
A Novel SDN Dataset for Intrusion Detection in
IoT Networks

Alper Kaan Sarica
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

kaan.sarica@metu.edu.tr

Pelin Angin
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

pangin@ceng.metu.edu.tr

Abstract—The number of Internet of Things (IoT) devices and
the use cases they aim to support have increased sharply in the
past decade with the rapid developments in wireless networking
infrastructures. Despite many advantages, the widespread use of
IoT has also created a large attack surface frequently exploited
by cyber criminals, requiring real-time, automated detection and
mitigation of various attacks in the high-volume network traffic
generated. Software-defined networking (SDN) and machine
learning (ML) based intrusion detection are effective tools for
providing quick response to various attacks in IoT networks,
however the study of ML-based intrusion detection so far has
been limited to performance studies on datasets that were created
a long while ago and are not specific to SDN-based environments.
In this paper we introduce a novel dataset for intrusion detection
in IoT networks. The dataset comprises two parts modeling static
and dynamic IoT networks and consists of 27.9 million and 30.2
million data records respectively, which contain cyber attacks of
various types in addition to benign traffic. The dataset will be
an important resource for intrusion detection research in SDN-
managed IoT, which will be increasingly prevalent in the future
networks of ubiquitous connectivity.

Index Terms—Software-defined networking; machine learning;
dataset; security

I. INTRODUCTION

The number of connected devices and IoT use cases have
been increasing rapidly with the advances in wireless net-
works, data analytics techniques and cloud platforms. IoT use
cases include connected cars, smart grids, video surveillance
and security systems, smart homes, smart cities and smart
healthcare among many others, which significantly facilitate
our daily lives. Considering the unprecedented volumes of
data generated by IoT, it will not be possible to satisfy the
throughput, delay and security requirements of these use cases
with legacy network infrastructures. 5G networks that rely
on software-defined networking (SDN) and network function
virtualization (NFV) for resource management will be a key
enabler for the future’s ubiquitous IoT.

Recent years have witnessed an increasing use of machine
learning (ML) techniques in network intrusion detection sys-

This study is partially supported by Turk Telekom within the framework
of 5G and Beyond Joint Graduate Support Programme coordinated by
Information and Communication Technologies Authority.

tems (IDS) to detect various types of attacks. Despite the
importance of realistic network traffic data for effective model
building, most of the existing research in IoT intrusion detec-
tion has used datasets that were generated for legacy networks
without IoT traffic. This is mostly due to the lack of publicly
available datasets that include IoT traffic, except the recently
released Bot-IoT [1]. Also, to the best of our knowledge,
there is no publicy available dataset specifically for SDN-based
IoT environments. The network traffic characteristics of IoT
and SDN are quite different from those of legacy networks,
therefore, using models trained with legacy network data might
lead to inaccurate classification results. Furthermore, it is
crucial for an IDS to retrieve features in real time for effective
attack detection and mitigation. Existing public datasets have
been created by processing pcap files and there is no guarantee
that all features they include can be retrieved in real time.

In order to overcome the shortcomings of existing intrusion
detection datasets, in this paper we introduce a novel dataset
for IoT environments managed by SDN, which includes both
normal traffic and different types of attack traffic.

II. PRELIMINARIES

A. Software-defined networking (SDN)

SDN is a networking paradigm that separates the control
plane from the data plane unlike traditional networks, where
switches perform both forwarding and routing. The controller,
which has the global view of the system, manages the network
and makes routing decisions. The forwarding application runs
on the controller and creates forwarding rules using the routing
information. The controller installs these forwarding rules
called ”flow entries” into the switches. Switches in SDN are
simple devices that are only responsible for forwarding the
packets. They maintain one or more flow tables that contain
flow entries.

When a switch receives a packet, it checks if the headers
of the packet match any flow entry in its flow tables. In
order to match a flow entry, all of the match fields must
be the same as the headers of the packet. If a packet does
not match any flow entry, it results in a table miss event.
The switch buffers the packet and sends the header of the
packet to the controller in a packet called packet in message.
The controller processes the packet and sends a packet out978-3-903176-31-7 © 2020 IFIP



message containing the determined action upon the packet
that triggered the table miss event. The packet is forwarded or
dropped according to the packet out message. The controller
might also decide to install flow rules into the switches along
the way by sending flow mod messages [2]. When the switch
receives the flow mod message, the flow entry remains in
pending add state until a packet matches it.

