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Abstract—The high complexity of modern communication
networks requires an increasing degree of automation for
performance and fault management tasks. A key task is the
classification and identification of anomalous operation modes
(and faults). This is important to separate them from normal
operation conditions. In addition, these diagnoses should be
interpretable by domain experts to (a) gain acceptance by these
experts and (b) support effective root cause analysis and locali-
sation. In this paper, we investigate the analysis of multivariant
network data in order to identify anomalous data instances.
Root cause analysis benefits from this by filtering features whose
values lead (to some extent) to such anomalies. We are using
Deep Neural Networks (DNNs), a powerful tool for anomaly
detection in the telecommunication domain. We demonstrate
the effectiveness of autoencoders (an unsupervised technique)
to detect multivariant anomalies and anomalous features. To
overcome the black box nature of neural networks (and thus
increase their acceptance by domain experts), we apply SHapley
Additive exPlanations (SHAP), which are used to explain the
output model of a neural network.

Index Terms—Autoencoders, SHAP, DNNs, Correlation

I. INTRODUCTION

The rising volume of network data [1] due to the gen-
eration of approximately 1 million events every second in
mobile Radio Access Network (RAN) data has contributed to
increased momentum in network analysis and troubleshooting
research. The importance of intelligent monitoring of network
performance management is imperative for network operators.
To ensure infrastructures provide a high level of robustness
to customers, rule-based systems, based on domain knowl-
edge, were implemented to analyze and detect the anomalies
across multiple features. However, these traditional rule based
network application approaches fail when exposed to new
previously unseen complex patterns.

A lot of effort is spent doing analysis of cell trace files to
understand why network fails and what is the reason for the
bad network. In such scenarios, DNNs [2]-[5] have shown
impressive results and state-of-the-art performances in the
field of telecommunications. In this paper we demonstrate
the effectiveness of our proposal whereby we provide human
interpretable multi-anomaly detection. This multi-anomaly
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functionality allows for the identification of multiple anoma-
lous cell traces. The contributions of this paper are as follows:

o To model the structure of normal trace data in order to
subsequently identify anomalous cell traces.

o To highlight related cell trace event values and com-
binations of events that cause the cell traces to be
anomalous. This is done using both a global approach
depending on correlation values between features and
local interpretations which examine effects on individual
anomalous traces.

With the proposed unsupervised approach, we provide an
algorithm to provide network insights which complement the
existing autoencoder anomaly detection mechanism [16]. The
proposed algorithm addresses the drawback of DNNs “black
box” nature, which does not provide interpretability of an
output. It focuses on the importance of interpretation of Al
models and offers an explainable solution for stakeholder
experts to better understand the reason behind decisions made
by model. The solution not only detects signature based mul-
tivariate anomalies but also anomalies which could be missed
by experts who rely on domain rules. This provides actionable
insights in terms of developing and improving automated
troubleshooting across anomalies. Additionally, this frame-
work is flexible enough to integrate different sources of data
(Evolved Packet Core: EPC) into the same anomaly detection
algorithm. This would result in providing an automated cell
trace troubleshooting across multivariate features using a deep
learning approach.

The rest of the paper is organized as follows. Section II
outlines the related work in neural networks and anomaly
detection domain. In Section III, we review the methodology
including stacked autoencoders and SHAP [7] algorithm to
detect the most contributing features to anomalous features.
Section IV outlines our data collection, experimental setup
and results evaluation. Section V concludes the paper.

II. RELATED WORK

Recently many researchers have applied anomaly detection
mechanisms [8]-[10], [15] to network data, and these have
been quite successful in capturing anomalous behaviours.



In this section, we review the generic anomaly detection
algorithms used by researchers in telecommunication domain.
In [11], the authors empirically evaluated the analytic en-
gine called as Autoregressive Integrated Moving Average
(ARIMA) along with Java functions. The engine takes time
series data stream and further calculates the anomaly score and
anomaly probability on network traffic throughput dataset.

