IDS* 8 600Mbps 1ms
NAT 1 900Mbps 10ms

WANO** 4 400Mbps 5ms

IDS* : Intrusion Detection System
WANO** : Wide Area Network Optimizer

C. ILP Calculation

We use specific ILP equations to get optimal VNF policy.
This ILP solution reduces OPEX and gets optimal VNF instance
numbers and locations [6]. It calculates the VNF deployment
cost, energy cost, traffic forwarding cost, SLO violation cost
and resource fragmentation cost. As we set all VNF deployment
cost as zero, we only consider four costs.

Fig. 3. Label data

D. Learning Dataset Generation

We generate the learning dataset for ML. Every time a new
request arrives, the feature data are set to be generated from the
network data (D,L,C) and service request (ν). At the same
time, the label data are also generated by classifying the optimal
number of VNF instances as Fig 3. The learning data consist
of numeric data and categorical data together. We normalize all
numeric data and apply one-hot encoding for categorical data.
The network data need to be presented as a graph to keep the
topology information. We convert D as matrix with the shape
of node number × node feature number. C and L are also
converted as node number × node number matrix.

VI. LEARNING PROCESS

We implement an ML model using the TensorFlow backend.
The learning process is shown in Fig 4. At first, we distribute
each service request to a set of FNN layers and individually
feed request data into the FNN layers. The purpose of the FNN

Fig. 4. GNN-based VNF management policy learning model

layers is to learn the request, so these FNN layers have the same
role and share the same learning parameters. Simultaneously,
the network data are represented as server data, link data,
and connection data. Then, these data are converted as graph
data and GNN uses the data as input. GNN learns the state
embedding of the network nodes, and then we concatenate
the output of GNN and output of FNN layers. We use two
additional FNN layers for the model to learn the relation
between service requests and the network topology. At last,
we apply the fully connected layer and use the softmax layer
to get class output. Because each dataset is used to classify 60
different VNF instances as shown in Fig 3, the fully connected
layer has 60 × maximum number of VNF instances output.
For each classification, we use cross-entropy as a sub-loss
function. The objective loss function is the sum of the sub-
loss function multiplied with class weight. The class weight is
the reciprocal of each class ratio of the data. The optimal VNF
instance numbers are usually imbalanced, and this imbalance
can degrade the performance of learning. Thus, we multiply
the sub-loss functions with class weights following the labeled
class as below:

loss function =
∑
s∈N
t∈T

(
∑
i

Asti)(
∑
i

lsti log(osti)

Asti
)

(lsti , osti , Asti : label, output, number of the class when
optimal instance number is i and server is s and VNF type
is t)

Table III show learning parameters. These parameters can
be changed according to data size and request complexity.
When the layer is relatively large compared to the number and
complexity of the data, overfitting is likely to occur. Dropout
and regularizer can be used to solve the problem. We divide
the dataset into training data set and test set in a ratio of 4:1.

TABLE III
LEARNING PARAMETERS

Hyper-parameters
Learning rate 0.01

Optimizer Adam
Batch size 1024

Layer output size
FNN (request) 30
GNN (request) 15

FNN1 (after concatenation) 200
FNN2 (after concatenation) 200

TABLE IV
IMPACT OF DATA SIZE AND REQUEST COMPLEXITY ON THE ACCURACY OF

VNF DEPLOYMENT PREDICTION. THE RESULT IS REPRESENTED AS
ACCURACY WITH (LOSS).

Lists Weeks 1 Weeks 2 Weeks 4
π|(n(π) = 1) 100% (0.01)
π|(n(π) ≤ 2) 98.1% (8.3) 98.6% (4.4) 99.4% (2.4)
π|(n(π) ≤ 3) 95.6% (13.5) 96.2% (12.1) 97.2% (7.3)
π|(n(π) ≤ 4) 93.0% (18.7) 94.2% (15.3) 95.0% (11.5)
π|(n(π) = 2) 92.7% (26.4) 96.4% (15.5) 98.3% (6.7)
π|(n(π) = 3) 79.6% (50.3) 81.2% (46.6) 81.3% (45.1)
π|(n(π) = 4) 72.2% (64.1) 70.1% (62.3) 74.2% (61.6)

VII. EXPERIMENT

A. Impact of data size and request complexity

We use request dataset A and topology dataset A to compare
the performance of models according to the data size and
request complexity. The accuracy is measured at the time when
the loss of the test dataset is the lowest. Table IV shows the
results. We find that the accuracy decreases as the request
complexity increases. π|(n(π) = 3) has small accuracy than
π|(n(π) = 2) and π|(n(π) ≤ 4) also has small accuracy than
π|(n(π) ≤ 3). We find two reasons for this result. First, our
data set is not balanced, and the number of requests is smaller
as the request complexity is bigger. Second, the model should
consider more cases when request complexity is big. It means
that the model requires more data for high complexity. We also
find that a less complex dataset can help learn the complex
dataset. Through these experiments, we can confirm that the
model training requires sufficient data for each type of dataset
with different levels of request complexity.

B. Multi-class Learning

We compare the experimental results of the request dataset
A and B. The dataset A possibly has up to one VNF instance
for each VNF type on server, while the dataset B has up to
two VNF instances. We define the class as the number of
VNF instances of the target VNF type on the target server.
For example, class 0 means zero VNF instances, class 1 is one
instance, and class 2 is two instances. Fig 5 and Fig 6 show the
recall values of each class for each VNF type and each server
for the corresponding datasets. For the overall performance,
models trained with the dataset A show better performance than
models trained with the dataset B. That is because the classes

Fig. 5. Recall of VNF deployment prediction for servers and VNF types on the request dataset A and topology dataset A. Total accuracy is 95.0%. The optimal
number of VNF instances is classified as a class and class 0 and class 1 have an average accuracy as 95.0%, 95.2%, respectively. 0/0 indicates that true positive
+ false positive is zero.