The flexible nature of SDN and its ability to quickly
reconfigure forwarding rules offers great security advantages
for IoT over legacy network architectures by enabling the
detection and isolation of malicious traffic in real time.

III. RELATED WORK

With the increasing usage and future use cases of SDN
and IoT in recent years, serious research efforts have been
dedicated to the security of SDN-based IoT networks.

The most commonly used datasets for SDN-based intrusion
detection research and their explanations are given below.
1) NSL-KDD dataset [3] is the enhanced version of the
famous KDD CUP’99 dataset [4] used for intrusion detection
research for the past two decades. The purpose of this dataset
was to address some limitations of KDD CUP’99. Some of the
duplicated records in the training and test sets were removed.
Records in the training and test datasets were reduced and
balanced. However, this dataset does not reflect the behavior
of IoT networks.
2) CAIDA dataset [5] records are anonymized network traces.
Payload of the packets were removed and headers of the
packets were anonymized. The first drawback of the CAIDA
dataset is that it only contains DoS attacks. The second
drawback is that records only contain header information and
additional features using these fields were not generated.
3) UNSW-NB15 dataset [6] was created using IXIA traf-
fic generation tools. The dataset contains 49 features and
9 different attack types: fuzzers, anaylsis, backdoors, DoS,
exploits, generic, reconnnaissance, shellcode and worms. The
main disadvantage of the dataset is that some attack categories
have limited number of samples. For example, worms have
174 records, which is not sufficient for most machine learning
algorithms to learn accurate models.
4) CICIDS2017 dataset [7] was created by the Canadian
Institute of Cybersecurity. Authors used their B-Profile system
to create realistic normal traffic. The dataset contains 6 types
of attacks: DoS, port scanning, botnet, brute force, web attacks
and infiltration.
5) Bot-IoT dataset [1] is a new dataset created in 2018. The
dataset contains both IoT and normal network user traffic. The
dataset contains 46 features and 6 types of attacks: service
scanning, OS fingerprinting, DoS, DDoS, keylogging and data
theft. However, this dataset is not balanced and some attack
types contain many less records compared to others. There are
118 records for data theft and 1469 for keylogging, which is
not sufficient for most machine learning algorithms.

The abovementioned datasets have been used for most of
the research in intrusion detection systems for SDN. However,

none of these datasets have been created in an SDN envi-
ronment, therefore they do not reflect SDN behavior. These
datasets have been created processing pcap files with various
tools. Therefore, there is no guarantee that the SDN controller
can retrieve all of the included features in real time. Also none
of the datasets, except Bot-IoT, contains IoT traffic. Although
some researchers [8] [9] created their own SDN datasets, their
data only contained DDoS traffic and was used for testing their
ML models. To the best of our knowledge, there is no publicly
available SDN dataset containing different types of attacks and
normal traffic for IoT so far.

IV. PROPOSED SDN DATASETS

Our SDN datasets were created using a similar topology,
features and packet sending rates for benign traffic to the Bot-
IoT dataset [1]. Benign traffic was generated and recorded
both with and without presence of malicious traffic. 5 differ-
ent attack types were implemented with various targets and
configurations: DoS, DDoS, port scanning, OS fingerprinting
and fuzzing. We have created two SDN datasets. Their only
difference is the number of simulated IoT devices. IoT net-
works are dynamic networks and even though the general
topology stays the same most of the time, the number of
connected IoT devices change from time to time. The purpose
of our second SDN dataset is to test the performance of attack
detection models trained using the first dataset in a dynamic
IoT environment. That way we can see how our detection
algorithm will be affected from changing the number of IoT
devices and how often our model should be updated.

Our SDN application collected flow entries from the
switches at regular intervals and crafted features during traffic
generation. All of the features in our datasets can be obtained
using an SDN application and detection models can be used
without affecting the network performance in real time.