The authors of [12] proposed a novel self-adaptive deep
learning framework for detecting anomalies in 5G RAN and
EPC. The Autoencoder based Anomaly detector present in
RAN quickly captures the anomaly symptoms, which is fur-
ther evaluated by Long Short Term Memory (LSTM) recurrent
network model in EPC. [14] proposed an approach to detect
probability of radio anomalies using LSTM based RNNS. The
proposed framework calculates the error distribution using
a parametric multivariate Gaussian distribution function to
evaluate the model performance.

In [13], the authors intended to capture the malicious net-
work attacks present in a network through parallel clustering
technique. They implemented MCOD (Micro-Cluster based
Outlier Detection) classifier to identify outliers over streaming
data. Recently the idea of providing interpretation to neural
network model was introduced lately in 2019 by [7]. The
paper emphasized on the importance of how hard is to explain
the anomalies extracted by outlier detection algorithms. The
illustration in the paper provided a framework to explain the
instances with high reconstruction error.

To the best of our knowledge none of this previous work
has focused on doing multivariate anomaly detection using
network cell trace data. We note that part of this paper’s
contribution enables the use of interpretability of data-driven
solutions.

III. METHODOLOGY
A. Autoencoders

Autoencoders [6] are a type of neural networks trained
to learn a compressed representation of the input data and
to reconstruct the input from this representation. Anomaly
detection is then carried out by identifying instances which
can not be accurately reconstructed, and these are identified
as anomalous instances.

In effect, autoencoders build a model to identify hidden
structures and useful features from unlabelled input data.
They work on the concept of learning interesting hidden
layer representations by limiting the number of neurons in
the hidden layer. An Autoencoder consist of an encoder, a
latent space representation and a decoder. The encoder learns
a compressed vector representation of the input data, and the
decoder uses this information to reconstruct the input from its
hidden representation. The Encoder-Decoder learns to recon-
struct normal behavior, and thereafter uses the reconstruction
error to detect anomalies. The model jointly trains the encoder
and decoder and applies backpropagation [17] to minimize the
reconstruction error. The Mean Squared Error (MSE) is used

as the loss function for training the model and depends on the
the difference between the actual (z) and reconstructed (x')
attribute values. The Root Mean Squared Error (RMSE) [18]
is used as an evaluation metric to calculate the squared error
difference between the observed (x) and predicted (z') values
of a set of n.

RMSE = [(=)) (z; — x})2 (1)

i=1
B. Sparse Autoencoders

Sparse Autoencoders [19] impose a sparsity constraint
where they learn feature representations in the data even for
a large number of hidden units. We add an L1 norm regular-
ization [21] which learns sparse and enlarged representation
of the input data. In Keras [20], this can be done by adding
an activity regularizer to the Dense layer. In our proposed
algorithm, we have implemented sparse autoencoder with L1
regularization of 3e-7 with MSE loss which learnt better
representation than vanilla autoencoders.

C. SHAP

Normally an Artificial Neural Network (ANN) is considered
a ”black box” that cannot provide easily interpretable insights
into the relationship between input and output. Particularly,
when there are high dimensional data and layers, it becomes
much harder to understand the reason behind an anomaly
without a proper explanation. To overcome this, a relatively
new technique in machine learning, known as a 'SHAP
mechanism’, supports interpretation of the neural network, or
any complex machine learning model, by determining how
input features contribute to the value of output features.

The SHAP framework [22] unifies methods such as LIME
[23] and DeepLIFT [24] under the class of additive feature
attribution methods. [7] demonstrate how the game theory
based SHAP framework could be used for explaining anoma-
lies detected by an autoencoder. Kernel SHAP is a method
that uses a special weighted linear regression mechanism. It
uses SHapley values from game theory to explain a specific
prediction by assigning an importance value (SHAP value) to
each contributing feature.

The KernelExplainer function takes as input the model, an
instance of anomalous input x and a set of background in-
stances. For a particular feature z} it calculates a set of SHAP
values which measures the importance of each of the features
x1, Ta....T, in predicting z. This local interpretability can be
represented graphically by using force plots which enables us
to pinpoint the SHAP value of features with respect to each
other.