Fig. 6. Recall of VNF deployment prediction for servers and VNF types on the request dataset B and topology dataset A. Total accuracy is 89.54%. The optimal
number of VNF instances is classified as a class and class 1, class 2, and class 3 have an average accuracy as 90.1%, 87.1%, 91.88%, respectively. 0/0 indicates
that true positive + false positive is zero.

of dataset B are over unbalanced. The gray box in the figures
indicates whether classes are over unbalanced and positive of
some class is zero. The dataset A has nine gray boxes but,
dataset B has 44 gray boxes. This class unbalance makes the
model more focus on the less class and decreases the relative
learning importance for other classes. Actually, the number of
class 3 in dataset B is merely 0.03% of the entire dataset and it
really decreases the relative learning importance for class 1 and
class 2 and it also sequentially decreases overall performance.

Fig. 7. Accuracy comparison on FNN and FNN-GNN

C. Topology-aware learning

We experiment for generalizability of GNN. We make the
FNN model that uses flatten network data and service list data.
We compare the accuracy for our proposed model (FNN-GNN)
and the FNN model using request dataset B and topology
dataset B. We use three weeks of data as training data and
the remaining 1-week data as test data. Fig 7 shows the
accuracy trend of models. The horizontal axis on the Fig 7

is the data generation number, and the vertical axis is the
prediction accuracy of the data. We divide data into groups
of 100 counts and evaluated the average of each group. The
node failure occurs between data number 10000 and 17000.
The link disconnections occur between data number 36000 and
56000. The GNN model shows higher performance at all times
than the FNN model. Our model has 88% accuracy and each
three class has 87.6%, 86.5%, 88.5% accuracy, respectively.
FNN model has 83% accuracy and each three class has 83.5%,
83.4%, 89.3% accuracy, respectively. Also, both models tend
to have low accuracy when the node is failed and the links are
disconnected. However, the GNN model shows a more stable
performance in the period when topology changes.

VIII. CONCLUSION

In this paper, we proposed a method of managing VNF using
GNN. Our model uses network data as graph data and apply
GNN to learns the state embedding of each node. We also
learn service requests and concatenate the states and requests to
find the optimal number of VNF instances. Our model solves
complex VNF deployment problems. The model considers
many network constraints that include limitations of physical
network and requirements of service requests and VNFs. In the
experiment, our model provides near-optimal VNF deployment
prediction in a reliable time.

IX. ACKNOWLEDGMENT

This work was supported in part by Institute of Information
& communications Technology Planning & Evaluation (IITP,
Development of virtual network management technology based
on artificial intelligence) under Grant 2018-0-00749.

REFERENCES

[1] Arthur L Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3):210–229, 1959.

[2] Altman N. Krzywinski M. Bzdok, D. Statistics versus machine learning.
Nat Methods, 15:233—-234, 2018.

[3] Raouf Boutaba, Mohammad A Salahuddin, et al. A comprehensive survey
on machine learning for networking: evolution, applications and research
opportunities. Journal of Internet Services and Applications, 9(1):16,
2018.

[4] Hongyun Cai, Vincent Zheng, et al. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions
on Knowledge and Data Engineering, 30(9):1616–1637, 2018.

[5] Hee-Gon Kim, Suhyun Park, et al. Graph neural network-based virtual
network function management. In The 21th Asia-Pacific Network Oper-
ations and Management Symposium, 2020.

[6] Faizul Bari, Shihabur Rahman Chowdhury, et al. Orchestrating virtu-
alized network functions. IEEE Transactions on Network and Service
Management, 13(4):725–739, 2016.

[7] Stanislav Lange, Hee-Gon Kim, et al. Predicting VNF Deployment Deci-
sions under Dynamically Changing Network Conditions. In International
Conference on Network and Service Management, 2019.

[8] Sabidur Rahman, Tanjila Ahmed, et al. Auto-scaling vnfs using machine
learning to improve qos and reduce cost. In 2018 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2018.

[9] Jianing Pei, Peilin Hong, and Defang Li. Virtual network function
selection and chaining based on deep learning in sdn and nfv-enabled
networks. In 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), pages 1–6. IEEE, 2018.

[10] R. Shi, J. Zhang, W. Chu, et al. Mdp and machine learning-based
cost-optimization of dynamic resource allocation for network function
virtualization. In IEEE International Conference on Services Computing,
2015.

[11] Wolfgang Kellerer, Patrick Kalmbach, et al. Adaptable and data-driven
softwarized networks: Review, opportunities, and challenges. Proceedings
of the IEEE, 107(4):711–731, 2019.

[12] R. Mijumbi, S. Hasija, et al. A connectionist approach to dynamic
resource management for virtualised network functions. In International
Conference on Network and Service Management (CNSM), 2016.

[13] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series, the handbook of brain theory and neural networks,
1998.

[14] Z. Liu and J. Zhou. Introduction to Graph Neural Networks. 2020.
[15] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Num-

ber 92. American Mathematical Soc., 1997.
[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Advances in neural information processing
systems, pages 1024–1034, 2017.

[17] Franco Scarselli, Marco Gori, et al. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[18] Mohamed A Khamsi and William A Kirk. An introduction to metric
spaces and fixed point theory, volume 53. John Wiley & Sons, 2011.

[19] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. General-
ization in deep learning. arXiv preprint arXiv:1710.05468, 2017.

[20] Yin Zhang. Abilene traffic matrices, 2004.
[21] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network

virtualization. Computer Networks, 54(5):862–876, 2010.