A. Testbed overview

We have simulated our IoT network using the Mininet
tool [10]. Our testbed setup is similar to that of Bot-IoT and
the setup of the first dataset is shown in Figure 1. In addition,
our network is managed by an ONOS controller [11]. During
data generation, the server exchanged huge amounts of data
with the other two hosts in the system continously. In the first
dataset, five hosts in the network simulated IoT services and
sent small amounts of data to the server periodically. In the
second dataset, initially ten IoT devices were simulated. Two
of them were disconnected after a predetermined time. Four
attacker hosts targeted the server and IoT devices. All hosts
and ONOS controller were connected to an Open vSwitch.

B. Benign traffic

We have examined the normal records in the Bot-IoT dataset
and created our normal traffic using similar packet sending
rates, packet sizes and transport layer protocols. Bot-IoT
dataset has only 9543 records for normal traffic, therefore it
was not hard to analyze and replicate the normal traffic. We
have generated benign traffic both with and without presence



Fig. 1: Testbed Setup.

of attack traffic. Without attack scenarios, we have recorded
normal traffic 20 times and saved these records into different
csv files. Each recording period lasted 30 to 35 minutes. In
the first 15 recordings, we generated both background traffic
and IoT traffic. In the last 5 recordings, only IoT traffic was
generated. During attack scenarios, both background traffic
and IoT traffic were generated and recorded. Recording count
was 10 to 12 and duration of the recording was 30 to 45
minutes depending on the attack scenario. Each recording was
saved into a different csv file.

1) Background traffic: For the background traffic, two hosts
in the network sent packets to the server constantly. One of
the hosts used TCP and the other one used UDP. Packet
sending rates and sizes were similar to the Bot-IoT dataset’s
normal traffic. For TCP traffic, we have used 3 different
packet sending rates and 4 different packet sizes. For UDP
traffic, we have used 2 different packet sending rates and 2
different packet sizes. Packet sending rates and packet sizes
were selected by our packet generation script at the start with
the probability proportional to the observation count in the
Bot-IoT dataset. For example, the probability of selecting a
sending rate of 80 packets per second and a packet size of
1000 bytes for TCP packets was 15.8%.

2) IoT traffic: In the Bot-IoT dataset, almost 6000 of the
9543 normal records used UDP and sent only 1 or 2 packets
with less than 100 bytes. IoT devices were simulated using
Node-red tool and simulated services were weather station,
smart fridge, motion activated lights, remotely activated garage
door and smart thermostat. All of these services send small
amounts of data periodically. We also used these byte counts
as packet sizes when we simulated IoT devices in our network.
We have used 6 different packet sizes and sent one or two
packets each time. In the case of sending two packets, packets
were sent back to back. Simulated IoT devices sent packets
to the server periodically. ONOS’s default flow rule timeout
is 10 seconds. If a flow entry does not match any incoming
packet for the 10 seconds, the flow entry is deleted. Packet

sending periods were also selected randomly from 12 seconds
to 15 seconds by our script, which caused every incoming IoT
packet to trigger new flow rule installation. Due to the random
selection of waiting intervals, the number of flow entries
that belong to the IoT devices in the switch was changing
dynamically. We used TCP instead of UDP for simulated IoT
hosts. The reason is that flow rules are installed after the
packet that triggers flow rule installation was forwarded by a
packet out message as explained in the preliminaries section.
If we used UDP, we would not be able to collect the statistics
of the first packet (duration, byte and packet count). We have
used TCP and the first packet sent was the SYN message,
which is the same for all TCP connections. Therefore, not
having SYN packets’ statistics was not important.

C. Malicious traffic

Four attacker hosts in our network launched the cyber-
attacks targeting the server or simulated IoT devices. We
performed 5 different attack types: DoS, DDoS, port scanning,
OS fingerprinting and fuzzing. Each attack type was performed
with different configurations 10 to 12 times depending on the
attack type and each configuration was saved into different csv
files. The attack types and details regarding their implementa-
tion are explained below.
1) DoS: One attacker host was used to perform DoS attacks
targeting the server or an IoT device using the hping3 tool [12].
We recorded DoS traffic 12 times. Each recording lasted 30
to 45 minutes. In two recordings, the server was targeted with
a TCP SYN flooding attack using spoofed IP addresses and
source port numbers. In the other two recordings, the server
was targeted with a UDP flooding attack using spoofed IP
addresses and source port numbers. In one of the recordings,
the server was targeted with a TCP SYN attack without
spoofing. In one of the recordings, the server was targeted with
a UDP flooding attack without spoofing. During the attacks
without spoofing, all of the packets coming from the attacker
passed over the same flow entry and new flow rule creation was
not triggered. In the remaining 6 recordings, the same attack
scenarios were performed targeting one of the IoT devices.