Algorithm 1 explains the process how SHapley values are
being interpreted to explain the cell trace anomalies using
SHAP output. The Kernel Explainer SHapley function outputs
allFeatures, shapValue and inputValue for anomalous cell
trace. The shapValue corresponds to the impact of each feature



Algorithm 1 Kernel Explainer Interpretation

Input: trainData - Background instances

f - Autoencoder model

x - Anomalous cell trace to be explained
Output: SHAP values saved in CSV file and Top
Contributors Feature list for stakeholders.

1: procedure ANOMALIESINTERPRETATION

2 allFeatures, shapValue, inputValue +
KernelExplainer.getshapValues(f, trainData, x)

3 sortFeatures <— sortDecrease[allFeatures, shapValue]

4 for i in sortFeatures.length: do

5: feature <— sortFeatures][i]

6: featureEffect < feature.shapValue

7 featureValue ¢« feature.inputValue

8 if featureE f fect > 0 then

9: print2CSV (feature Value, featureEffect)

10 end if

11: topContributor <— sortFeatures[0]

12: end for

13: print Unique topContributor

14: end procedure

on all other features in the cell trace. The features are sorted
based on the shapValue in descending order. Then, the positive
shapValue features and their corresponding inputValue are
stored in the CSV output as Effect (featureEffect) and Value
(featureValue) respectively. Lastly, it displays the top unique
contributing feature.

IV. EVALUATION AND RESULTS
A. Data Stream Processing

The cell trace data for this study is collected from multiple
Evolved NodeB (eNodeBs) as files. There are a mix of
periodic and procedural events in each file. Periodic events are
produced at fixed intervals capturing key metrics. Procedural
events are produced every time the node or UE performs
an operation e.g. UE Context Setup, Handover Preparation,
etc. Fig 1 illustrates the data stream solution architecture
which collects events from eNodeB. These event streams
are parsed by the events parser and sent upstream to the
correlation engine to produce a coherent dataset. This dataset
is collection of session records which includes UE, eNodeB
and EPC. The output from this process produced cell trace
files which provided the input data for anomaly detection
using an autoencoder and subsequent interpretation using
correlation and SHAP values.

B. Experiment Settings

All experiments have been conducted on the computational
machine which includes Intel® Core™ i7-8650U CPU @
1.90GHz x 8, 25.8 GiB memory, Ubuntu 18.04.4 LTS op-
erating system. The Keras python library 2.3.1 was used for
running on top of a source build of Tensorflow 2.1.0.
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Fig. 1. Data Stream Processing
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The sparse autoencoder model architecture comprises of an
input layer, 3 hidden layers and finally an output layer. (1)
3 hidden layers with 100-50-100 neuron units, (2) 300-150-
300 neuron units, (3) 400-20-400 neuron units and (4) 500-
250-500 neuron units. We matched the cardinality of the input
and output layer. We used the above 4 deep stacked perceptron
models to train approximately 2 million rows by tweaking the
hyperparameters. The model is trained in minibatches gradient
descent with the set of normal cell traces correlated dataset.
The model optimizes the Mean Squared Error (MSE) loss
using Adam optimizer [26] with a learning rate of 0.0008,
followed by non linear activation relu function, defined as:

f(@) = max(0,x) 2)

Callback with an early stopping mechanism [25] of valida-
tion loss has been used as one of the regularization technique
to avoid model overfitting. This technique stops training at the
point when performance on a validation dataset stops improv-
ing. The model trained after tweaking the hyperparameters
is then used to reconstruct the input data. The reconstruction
errors calculated are then used to detect the anomalies in the
test set correlated cell trace file.

C. Anomaly Detection

We had access to the test data set where anomalous
instances were labeled. As the RMSE was to be used as
the key metric error indicator we first obtained the average
RMSE for normal and anomalous instances. RMSE for normal
instances and anomalous instances are 0.0197 and 0.2215
respectively. This seems to suggest that RMSE could be
used to identify anomalous instances. Then, True Positive
and False Positive rates are calculated for different threshold
values to find anomalous cell trace instances. The AUROC
[27] (Area Under Receiver Operating Characteristic) and
AUPR (Area Under Precision-Recall) are holistic metrics that
summarize the performance of a detection method across



multiple thresholds. Table I shows performance values for
several model configurations. The best-fitted model with 500-
250-500 neuron units produces 0.96 AUC with 0.70 AUPR.