Four different packet sending rates were used: 4000, 6000,
8000 and 10000 packets/second. Four different packet payload
sizes were used: 0, 100, 500 and 1000. All of the combinations
of these packet sending rates and payload sizes were used.
2) DDoS: Four attacker hosts were used to perform DDoS
attacks targeting the server or an IoT device using the hping3
tool [12]. We recorded DDoS traffic 12 times with the same
scenarios as the DoS attacks. Each recording lasted 30 to
45 minutes. We also used the same packet sending rates and
packet sizes as the DoS attacks.
3) Port scanning: One attacker host was used to perform a
port scanning attack targeting the server or an IoT device using
nmap [13]. Nmap has two modes for port scanning. If you do
not specify the port numbers which should be scanned, nmap
scans the first 1024 ports. These port numbers are called well-
known port numbers and reserved for the most commonly used
services. We have recorded port scanning traffic 10 times. Each



recording lasted 30 to 45 minutes. In two recordings, nmap
was used to scan all of the ports of the server. In the other
two recordings, all of the ports of an IoT device were scanned.
In the other three recordings, the first 1024 port numbers of
the server were scanned. In the last three recordings, the first
1024 port numbers of an IoT device were scanned.
4) OS fingerprinting: One attacker host was used to perform
OS fingerprinting targeting only the server using the nmap
tool [13]. We recorded OS fingerprinting traffic 10 times. Each
recording lasted 30 to 45 minutes.
5) Fuzzing: We used boofuzz [14] for fuzzing attacks. Boo-
fuzz is installed as a Python library, which is used to build
fuzzing scripts. We implemented HTTP and FTP fuzzer
scripts. HTTP and FTP server code were running on our server.
One of the attacker hosts were used to perform HTTP and FTP
fuzzing attacks against the server. We have recorded fuzzing
attacks 10 times. In the first five recordings, FTP fuzzing was
used. In the last five recordings, HTTP fuzzing was used.

D. Flow collection and feature generation

Most of the existing intrusion detection datasets in the
literature have been created by processing pcap files after
traffic generation. Our purpose was to create a dataset specific
to SDN and use this dataset to prevent attacks using the
SDN controller in real time. Therefore, we developed an
SDN application for retrieving flow entries from the network
switches every 1 second and creating our features for each
flow. Our application labeled each flow using the ports on
which hosts are connected to the switch and wrote the features
into csv files. Every recording session of every attack type was
saved into different csv files.

We tried to create all of the features in the Bot-IoT dataset.
Our SDN application only used the flow entry fields pulled
from the switches, hence all of the features in our dataset are
SDN-specific and can be calculated using an SDN application.
We were not able to create features in the Bot-IoT that
are not specific to SDN environments (e.g. argus sequence
number). The datasets contain 33 features. Feature names and
descriptions are given in Table I.1

Normal traffic was recorded during all attack scenarios
and without attack scenarios. DoS and DDoS attacks with
spoofed IP addresses created huge numbers of duplicate flow
entries. Therefore, we limited saved record count to 100 every
time flow entries were pulled from the switch for DoS and
DDoS attacks. Port scanning and OS fingerprinting attacks
also created huge numbers of flow entries, but we did not limit
them because created packets were not duplicates. Our first
SDN dataset contains 27.9 million entries. Our second dataset
was created using the same scenarios. The only difference was
the higher number of IoT devices. The second dataset contains
30.2 million entries. Tables II and III show the entry counts
and percentages for every traffic category in the datasets.

1The dataset is available at https://github.com/AlperKaan35/SDN-Dataset.

TABLE I: Features of the created SDN datasets

Feature Description
srcMac Source MAC address
dstMac Destination MAC address
srcIP Source IP address
dstIP Destination IP address

srcPort Source port number
dstPort Destination port number

last seen Record last time
Protocol Textual representation of network protocol

proto number Numerical representation of network protocol
Dur Record total duration

Mean Average duration of aggregated records
Stddev Standard deviation of aggregated records

Min Minimum duration of aggregated records
Max Maximum duration of aggregated records
Pkts Total count of packets in transaction

Bytes Total number of bytes in transaction
Spkts Source-to-destination packet count
Dpkts Destination-to-source packet count
Sbytes Source-to-destination byte count
Dbytes Destination-to-source byte count
Srate Source-to-destination packets per second
Drate Destination-to-source packets per second
Sum Total duration of aggregated records

TnBPSrcIP Total number of bytes per source IP
TnBPDstIP Total number of bytes per destination IP
TnP PSrcIP Total number of packets per source IP
TnP PDstIP Total number of packets per destination IP

TnP PerProto Total number of packets per protocol
TnP Per Dport Total number of packets per destination port

N IN Conn P SrcIP Number of inbound connections per source IP
N IN Conn P DstIP Number of inbound connections per destination IP

Attack Attack or not
Category Traffic category

TABLE II: Distribution of records in the first SDN dataset

Category Size %
Normal 1.67M 5.99

DoS 793K 2.84
DDoS 192K 0.67

Port Scanning 20.68M 74.08
OS and Service Detection 3.39 M 12.15

Fuzzing 1.18M 4.24

V. CONCLUSION

In this paper we introduced a novel dataset for SDN-assisted
intrusion detection in IoT environments. The created dataset
consists of a high number of data records consisting of traffic
modeling various IoT device types and different attacks. To
the best of our knowledge, this is the first publicly available
SDN-specific intrusion detection dataset for IoT, hence will
serve as an important resource for IoT security research.

TABLE III: Distribution of records in the second SDN dataset

Category Size %
Normal 2.67M 8.84

DoS 495K 1.67
DDoS 182K 0.60

Port Scanning 22.44M 74.23
OS and Service Detection 3.39 M 11.20

Fuzzing 1.05M 3.48



REFERENCES

[1] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things for
network forensic analytics: Bot-iot dataset,” CoRR, vol. abs/1811.00701,
2018.

[2] T. Alharbi, S. Layeghy, and M. Portmann, “Experimental evaluation of
the impact of dos attacks in SDN,” Proceedings of the 27th International
Telecommunication Networks and Applications Conference, ITNAC
2017, Melbourne, Australia, November 22-24, pp. 1–6., 2017.

[3] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on Com-
putational Intelligence for Security and Defense Applications, pp. 1–6,
2009.

[4] S. Hettich and S. Bay, “The uci kdd archive [http://kdd.ics.uci.edu].
irvine, ca: University of california,” Department of Information and
Computer Science, vol. 152, 1999.

[5] Center for Applied Internet Data Analysis.
https://www.caida.org/data/.

[6] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for
network i intrusion detection systems (unsw-nb15 network data set),”
Proceedings of the 2015 Military Communications and Information
Systems Conference (MilCIS), pp. 1–6., IEEE, 2015.

[7] A. H. L. Iman Sharafaldin and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,”
Proceedings of 4th International Conference on Information Systems
Security and Privacy (ICISSP), Portugal, pp. 108–116, January 2018.

[8] J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-Valdés, and
F. Luna-Valero, “Detection and mitigation of dos and ddos attacks in iot-
based stateful sdn: An experimental approach,” Sensors, vol. 20, p. 816,
Feb 2020.

[9] N. Ravi and S. M. Shalinie, “Learning-driven detection and mitigation
of ddos attack in iot via sdn-cloud architecture,” IEEE Internet of Things
Journal, vol. 7, no. 4, pp. 3559–3570, 2020.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
(New York, NY, USA), pp. 19:1–19:6, ACM, 2010.

[11] ONOS. https://www.opennetworking.org/onos/.
[12] Hping3. http://www.hping.org/hping3.html.
[13] Nmap. https://nmap.org/.
[14] Boofuzz. https://boofuzz.readthedocs.io/en/stable/.