TABLE I
PERFORMANCE VALUES FOR MODELS

Parameters Neurons Learning Rate  AUROC  AUPR
46,631 100-50-100 0.0008 0.88 0.50
199,531 300-150-300 0.0008 0.95 0.68
305,981 400-200-400 0.0008 0.94 0.60
432,431 500-250-500 0.0008 0.96 0.70

D. Global Interpretation - Correlation Coefficients

Table II shows global interpretation results i.e. strongly
correlated features in the top anomalous rows detected by the
autoencoder model. For the purposes of evaluation, anomalous
rows were sorted based on the root mean squared error
obtained and top 100 anomalous cell traces were obtained for
further analysis. To get a representation of the relationships
between features for these top anomalous cell traces we cal-
culated the pairwise correlation coefficients between features.

TABLE II
ToP FEATURE CORRELATIONS

Feature 109
Feature 108
Feature 109

Feature 173 1.0
Feature 173 1.0
Feature 111 1.0
Feature 110 1.0
Feature 110 1.0
Feature 111 1,0
Feature 173 1.0
Feature 80 1.0
Feature 80 1.0
Feature 79 1.0

Feature 108

Feature 111
Feature 79
Feature 75

Fig. 2 highlights the collection of feature attributes in the
top 100 anomalous cell traces. These features are the top
correlations obtained from the strongly correlated features list.

E. Local Interpretation - SHAP values

In this section we review local interpretation results gen-
erated by SHAP. The KernelSHAP Explainer as described
in section III (c) outputs features, SHAP values and input
value for anomalous rows. Table III illustrates the contribution
of input features to a sample anomalous row where features
with higher Effect value indicate higher impact on the entry
being anomalous. This particular entry indicates that a bad
cell trace happening due to handover failure could be caused
by no available neighboring RSRP (Feature 109), ERAB fail
and data lost (Feature 108), high latency time (Feature 75)
and low aggregated time for downlink delay in MAC layer
(Feature 173). Our proposed solution validated that ERAB
fail and data lost was the most important feature for failed
handover, which contributed for bad RSRP, increased latency
and low aggregated downlink delay.
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Featura72
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Fig. 2. Collection of Anomalous Features

Similar to this example, the SHAP values can help explain
the impact of features to each anomalous entry detected by
the proposed autoencoder model.

TABLE III
KERNEL EXPLANATION- SHAPLEY VALUE

Feature 108

Value = 0
Effect=0.050

Feature 109

Value = -1
Effect=0.014

Feature 173

Value = 806
Effect=0.016

Feature 75

Value = 2147483648
Effect=0.0054

V. CONCLUSION AND FUTURE WORK

This paper outlined the design of a neural network model
and associated interpretation techniques with a view to pro-
viding insights and support for the troubleshooting of net-
work cell trace data without prior domain knowledge. This
automated solution can save a lot of manual troubleshooting,
with a resulting reduction in costs and resources.We have
been able to show that sparse autoencoders can be trained to
reconstruct the input data and reconstruction error can be used
to identify previously unseen anomalies. The results obtained
were impressive and we achieved an AUROC score of 0.96.
One possible threshold for anomaly detection gives us a true
positive rate of 0.9 and a false positive rate of 0.1. The AUPR
curve was 0.70.

Global interpretability of a set of anomalous data is sup-
ported using pairwise correlations of features. The local
explanations provide a deeper insight for every anomalous
trace. SHAP values identify the features and the extent to
which they have caused the anomaly.

Additionally, this work includes a more systematic scalable
evaluation of the our system’s utility in network performance
management. Future work includes applying this on multiple
incident anomaly detection to work with larger datasets on
GPU machines. The interpretation of data-driven solutions
concept and its application to network performance manage-
ment will be an important future research area for Ericsson.
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